
Pre- and Post- 

Processing 

in Data Assimilation

Florence Rabier

CNRM-GAME, 

Météo-France and CNRS



2

Introduction

• Data assimilation : art of combining model and observations

• It relies on a set of equations with a solid statistical basis

• Theoretical studies : 

• how to define optimally the various quantities 

• how to combine all the flow-dependent information

• In practice, a lot of attention has to be paid to details in 

• handling observations

• possible filtering of the resulting analysis
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Outline

Transforming the raw data
Transforming into a different space
Averaging the data 
Filtering the observations

Comparing model and observations
Monitoring and choice of observations 
Bias correction
Removing wrong data

Thinning the data
Reducing data quantity and error correlation
Choosing the most relevant local data
Selective thinning depending on the flow 

Filtering the analysis
Initialisation methods
Influence on the analysis
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From the raw data to observations 

• Some observations are simple measurements: radiosondes 

• Other observations are very indirect measurements:

• Series of images from satellites to derive atmospheric motion vectors

Transforming     Comparing    Thinning    Filtering

EUMETSAT
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From the raw data to observations 

Pre-processing the data to data easier to assimilate

• Radiances measure the electromagnetic spectrum

• Provide indirect information on temperature, humidity, surface, ozone…

 

• Can be used directly in data assimilation schemes 

(John Derber's talk)

•  or via retrievals,

•  or a mix, for some parameters and quality control  

Transforming     Comparing    Thinning    Filtering

1D-Var

Clouds
Surface parameters

Temperature profiles

Humidity profiles

Radiances Analysis
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Averaging the data : spatially

Horizontal averaging performed by data producers  

CSR= Clear-Sky radiances, averaged in boxes 

typically 16*16 pixels for SEVIRI 

Some averaging can be done at the user's  level

• All-sky radiances at ECMWF : averaging observations 

  to create AMSR-E superob (at 80km scale, Geer and Bauer, 2010)

• NRL produces superobs from satellite winds with a complex algorithm
• Averaging in boxes (prisms of about 2° side)

•  Prism-quartering when high degree of variability

• U and V obs have to agree within a certain range

• … (Pauley, 2003)

 and get more positive results than other centres
 

Transforming     Comparing    Thinning    Filtering



10

Averaging the data: spatially

Radar winds in the HIRLAM 3D-Var and at NCAR for WRF 

( Lindskog et al, MWR, 2004) (Zhang et al, MWR, 2009)

Horizontal averaging to create super-obs from radial winds

Transforming     Comparing    Thinning    Filtering

Quality control steps 

* At least 4 or 5 data in an bin 

* Accepted only for low variance of the Vr values

Lindskog,

Salonen,

 Järvinen,

 Michelson,

 MWR,

 2004
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Averaging the data: spatially

 

With a median concept

(Montmerle and Faccani, MWR, 2009)

* Median filter on boxes of 5*5 pixels

Replace value by the median 

of neighouring points

* and a « cleaner » filter, removing pixels 

when large inconsistencies within boxes
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Averaging the data: temporally

Ground-based GPS

• Time-averaging of observations, 30 to 60 minutes. 

• Poli et al (JGR, 2007), 

• McPherson, Deblonde, Aparicio (MWR, 2008)

Radar data

• NCEP Stage IV radar and gauge precipitation data at ECMWF

 

• Hourly data, but 6-hourly accumulations perform better 

• Correlation between departure computed in full trajectory (T799, full  physics) and in first 
minimisation (T95, simplified physics): 0.2 to 0.7

• 6-hour =  compromise between linearity and observation usage over the 4D-Var 12-hour 
window (Lopez, MWR, 2011) 

Transforming     Comparing    Thinning    Filtering
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From the raw data to observations 

Vertical choice of data for conventional observations: radiosondes

– Usually selecting all levels 

– Interpolating between significant and mandatory  levels  (Benjamin et al, MWR, 2004) 

– In the future, vertical averaging for radiosonde high-resolution profiles ? 

Transforming     Comparing    Thinning    Filtering

Significant/mandatory  
levels

Additional data: from 
original high-resolution 
profile, or interpolated 
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From the raw data to observations 

• New challenges: transforming hyperspectral sounder data 

• Channel selection for IASI (Collard, QJRMS, 2007) 

Transforming     Comparing    Thinning    Filtering

Based on the information content

• Test which channel most 
improves DFS= tr(I-AB-1)

• Update the optimal A matrix

• Choose the next best channel

•…. 
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From the raw data to observations 

• Principal component compression (Collard et al, QJRMS, 2010) 

PCs computed from a large set of 

spectra C=1/n XXT=L L∧ T

Principal component amplitudes

related to observed radiances 

p=LTy

Around 200 PCs required to 

represent signal, rest is noise

Using leading PCs  efficient for

Data transfer and noise filtering

Transforming     Comparing    Thinning    Filtering

Real radiances 

Reconstructed radiances
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Monitoring and choice of relevant obervations

Transforming     Comparing    Thinning    Filtering

Change in vertical resolution: better fit to high-peaking channels,AMSU-A ch 13

2006: Change from 41 to 46 levels: 5 more channels up to 0.05hPa

2008: Change from 46 to 60 levels: more channels in stratosphere.

2010: Change from 60 to 70 levels: more channels in troposphere

Large reduction in STD 
when more levels in the stratosphere

2006 2008 2010

Bénichou
pers 
comm
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Monitoring and choice of relevant obervations

Transforming     Comparing    Thinning    Filtering

Choice of relevant observation: example of precipitation threshold at JMA

In Honda and Yamada (SOLA, 2007):

Radar rain-gauge data assimilated in 
4D-Var with simplified cloud 
microphysics

Exp A: no radar Rain-gauge data

Exp B: 1-hour rain > 0.5mm

ExpC: 1-hour rain > 0mm

Including more data can remove 

spurious precipitation

OBS Exp A

Exp B Exp C
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Monitoring and bias correction

Transforming     Comparing    Thinning    Filtering

Part of the biases seen in monitoring  is attributed to observations

Bias correction scheme: from simple to elaborate

GPS data: Bias correction simply based on averaged deviation from model

(Poli et al, JGR 2007), or on a 10-day running mean  (McPherson et al, MWR, 2008)

Radiosondes: bias depends on a few factors

• Sonde type: Vaisala RS-80, RS-92, MODEM… sonde age

• Solar elevation: causes solar heating of the sensor 

• Pressure level: the amount of solar radiation varies with pressure level

• Wetting of the radiosonde sensor in cloud can cause a wet bias at 
higher levels …

Nuret et al, JAOT, 2008: scattered sampling at Niamey during AMMA, 

for RS-80A and RS-92. Bias correction of RS-80 based on RS-92
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Monitoring and bias correction

Transforming     Comparing    Thinning    Filtering

Agusti-Panareda et al, QJRMS, 2009: bias-correction assuming the night-time 
RS-92 is bias-free, using the model as an intermediate

Refined correction takes into account the dependence of the bias on the 
observed humidity. 

CDF 
matching, 
then fitting 
four-sine 
wave 
components 
of a Fourier 
series

Obs

Model
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Monitoring and bias correction

Transforming     Comparing    Thinning    Filtering

 Radiances: a priori knowledge about the parameters affecting obs bias

Harris and Kelly (QJRMS, 2001) use scan-dependence and air-mass predictors

Model thicknesses (1000-300hPa, 200-50hPa,…)

Model surface temperature

Model TCWV…

Regression coefficients are computed over a long time-series. 

Can be adapted before each analysis off-line, or inside the assimilation (VarBC, 
see talk from John Derber)
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Removing wrong data

Transforming     Comparing    Thinning    Filtering

Each observation is subject to a variety of errors

• biases from calibration…

•      random errors 

•      representativeness errors

•      gross errors: instrument malfunction, transmission error…

Data with gross errors are useless 

Need for a quality control step 



22

Removing wrong data

Transforming     Comparing    Thinning    Filtering

Blacklist

based on monthly monitoring generally, 

can also be dynamically updated, based on gross-error statistics from the 
previous analyses (De Pondeca et al, WAF, 2011)

Check for observation consistency

« Buddy checks » 

Check with observation consistent with neighbours (Benjamin et al, MWR, 2004)

Estimate of the innovation at the observation point from the innovations of a 
group of nearby observations 

If the difference between the estimated and observed innovations exceeds a 
threshold, the observation is discarded



23

Removing wrong data

Transforming     Comparing    Thinning    Filtering

Check with model « First-guess check »

 

Gross check tests based on the comparison of departures with error estimates

(O-G)2< a (sigmao2) (De Pondeca et al, WAF, 2007) 

(O-G)2< a (sigmab2) (Benjamin et al, MWR, 2004)

(O-G)2< a (sigmao2 + sigmab2)  (Lorenc and Hammon, QJRMS, 1988)

(sigmao2 + sigmab2) from accumulated statistics of departures (Cucurull et al, 
MWR, 2007), 

or from the values used in the assimilation
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Lorenc and Hammon, 1988

Gaussian 

Gaussian + 

Small 
constant 

Transforming     Comparing    Thinning    Filtering
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Removing wrong data: combination of tests

Different norms can be used (ex : Huber 
norm at ECMWF) 

to represent departure statistics inside 
the assimilation

 and adapt the prior FG-check

Transforming     Comparing    Thinning    Filtering
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Adaptive buddy 
check

 flow- dependent 
tolerances for 
outlier 
observations  

(Dee et al, 
QJRMS, 2001)

Dec 1999 storm

       rejected by buddy 
check

      passed buddy 
check

passed FG check

Non-adaptive Adaptive

Transforming     Comparing    Thinning    Filtering

Removing wrong data: combination of checks 
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Transforming     Comparing    Thinning    Filtering

Removing wrong data Dependance on the errors of the day

Errors of the day provided by the Ensemble Data Assimilation. 

New operational applications (in 2008 at Meteo-France for example)

Klaus: 24/01/2009 at 
00h/03h

Errors for 3-hr 
fcst from the 
Ens Assim. 

Berre and Desroziers, 

pers comm
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Thinning: Time thinning

Transforming     Comparing    Thinning    Filtering

Different analysis schemes use different temporal thinning of data

In 4D-Var, one groups observations in 30 or 60 minute time-slots and  thin 
observations within each time-slot

 

In 3D-Var, select data closer to central analysis time (ex: +/- 1.5 hour for 
aircraft data)

In non-cycled schemes, choice of data really representative of analysis time 

ex for the hourly Real-time Mesoscale Analysis (De Pondeca et al, WAF, 2011), time 
window of –12 to +12 minutes
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Horizontal thinning

Transforming     Comparing    Thinning    Filtering

 For practical reasons, and avoiding obs error correlations not accounted for

Correlation 0.15

Liu, 2002

∆x=100km, σb=σo=1

Lb=208km, Lo=100km

Optimal distance can be found

Evidence of error correlation 
exist in AMVs, radiances 
(Bormann et al, QJRMS 2003; 
Bormann and Bauer, QJRMS, 
2010)

Obs inter-distance

A
n

alysis erro
r



30

Horizontal thinning

Transforming     Comparing    Thinning    Filtering

Generally, simple thinning by lat-lon boxes, with choice by quality criteria

 (distance to guess, Quality Indicator, small value of radial wind variance in the superobs, max 
number of elevations which pass QC in radar profiles…). 

Adaptive thinning : Ochotta et al, QJRMS, 2005 

• Observations representative of clusters are inserted iteratively 

• Or, removal of the observations from the full set, by removing redundant data
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Horizontal thinning

Transforming     Comparing    Thinning    Filtering

Optimal thinning distance investigated in the Met Office NWP system

 (Dando, Thorpe and Eyre, QJRMS, 2007)

Control: thinning distance of 308km. Optimal distances found : 100-150km.

Detrimental to use thinning at 40-km distance, especially in Tropics (weak 
gradients in the fields)
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Horizontal thinning

Transforming     Comparing    Thinning    Filtering

Optimal thinning using Singular vector information in Southern Hemisphere at ECMWF  
(Bauer et al, QJRMS, 2010). Different configurations, two seasons (JAS, DJF):

EXP: global density of 1.25°

EXP-HI: Global High-density 0.625° 

EXP-SV: High-density only in SV areas

EXP-CLI: High-density in SV-based climatological regions

EXP-RND: High-density in random areas
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Horizontal thinning

Transforming     Comparing    Thinning    Filtering

Radius of Influence in EnKF, Zhang et al, MWR, 2009

Radar data assimilation, 3 domains D1 (40km)  to D3 (4.5km)

FIX1: ROI = 1215km for D1, D2, D3

FIX2: ROI = 405km for D1, D2, D3

FIX3: ROI = 135km for D1, D2, D3

CNTL:

ROI of 1215km for 10% of data in D1, D2, D3

Then ROI of 405km  for 20% of data in D2, D3

Then ROI of 135km for 60% of data in D3

DX30:

ROI of 1215km in D1

Then ROI of 405km  in D2

Then ROI of 135km in D3

Better performance of CNTL and DX30

Hurricane Humberto,

Forecast from 18UTC 12 Sep 2007
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Post-processing: Filtering

Transforming     Comparing    Thinning    Filtering

The model can take time to adjust initial fields with respect to model equations. 
Dynamical adjustment by inertia-gravity waves, diabatic adjustment.

Ideally, balanced increments in the analysis (through B). There is also a possibility 
to include constraint terms inside the analysis (Gauthier and Thépaut, MWR, 2001). 

Posterior filtering of the analysis is frequently performed.

Forces the initial state not to generate model tendencies that project onto high-
frequencies model solutions

Different methods can be used:

DFI: Digital Filter Initialization (Lynch and Huang, MWR, 1990; Huang and Lynch, 
MWR, 1993)

IAU: Incremental Analysis Update (Lorenc et al, QJRMS, 1991; Bloom et al, MWR, 
1996)
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Initialization methods

P 3-h  (guess) restart
Increment

P 1h30

…

Incremental Analysis Update

3D-Var

 IAU :

3D-Var increment added 
gradually in the assimilation 
window

 DFI   : 
 Backward integration in time by Ndt, then forward integration by 2Ndt
 Time series X(n) is then filtered removing high frequencies
 X*= sum h(-n)X(n) where h(n) are the filter coefficients
 h(n)= { sin(n∏/(N+1)) / (n∏/(N+1) } * { sin(n⍬c) / n∏ }

 ⍬c is the cutoff frequency

Transforming     Comparing    Thinning    Filtering
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Filtering

Transforming     Comparing    Thinning    Filtering

Imbalance depends on the quality of the analysis.

DFI applied to MM5 using either Cressman or 3D-Var analysis in Chen and Huang, 
MWR, 2006

DFI applied to both OI and 3D-Var versions of the RUC (Benjamin et al,MWR, 2004)
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Filtering

Transforming     Comparing    Thinning    Filtering

Various flavours of DFI : diabatic versus adiabatic (Huang and Lynch, MWR, 1993), 
incremental versus non-incremental (Fischer and Auger, MWR, 2011)

Standard DFI: Xa*= DFI(Xa) 

Total increment for standard DFI is 

DFI(Xa) – Xb=

DFI(Xa) – DFI(Xb) -  (Xb- DFI(Xb) )

The total increment is the sum of

 a balanced increment and a 

 removal of  the high frequencies in xb

Incremental DFI:

 Xa*= Xb + { DFI(Xa) - DFI(Xb) }

Total increment is DFI(Xa) – DFI(Xb)
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Filtering for the assimilation cycle

Transforming     Comparing    Thinning    Filtering

Filtering not only for forecasts, but also for assimilation.

For rapid cycles, the assimilation cycle could be adversely 

affected by spurious waves

Brousseau, pers comm
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Impact of initialization in AROME

Example of one precipitating event over SE France (Brousseau, pers comm)

1-h cycle
3D-Var + IAU

1-h cycle
3D-Var

3-h cycle
3D-Var

 Date 15/06/2010 :
•  3-h and 1-h cycling perform similarly
• IAU improves location

radar

Transforming     Comparing    Thinning    Filtering



Conclusion

Le Bon Dieu est dans le 
détail, Gustave Flaubert, 
1821-1880 

Or

 

The devil is in the details
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