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Introduction

Data assimilation : art of combining model and observations

It relies on a set of equations with a solid statistical basis

Theoretical studies :
* how to define optimally the various quantities
* how to combine all the flow-dependent information

In practice, a lot of attention has to be paid to details in
* handling observations
* possible filtering of the resulting analysis
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Transforming Comparing Thinning Filtering

From the raw data to observations

* Some observations are simple measurements: radiosondes

* Other observations are very indirect measurements:
* Series of images from satellites to derive atmospheric motion vectors

Initial corrections (image navigation etc.) Search Area

80 x 80 pixels
cenired on
target box

Target Box / Tracer
24x24 pixels

Pixel — 3 km New location
determined by best

- match of individual
T T+ 15 min pixel counts of target

with all possible
Infrared Imagery locations of target in

search area.
Need to assign a height to the derived vector EUMETSAT



Transforming Comparing Thinning Filtering

From the raw data to observations

Pre-processing the data to data easier to assimilate

Radiances measure the electromagnetic spectrum

Provide indirect information on temperature, humidity, surface, ozone...

Can be used directly in data assimilation schemes
(John Derber's talk)
* orviaretrievals,

* or amix, for some parameters and quality control

—, Clouds
—» Surface parameters

v

Radiances —»

\4

__» Temperature profiles
—»  Humidity profiles METEO FRANCE
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Transforming Comparing Thinning Filtering

Averaging the data : spatially

Horizontal averaging performed by data producers

CSR= Clear-Sky radiances, averaged in boxes
typically 16*16 pixels for SEVIRI

Some averaging can be done at the user's level
* All-sky radiances at ECMWF : averaging observations
to create AMSR-E superob (at 80km scale, Geer and Bauer, 2010)

* NRL produces superobs from satellite winds with a complex algorithm
* Averaging in boxes (prisms of about 2° side)
* Prism-quartering when high degree of variability
* U and V obs have to agree within a certain range
* ... (Pauley, 2003)

and get more positive results than other centres

METEO FRANCE
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Transforming Comparing Thinning Filtering

Averaging the data: spatially

Radar winds in the HIRLAM 3D-Var and at NCAR for WRF
( Lindskog et al, MWR, 2004) (Zhang et al, MWR, 2009)
Horizontal averaging to create super-obs from radial winds

Quiality control steps

* Atleast 4 or 5 datain an bin
*  Accepted only for low variance of the Vr values

RAW

Lindskog,

Salonen,
Jarvinen,
Michelson,
MWR,

FIG. 1. (left) Doppler radar radial wind raw data and (right) SOs generated through horizontal averaging. 2004 :

TOWARDS




Transforming Comparing Thinning Filtering
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Averaging the data: spatially
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With a median concept
(Montmerle and Faccani, MWR, 2009)
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* Median filter on boxes of 5*5 pixels
Replace value by the median
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*and a « cleaner » filter, removing pixels
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when large inconsistencies within boxes
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Fic. 2. Example of radial velocities from the first elevation performed by the BOLL radar

(Fig. 1): raw data (top) and after the application of median (middle) and cleaner filters
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Transforming Comparing Thinning Filtering

Averaging the data: temporally

Ground-based GPS

- Time-averaging of observations, 30 to 60 minutes.
« Poli et al (JGR, 2007),
« McPherson, Deblonde, Aparicio (MWR, 2008)

Radar data
- NCEP Stage IV radar and gauge precipitation data at ECMWF

- Hourly data, but 6-hourly accumulations perform better

- Correlation between departure computed in full trajectory (T799, full physics) and in first
minimisation (T95, simplified physics): 0.2 to 0.7

« 6-hour = compromise between linearity and observation usage over the 4D-Var 12-hour
window (Lopez, MWR, 2011)

METEO FRANCE
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Transforming Comparing Thinning Filtering

From the raw data to observations

Vertical choice of data for conventional observations: radiosondes

— Usually selecting all levels

— Interpolating between significant and mandatory levels (Benjamin et al, MWR, 2004)
— In the future, vertical averaging for radiosonde high-resolution profiles ?

3

@ Significant/mandatory
levels

O Additional data: from
original high-resolution
profile, or interpolated

" METEO FRANCE
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Transforming Comparing Thinning Filtering

From the raw data to observations

* New challenges: transforming hyperspectral sounder data

* Channel selection for IASI (Collard, QJRMS, 2007)

300 ——————————————
I 'Lemperature | Based on the information content
O Main run N

ol voore I8 M‘W * Test which channel most
~ €U A\ Solar/non- Oy ." . — _AR-1
f’ i + Exira surface !!’?'l % | improves DFS= tr(I-AB-")
| A ] * Update the optimal A matrix
2 260 4 .
E | * Choose the next best channel
|_
0 ..
g r
£ 240 N
2 '
i

220 § n

1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1
1000 1500 2000 2500

Wavenumber (cm")

METEO FRANCE

Figure 5. The 300 channels chosen with the methodology described in the text. Toujours un temps d'avance
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From the raw data to observations

Principal component compression (Collard et al, QIRMS, 2010)

PCs computed from a large set of
spectra C=1/n XX™=LALT

@ Real radiances ]
@ Reconstructed radiances:
Principal component amplitudes

related to observed radiances

Std. Dev. of Background Departure (K)

:
p=L'y 'é
1: § :t%’
Around 200 PCs required to -I'I o2, 3 II%
§
represent signal, rest is noise T &,
.0 L | PR R T 1 P (S TR TR S
4 g 8 10 12 14
Using leading PCs efficient for Wavelength (um)
Data transfer and noise filtering Figure 8. A comparison of the standard deviations of clear-sky departures

from the same model background for real (dark/red) and reconstructed

(light/green) radiances. Significant ‘denoising’ is seen in the 15 gm band

where instrument noise is dominant over model error. One channel, at

8.07 um, has an apparent increase in departure standard deviation, but

this is an artifact arising from the cloud detection scheme. This figure is
15 available in colour online at wileyonlinelibrary.com/journal/qj
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Monitoring and choice of relevant obervations

Change in vertical resolution: better fit to high-peaking channels,AMSU-A ch 13

2006: Change from 41 to 46 levels: 5 more channels up to 0.05hPa

2008: Change from 46 to 60 levels: more channels in stratosphere.

2010: Change from 60 to 70 levels: more channels in troposphere

ATOVS AQUA

Thb (K) toutes classes

- ARPEGE oper du 08-MAR-
AMSU

-A

13

2005 au 08-APR-2011
5 hPa

nb obs nb rejets biais corr

biais non corr

biais+ect corr

biais-ect corr

110

Tb (K)

Large reduction in STD
when more levels in the stratosphere

Benichou ~~ A O S

pers
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Monitoring and choice of relevant obervations

Choice of relevant observation: example of precipitation threshold at JMA

R
In Honda and Yamada (SOLA, 2007): ) o u’

Radar rain-gauge data assimilated in
4D-Var with simplified cloud
microphysics

Exp A: no radar Rain-gauge data

Exp B: 1-hour rain > 0.5mm

ExpC: 1-hour rain > 0mm

Including more data can remove

spurious precipitation Fig. 3. The 3 hourly precipitation from 03 UTC to 06 UTC on
2005/10/15. (left top) R/A precipitation data, (right top)
17 analysis of Exp A, (left bottom) analysis of Exp B and (right

bottom) analvsis of Exp C.
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Monitoring and bias correction

Part of the biases seen in monitoring is attributed to observations

Bias correction scheme: from simple to elaborate

: Bias correction simply based on averaged deviation from model

(Poli et al, JGR 2007), or on a 10-day running mean (McPherson et al, MWR, 2008)

. bias depends on a few factors
* Sonde type: Vaisala RS-80, RS-92, MODEM... sonde age
* Solar elevation: causes solar heating of the sensor
* Pressure level: the amount of solar radiation varies with pressure level

* Wetting of the radiosonde sensor in cloud can cause a wet bias at
higher levels ...

Nuret et al, JAOT, 2008: scattered sampling at Niamey during AMMA,
for RS-80A and RS-92. Bias correction of RS-80 based on RS-92

18



Transforming Comparing Thinning Filtering

Monitoring and bias correction

Agusti-Panareda et al, QJRMS, 2009: bias-correction assuming the night-time
RS-92 is bias-free, using the model as an intermediate

Refined correction takes into account the dependence of the bias on the
observed humidity.

(b)
CDF g
matching, §
oy 2
then fitting z
four-sine £
wave 3
components
Of a Fourier 40 5ICI BICI 7O alo OIO 100
SerleS Relative humidity [%]
BIAS(Ryps, P.O.s) = ay Sin[iRDhﬁ(P,Q,s)] The bias correction is computed using Equation (1) by
100 subtracting the bias function of the reference sonde|(sonde
. 2m type BUFR code s = 79) from the bias function of the
Sin[—— Ryps (P, 0 YP ‘
T []I]{} obs (P, 0, 5)] sonde to be corrected. The corrected RH (R.,;) for an

+ a3 sin[% R (P. 6, 5)] observed RH value (R) is given by:
Reore(p, 0., 5) = Ryps(p, 0. 5) — [BIAS(Rps, p, 6,
- Rons(P.6,5)]. (1) corr (P, 6, 5) obs(P, 0, 5) — [ (Kobs, P, 7, 5)

+ aysinf o — BIAS(Ryps, p. 8 < 0,5 =79)]. (2)
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Monitoring and bias correction

. a priori knowledge about the parameters affecting obs bias

Harris and Kelly (QJRMS, 2001) use scan-dependence and air-mass predictors
Model thicknesses (1000-300hPa, 200-50hPa,...)
Model surface temperature
Model TCWV...

Regression coefficients are computed over a long time-series.

Can be adapted before each analysis off-line, or inside the assimilation (VarBC,
see talk from John Derber)

METEO FRANCE
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Removing wrong data

Each observation is subject to a variety of errors
* biases from calibration...

* random errors

* representativeness errors

. gross errors: instrument malfunction, transmission error...

Data with gross errors are useless

Need for a quality control step

’1 METEO FRANCE
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Transforming Comparing Thinning Filtering

Removing wrong data

based on monthly monitoring generally,

can also be dynamically updated, based on gross-error statistics from the
previous analyses (De Pondeca et al, WAF, 2011)

« »
Check with observation consistent with neighbours (Benjamin et al, MWR, 2004)

Estimate of the innovation at the observation point from the innovations of a
group of nearby observations

If the difference between the estimated and observed innovations exceeds a
threshold, the observation is discarded

METEO FRANCE
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Transforming Comparing Thinning Filtering

Removing wrong data

Check with model « »

Gross check tests based on the comparison of departures with error estimates

(O-G)%*< a (sigmao?) (De Pondeca et al, WAF, 2007)

(O-G)?< a (sigmab?) (Benjamin et al, MWR, 2004)

(Lorenc and Hammon, QJRMS, 1988)

(sigmao? + sigmab?) from accumulated statistics of departures (Cucurull et al,
MWR, 2007),

or from the values used in the assimilation
METEO FRANCE
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Comparing Thinning Filtering

Lorenc and Hammon. 1988
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Figure 1, Probability density functions for background, observation, and Bayesian analysis, for four different
observed values and a Gaussian observational error distribution.
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Figure 2. As Fig. 1 for an observational error distribution equal to a Gaussian plus a small constant.
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Removing wrong data: combination of tests

TEMP—T" N.Hemis_15000.0_25000.0_Vaisala_R592
all dato normalised bockground fit
N: 640543. B: —0.134 S: 1.693 Huber: 1.800 1.3(

Different norms can be used (ex : Huber
norm at ECMWF)

to represent departure statistics inside
the assimilation

and adapt the prior FG-check

Data counts (log scaling)

The pdf for the Huber norm is:

I—h-l II 0 I B
Normalized departures

exp| ——o a<d<h where & = -
|2 -

(
|
|
|1 o lis yoHE
|
|
|
l

eXpL—.—‘bcﬁ?\J if 6 >b
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Comparing Thinning Filtering
Removing wrong data: combination of checks

® ‘w-& p«-

Yo O passed buddy

4 12 10

cee Adaptive buddy

check

flow- dependent
tolerances for
outlier
observations

(Dee et al,
QJRMS, 2001)

° Dec 1999 storm

' ' @ rejected by buddy

]

check

check

! %c @ passed FG check
o
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Removing wrong data Dependance on the errors of the day

Errors of the day provided by the Ensemble Data Assimilation.

New operational applications (in 2008 at Meteo-France for example)

Klaus: 24/01/2009 at

00h/03h

W > =
-!. )

Errors for 3-hr
fcst from the
Ens Assi.

= _' i --'JE.E.:'..’.:
i | i

e =

.........

"™ Berre and Desroziers,
pers comm
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Transforming Comparing Thinning Filtering

Thinning: Time thinning

Different analysis schemes use different temporal thinning of data

In 4D-Var, one groups observations in 30 or 60 minute time-slots and thin
observations within each time-slot

In 3D-Var, select data closer to central analysis time (ex: +/- 1.5 hour for
aircraft data)

In non-cycled schemes, choice of data really representative of analysis time

ex for the hourly Real-time Mesoscale Analysis (De Pondeca et al, WAF, 2011), time
window of —12 to +12 minutes

METEO FRANCE
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Transforming

Horizontal thinning

Comparing Thinning Filtering

For practical reasons, and avoiding obs error correlations not accounted for

A Correlation 0.15

— optimal

uncorr

‘ --=-- suboptimal |

1
250

(km)

]
R0 00

EnObs 1ifr“:ter-distance

300 350

Liu, 2002
Ax=100km, 0,=0 =1
L,=208km, L =100km

Optimal distance can be found

Evidence of error correlation
exist in AMVs, radiances
(Bormann et al, QJRMS 2003;
Bormann and Bauer, QJRMS,
2010)

METEO FRANCE
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Transforming Comparing Thinning Filtering

Horizontal thinning

Generally, simple thinning by lat-lon boxes, with choice by quality criteria

(distance to guess, Quality Indicator, small value of radial wind variance in the superobs, me
number of elevations which pass QC in radar profiles...).

Adaptive thinning : Ochotta et al, QJRMS, 2005
* Observations representative of clusters are inserted iteratively
* Or, removal of the observations from the full set, by removing redundant data

O © X X
o OOO o XXx
o © © o © X
Oo ® o OO Oo O\ X X X
O O
oo O o OO \ X
O O
(a) (b) (C)

Figure 1. Concept of top-down clustering. (a) Observations are grouped to a cluster with a cluster centre (filled

dot); (b) when the associated cluster error is too large, the cluster is split up by Principal Component Analysis,

providing two new clusters; (c¢) this procedure 1s repeated until all cluster errors are below a given threshold, t > 0.
The set of centroids is the reduced observation set.
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Horizontal thinning

Optimal thinning distance investigated in the Met Office NWP system
(Dando, Thorpe and Eyre, QUIRMS, 2007)

Control: thinning distance of 308km. Optimal distances found : 100-150km.

Detrimental to use thinning at 40-km distance, especially in Tropics (weak
gradients in the fields)

34 )
4 —8— Global —— N Extratropics
— 3 ——3 week exp. T 2- —&— 5 Extratropics —#—Tropics
= - -e- -5 day exp. ~
5 2] o
3 @
7] - - .
g 0 . & 0
5 10 100 350 o 1 350
L T - - = O
£ 9 L
© c -2
g 3 ©
2 9 .3 -
2 a4 o
£
-5 O -4
Thinning Distance of ATOWVS (km) 5
Figure 2. Change in the global average of the absolute forecast error, Thinning Distance of ATOVS (km)

shown as a percentage of the control forecast error, versus the thinning
distance of ATOWVS. The percentage change is shown as an average
over 3 weeks (solid line) and an average over 5 days (dashed line).
The error bars are the standard deviations for the 3-week experiment.

Figure 3. Change in the average absolute forecast error for different
regions, shown as a percentage of the control forecast error, versus the
thinning distance of ATOVS.
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Horizontal thinning

Optimal thinning using Singular vector information in Southern Hemisphere at ECMWF
(Bauer et al, QIRMS, 2010). Different configurations, two seasons (JAS, DJF):

EXP: global density of 1.25°

EXP-HI: Global High-density 0.625°

EXP-SV: High-density only in SV areas

EXP-CLI: High-density in SVV-based climatological regions
EXP-RND: High-density in random areas

Z: -90° o ~20°, 500hPa

(€) 004 E:I—Elrﬂ X _.ED. ‘ E.Jm.hp'?l (d) 0.0s
2 002} g
¥ § 000}
& 0.00f o
E -0.02} E -0.05}
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8 008} 3
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Transforming

Horizontal thinning eEn
- - -FIX2
Radius of Influence in EnKF, Zhang et al, MWR, 2009 —FIX3

DX30 L%~
Radar data assimilation, 3 domains D1 (40km) to D3 (4.5km) [

FIX1: ROl = 1215km for D1, D2, D3
FIX2: ROl = 405km for D1, D2, D3
FIX3: ROl = 135km for D1, D2, D3

CNTL.:

ROI of 1215km for 10% of data in D1, D2, D3
Then ROI of 405km for 20% of data in D2, D3
Then ROI of 135km for 60% of data in D3

DX30:

ROI of 1215km in D1
Then ROl of 405km in D2
Then ROI of 135km in D3

Better performance of CNTL and DX30

Comparing Thinning @
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Hurricane Humberto,
Forecast from 18UTC 12 Sep 2007
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Post-processing: Filtering

The model can take time to adjust initial fields with respect to model equations.
Dynamical adjustment by inertia-gravity waves, diabatic adjustment.

|deally, balanced increments in the analysis (through B). There is also a possibility
to include constraint terms inside the analysis (Gauthier and Thépaut, MWR, 2001).

Posterior filtering of the analysis is frequently performed.

Forces the initial state not to generate model tendencies that project onto high-
frequencies model solutions

Different methods can be used:

DFI: Digital Filter Initialization (Lynch and Huang, MWR, 1990; Huang and Lynch,
MWR, 1993)

IAU: Incremental Analysis Update (Lorenc et al, QJRMS, 1991; Bloom et al, MWR,
19906)

34



Transforming Comparing Thinning Filtering

Initialization methods

DFI
= Backward integration in time by Ndt, then forward integration by 2Ndt
= Time series X(n) is then filtered removing high frequencies
= X*=sum h(-n)X(n) where h(n) are the filter coefficients
* h(n)={sin(n[[/(N+1)) / (n[[/(N+1) } * { sin(n®_) / n[ ]}
" §_is the cutoff frequency
P 3-h (guess) :1 restart ”
AU : Increment
DI 3D-Var R
3D-Var increment added A
gradually in the assimilation Gl 1 1 1 ” 1\
window  Fo oS oSS s oS s s === -

Incremental Analysis Update
35



Transforming Comparing Thinning Filtering

Filtering

Imbalance depends on the quality of the analysis.

DFI applied to MM5 using either Cressman or 3D-Var analysis in Chen and Huang,
MWR, 2006

DFI applied to both Ol and 3D-Var versions of the RUC (Benjamin et al, MWR, 2004)

25
| 9
20 — —————— NODFI-CRSM y | ot o-o-- 3DVAR - DFY
----- NODFI-3DVAR — : ; i | —o—30VAR - no DF
[ N S DFI-CRSM £ 7 Noii./|==e==0l-OF|
searsnsennsess  DF[-3DWVAR E ! i : s {7} - 303 CHF |
o=
15 — ~
£ - s
< i
10 — Z
0
=) 1]
<
5 —
W : ; H ; Y
| \;_.-_._,-g_-_-_T_-_-*!_-&I.-&r-*--*--h““ﬂ--.ﬂ
1
0 0 1 2 3 4 5 8
! ! hour
0 12
Integration hours FIG. 2. Noise parameter over a single time step (30 s) in the RUC
FiG. 8. The evolution of the mean absolute surface pressure ;nrméel:llwll;graﬁl_l‘;iizrﬁ[ll_?f:i{?;f’;?;g;ia:tdgggoa?gp {g:a;z:

tendency N [hPa (3 h) '] in the first 12-h forecasts averaged from

2002, data points taken every 30 min of integration.
14 cycles from 0000 UTC 21 Aug to 1200 UTC 27 Aug 2002. )



Transforming Comparing Thinning Filtering

Filtering

Various flavours of DFI : diabatic versus adiabatic (Huang and Lynch, MWR, 1993),
incremental versus non-incremental (Fischer and Auger, MWR, 2011)

Standard DFI: X_*= DFI(X,) :
P For comrnl exp
mm  [hias for IDFT exp
= RMSE tor control exp
== RMSE for IDFI exp

Total increment for standard DFl is
DFI(X,) — X,=
DFI(X,) — DFI(X,)- (X,- DFI(X,) )

The total increment is the sum of

Mean Sea level pressure (hPa)

a balanced increment and a

removal of the high frequencies in x,

0 f 12 I8 o
Lead times (hours)

Incremental DFI: FIG. 3. Scores of biases (thick curves) and RMSEs (thin curves)
xa*= Xb + { DFI(Xa) _ DF|(Xb) } of MSLP with respect to the French surface station network, for the

operational ALADIN-France model (nonincremental DFI, solid
lines) and for the test model (incremental DFI, dashed lines). Units
are model lead times from 0 to 24 h, every 3 h (horizontal axis),
and hPa (vertical axis). Note that lead time 0 corresponds to the
initialized analysis.

Total increment is DFI(X,) — DFI(X,)
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Transforming Comparing Thinning Filtering

Filtering for the assimilation cycle

Filtering not only for forecasts, but also for assimilation.

For rapid cycles, the assimilation cycle could be adversely
affected by spurious waves

3 —
— 3D-Var -
— Restart

== 3D-Var + IAU

== 3D-Var + DFI

-3
n
|

rms of dPs/dt (hPa/h)
ot

—

e
n

B [ T
[
I3
[
el

00 01 02 03
UTC (h)

D METEO FRANCE
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Impact of initialization in AROME

Example of one precipitating event over SE France (Brousseau, pers comm)

5'E 6'E TE E Q-E!I‘E

radar = Date 15/06/2010 :
*  3-h and 1-h cycling perform similarly
* TAU improves location
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Conclusion

Le Bon Dieu est dans le
détail, Gustave Flaubert,
1821-1880

Or

The devil is in the details
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