The effect of surface heterogeneity on fluxes in the stable boundary layer

Rob Stoll

Department of Mechanical Engineering University of Utah, Salt Lake City, Utah

THE UNIVERSITY OF UTAH

Using LES to examine surface heterogeneity

- Based on GABLS I LES intercomparison (Beare et al. 2006)
- Domain size: H = 400 m; $L_x = L_y = 800 \text{ m}$, Resolution: $\Delta = 5 \text{ m}$, $\Delta = 3.3 \text{ m}$
- Geostrophic: wind $U_g = 8$ m/s, Coriolis: $f_c = 1.39 \times 10^{-4} \text{ s}^{-1}$ (73° N)
- Surface parameters: cooling = 0.25 K/hr, z_o = 0.1 m
- periodic domain (patches repeat)
- 9 and 12 physical hr simulations (averaged over last hour)
- Scale dependent dynamic Lagrangian SGS model (Stoll and Porté-Agel, 2006)
 - ideal for heterogeneous flows with minimal grid resolution dependence for GABLS I case (Stoll and Porté-Agel, 2008)

THE UNIVERSITY OF UTAH

Heterogeneity from:

- surface temperature transitions (Stoll and Porté-Agel, 2009)
- aerodynamic surface roughness transitions (Stoll and Miller, 2012)
- combined aerodynamic roughness and temperature transitions

Using LES to examine surface heterogeneity

Surface temperature heterogeneity

Surface temperature heterogeneity

Case	δ (m)	$u_* (m/s)$	θ_* (K)	L (m)
Hom	175	0.260	0.0447	101
Het3-400	180	0.263	0.0425	109
Het3-200	180	0.263	0.0422	110
Het3-100	182	0.264	0.0421	111
Het6-400	196	0.271	0.0359	137
Het6-200	198	0.272	0.0362	137
Het6-100	200	0.275	0.0356	142

Surface roughness heterogeneity

Surface roughness heterogeneity

Case	L_c (m)	$R = ln(z_{o,1}/z_{o,2})$	δ (m)	$u_*~({ m m/s})$	θ_* (K)	L (m)
A1	400	2.3	174	0.259	0.0421	107
A2	200	2.3	173	0.260	0.0420	108
A3	100	2.3	175	0.262	0.0423	109
B1	400	4.6	170	0.252	0.0413	103
B2	200	4.6	171	0.256	0.0417	106
B3	100	4.6	173	0.259	0.0420	108
C1	400	6.9	168	0.250	0.0412	102
$\mathbf{C2}$	200	6.9	170	0.255	0.0417	105
$\mathbf{C3}$	100	6.9	174	0.259	0.0420	107

Combined roughness-temperature

cold-rough to hot-smooth

smooth

rough

hot-rough to cold-smooth

rough

З

З

smooth

THE UNIVERSITY OF UTAH

Combined roughness-temperature

Case	δ (m)	$u_* (m/s)$	θ_* (K)	L (m)
Hom $z_o=0.1$ m	169	0.254	0.0435	100
Het6-400	190	0.265	0.0348	135
Hot-Cold	205	0.26	0.0316	144
Cold-Hot	152	0.24	0.0371	105

- Can also be a function of stability (Wood and Mason, 1991)
- Mostly tested and developed for neutral or weak stablility and is probably not valid under convective or strongly stable (Mahrt, 2000)

Representing heterogeneity: tiles

- Tile method (Avissar and Pielke, 1989):
- Use M-O locally between each 'tile' and the average temperature and velocity

$$\langle q_s \rangle = \sum_{i}^{n} f_i \frac{\kappa \langle M(z_r) \rangle \left[\langle \theta(z_r) \rangle - \theta_s^i \right]}{\left[ln \left(z_r / z_o^i \right) - \Psi_m \left(z_r / L^i \right) \right] \left[ln \left(z_r / z_t^i \right) - \Psi_h \left(z_r / L^i \right) \right]}$$

- Modified tile method (e.g., Blyth, 1995):
- M-O should apply above I_b to the average
- Below I_b apply the tile model with $z_r = I_b$

Linear flux assumption

b

q

Q

q_s

q

• Alternative parameterization developed for temperature transitions (Stoll and Porté-Agel, 2009)

• Apply 'local' scaling (Nieuwstadt, 1984) over the cold patch at the 'blending height' I_b (Wieringa, 1986).

• Assume linear q_L and u_{*L} :

$$- q_{L} = (q_{i}/q_{s}-1)z/l_{b}+q_{s}$$

$$- u_{*L} = (u_{*i}/u_{*}-1)z/l_{b}+u_{*}$$

• Using \textbf{q}_{L} and $\textbf{u}_{*\text{L}}$ define new Ψ_{M} and $\Psi_{\text{H}}.$

$$\Psi_{M} = -Az - \frac{\beta}{L} \left[\frac{B-A}{A^{2}(Az+1)} - \frac{B-A}{A^{2}} + \frac{B}{A^{2}} ln(Az+1) \right]$$

$$\Psi_{H} = \alpha \frac{B-A}{B} ln(Az+1) + \frac{\beta}{L} \left[\frac{(3B^{2}z^{2} + 3Bz+1)A^{2} + (3Bz+1)BA + B^{2}}{3A^{3}(Az+1)^{3}} - \frac{A^{2} + BA + B^{2}}{3A^{3}} \right]$$

$$Where \quad A = \left(\frac{u_{*i}}{u_{*}} - 1 \right) \frac{1}{l_{b}} \quad \text{and} \quad B = \left(\frac{q_{i}}{q_{s}} - 1 \right) \frac{1}{l_{b}}$$

$$THE UNIVERSITY OF UTAH$$

Testing average models: roughness

- All cases follow mean similarity \rightarrow just need to specify $z_{o.eff}$
- Many models, difference is mostly definition of what height scale to use:

$$\left[ln\left(\frac{l_b}{z_{o,e}}\right)\right]^{-1} = \sum_i^n f_i \left[ln\left(\frac{l_d}{z_o^i}\right)\right]^{-2}$$

Case	L_c (m)	R	LES	Taylor	Mason	Wood and Mason	Bou-Zeid et al.
A1	400	2.3	0.0329	0.0316	0.0435	0.0435	0.0348
A2	200	2.3	0.0344	0.0316	0.0458	0.0458	0.0371
A3	100	2.3	0.0379	0.0316	0.0482	0.0483	0.0395
B1	400	4.6	0.0172	0.0100	0.0308	0.0310	0.0202
B2	200	4.6	0.0192	0.0100	0.0340	0.0341	0.0227
B3	100	4.6	0.0233	0.0100	0.0376	0.0378	0.0253
C1	400	6.9	0.0109	0.0032	0.0260	0.0262	0.0146
C2	200	6.9	0.0130	0.0032	0.0297	0.0299	0.0170
C3	100	6.9	0.0173	0.0032	0.0338	0.0340	0.0199

• Can argue that zo,e is a property of the surface roughness (Bou-Zeid et al, 2004)

😈 THE UNIVERSITY OF UTAH🚽

Testing average models: roughness

Testing average models: combined

cold-rough to 'hot'-smooth

- Using Stoll and Porté-Agel (2009)
- With z_{o,eff} for mean fluxes (to get blending height values)

Coupling to turbulence models

•Surface temperature heterogeneity test

•Simple single-column model:

-1st-order PBL turbulence model (Beljaars and Viterbo, 1998)

-Coupled with bulk model

-Coupled with basic tile model

Case	$\langle au_{\scriptscriptstyle s} angle$	$\langle q_{\scriptscriptstyle s} angle$
LES		
Homo	0.0676	-0.0117
Het3	0.0692	-0.0112
Het6	0.0734	-0.0098
1D Model		
Homo	0.1179	-0.0087
Het3	0.1179	-0.0084
Het6	0.1196	-0.0077

😈 THE UNIVERSITY OF UTAH 🚽

Summary

• Models developed to represent the average effect of surface heterogeneity do not represent the fluxes correctly in the heterogeneous SBL over surface temperature transitions.

• It is possible to develop models that can mimic the effect of flux enhancement.

 Roughness transitions do appear to be represented well under wind conditions.

• Correlation between surface properties is especially important (and problematic) in the heterogeneous SBL.

• Flux boundary conditions and PBL turbulence models should be examined as a coupled systems in addition to 'offline'

😈 THE UNIVERSITY OF UTAH 🚽

Future Directions

- Study weak wind conditions when stability will be higher and flow won't be dominated by advection
- Larger range of patch sizes and impact of using the 'wrong' blending height
- Realistic surface heterogeneity patterns
- Impact of moisture on heterogeneity (more realistic local coupling)
- Examine a wider range of PBL schemes in SCM tests

Surface temperature heterogeneity

$$\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z}\right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z}\right)^2}$$

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \left\langle \theta \right\rangle}{\partial z}$$

Surface roughness heterogeneity $\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \left\langle \theta \right\rangle}{\partial z}$ $\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z}\right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z}\right)^2}$ 3.5 3.5 3 3 2.5 2.5 Φ_M Φ_H 2 1.5 1.5 0.5∟ 0 0.5^L 0 0.05 0.25 0.3 0.1 0.15 0.2 0.35 0.05 0.15 0.2 0.25 0.1 0.3 0.35 z/Lz/Lsimilarity profiles Substitution for the set of the s THE UNIVERSITY OF UTAH

Combined roughness-temperature

$$\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z}\right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z}\right)^2}$$

$$\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \left\langle \theta \right\rangle}{\partial z}$$

