The effect of surface heterogeneity on fluxes in the stable boundary layer

Rob Stoll

Department of Mechanical Engineering
University of Utah, Salt Lake City, Utah
Land surface heterogeneity

Surface fluxes must be parameterized
Based on average M and θ at the 1st level

$$\tau_s \sim f(M, z_o, \text{stability}, \ldots)$$

$$q_s \sim f(\theta, z_{o\theta}, \text{stability}, \ldots)$$
Land surface heterogeneity

During the daytime, strong convective eddies mix the boundary layer. This has the effect of blending out small scale heterogeneities (Claussen, 1990; Roy and Avissar, 2000, etc.)
Land surface heterogeneity

Surface fluxes must be parameterized based on average M and θ at the 1st level

\[
\begin{align*}
\tau_s &\sim f(M, z_o, \text{stability}, \ldots) \\
q_s &\sim f(\theta, z_{o\theta}, \text{stability}, \ldots)
\end{align*}
\]

Large scale model: Night

1st grid point $\sim 10-50$ m

Troposphere

Internal boundary layer $\delta \sim 100$ m
Under stratified conditions, negative buoyancy inhibits mixing with the result that local heterogeneities can have an important impact on dynamics (e.g., Derbyshire, 1995; McCabe and Brown, 2007; Stoll and Porté-Agel, 2009)
Using LES to examine surface heterogeneity

- Based on GABLS I LES intercomparison (Beare et al. 2006)
- Domain size: $H = 400 \text{ m}$; $L_x = L_y = 800 \text{ m}$, Resolution: $\Delta = 5 \text{ m}$, $\Delta = 3.3 \text{ m}$
- Geostrophic: wind $U_g = 8 \text{ m/s}$, Coriolis: $f_c = 1.39 \times 10^{-4} \text{ s}^{-1}$ (73° N)
- Surface parameters: cooling = 0.25 K/hr, $z_o = 0.1 \text{ m}$
- periodic domain (patches repeat)
- 9 and 12 physical hr simulations (averaged over last hour)
- Scale dependent dynamic Lagrangian SGS model (Stoll and Porté-Agel, 2006)
 - ideal for heterogeneous flows with minimal grid resolution dependence for GABLS I case (Stoll and Porté-Agel, 2008)

- Heterogeneity from:
 - surface temperature transitions (Stoll and Porté-Agel, 2009)
 - aerodynamic surface roughness transitions (Stoll and Miller, 2012)
 - combined aerodynamic roughness and temperature transitions
Using LES to examine surface heterogeneity

Temperature transitions

rough

Δθ_s = 3K, 6K

cold

hot

roughness transitions

smooth

rough

Δθ_s = 6K

smooth

cold-rough to ‘hot’-smooth

‘hot’-rough to cold-smooth
Surface temperature heterogeneity

Temperature (02:25)

Z (m)

X (m)

Y (m)

K

263.8
263.6
263.4
263.2
263
262.8
262.6

q_x (K/m/s)

0

0.2

-0.2

0

200

400

600

800

THE UNIVERSITY OF UTAH
Surface temperature heterogeneity

Surface heat flux

Surface stress

\[\Delta \theta_s = 3K, 6K \]
Surface temperature heterogeneity

Velocity Magnitude

<table>
<thead>
<tr>
<th>Case</th>
<th>δ (m)</th>
<th>u_* (m/s)</th>
<th>θ_* (K)</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom</td>
<td>175</td>
<td>0.260</td>
<td>0.0447</td>
<td>101</td>
</tr>
<tr>
<td>Het3-400</td>
<td>180</td>
<td>0.263</td>
<td>0.0425</td>
<td>109</td>
</tr>
<tr>
<td>Het3-200</td>
<td>180</td>
<td>0.263</td>
<td>0.0422</td>
<td>110</td>
</tr>
<tr>
<td>Het3-100</td>
<td>182</td>
<td>0.264</td>
<td>0.0421</td>
<td>111</td>
</tr>
<tr>
<td>Het6-400</td>
<td>196</td>
<td>0.271</td>
<td>0.0359</td>
<td>137</td>
</tr>
<tr>
<td>Het6-200</td>
<td>198</td>
<td>0.272</td>
<td>0.0362</td>
<td>137</td>
</tr>
<tr>
<td>Het6-100</td>
<td>200</td>
<td>0.275</td>
<td>0.0356</td>
<td>142</td>
</tr>
</tbody>
</table>
Surface roughness heterogeneity

- Surface stress
- Surface heat flux

-
-

- 400 m
- 200 m
- 100 m

- \(\tau_s \), \(u^+ \), \(u^+ \)
- \(\theta^+ \), \(\theta^+ \), \(\theta^+ \)

\(x/H \)
Surface roughness heterogeneity

Velocity Magnitude

Temperature

<table>
<thead>
<tr>
<th>Case</th>
<th>L_c (m)</th>
<th>$R = \ln(z_{0,1}/z_{0,2})$</th>
<th>δ (m)</th>
<th>u_* (m/s)</th>
<th>θ_* (K)</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>400</td>
<td>2.3</td>
<td>174</td>
<td>0.259</td>
<td>0.0421</td>
<td>107</td>
</tr>
<tr>
<td>A2</td>
<td>200</td>
<td>2.3</td>
<td>173</td>
<td>0.260</td>
<td>0.0420</td>
<td>108</td>
</tr>
<tr>
<td>A3</td>
<td>100</td>
<td>2.3</td>
<td>175</td>
<td>0.262</td>
<td>0.0423</td>
<td>109</td>
</tr>
<tr>
<td>B1</td>
<td>400</td>
<td>4.6</td>
<td>170</td>
<td>0.252</td>
<td>0.0413</td>
<td>103</td>
</tr>
<tr>
<td>B2</td>
<td>200</td>
<td>4.6</td>
<td>171</td>
<td>0.256</td>
<td>0.0417</td>
<td>106</td>
</tr>
<tr>
<td>B3</td>
<td>100</td>
<td>4.6</td>
<td>173</td>
<td>0.259</td>
<td>0.0420</td>
<td>108</td>
</tr>
<tr>
<td>C1</td>
<td>400</td>
<td>6.9</td>
<td>168</td>
<td>0.250</td>
<td>0.0412</td>
<td>102</td>
</tr>
<tr>
<td>C2</td>
<td>200</td>
<td>6.9</td>
<td>170</td>
<td>0.255</td>
<td>0.0417</td>
<td>105</td>
</tr>
<tr>
<td>C3</td>
<td>100</td>
<td>6.9</td>
<td>174</td>
<td>0.259</td>
<td>0.0420</td>
<td>107</td>
</tr>
</tbody>
</table>
Combined roughness-temperature

cold-rough to hot-smooth

hot-rough to cold-smooth

\[\Delta \theta_s = 6K \]
Combined roughness-temperature

<table>
<thead>
<tr>
<th>Case</th>
<th>δ (m)</th>
<th>u_* (m/s)</th>
<th>θ_* (K)</th>
<th>L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hom $z_o=0.1$ m</td>
<td>169</td>
<td>0.254</td>
<td>0.0435</td>
<td>100</td>
</tr>
<tr>
<td>Het6-400</td>
<td>190</td>
<td>0.265</td>
<td>0.0348</td>
<td>135</td>
</tr>
<tr>
<td>Hot-Cold</td>
<td>205</td>
<td>0.26</td>
<td>0.0316</td>
<td>144</td>
</tr>
<tr>
<td>Cold-Hot</td>
<td>152</td>
<td>0.24</td>
<td>0.0371</td>
<td>105</td>
</tr>
</tbody>
</table>
Testing average models: bulk similarity

Temperature

Roughness

Combined

Similarity profiles

\{ \text{Businger et al. (1971)} \}

\{ \text{Beljaars and Holtslag (1991)} \}
Representing heterogeneity: blending

Blending height (Wieringa, 1986):

\[l_b \left[\ln \frac{l_b}{z_{o,e}} \right]^2 = 2\kappa^2 L_c \]

Mason, 1988:
• \(U_o(\partial u/\partial x) \sim \partial\Delta\tau/\partial z \)
• Height the mean follows M-O

Claussen, 1991:
• Diffusion height scale
• Everywhere homogeneous

\[\frac{l_d}{L_c} \ln \frac{l_d}{z_{o,e}} = c_1 \kappa \]

• Can also be a function of stability (Wood and Mason, 1991)
• Mostly tested and developed for neutral or weak stability and is probably not valid under convective or strongly stable (Mahrt, 2000)
Representing heterogeneity: blending height

temperature

(a)

(b)

(c)
Representing heterogeneity: blending height

roughness

$\langle \Phi \rangle_{x,z} - \langle \Phi \rangle_z$
Representing heterogeneity: blending height

Combined roughness-temperature

cold-rough to hot-smooth

hot-rough to cold-smooth
Representing heterogeneity: tiles

- **Tile method (Avissar and Pielke, 1989):**
- **Use M-O locally between each ‘tile’ and the average temperature and velocity**

\[
\langle q_s \rangle = \sum_i^n f_i \left[\ln \left(\frac{z_r}{z_0} \right) - \Psi_m \left(\frac{z_r}{L^i} \right) \right] \left[\ln \left(\frac{z_r}{z_t^i} \right) - \Psi_h \left(\frac{z_r}{L^i} \right) \right]
\]

- **Modified tile method (e.g., Blyth, 1995):**
 - M-O should apply above \(I_b \) to the average
 - Below \(I_b \) apply the tile model with \(z_r = I_b \)
Testing average models: temperature

- Tile method (Avissar and Pielke, 1989):
 - Use M-O locally between each ‘tile’ and the average temperature and velocity
Testing average models: temperature

• Tile method (Avissar and Pielke, 1989):
 - Use M-O locally between each ‘tile’ and the average temperature and velocity
Examining cold patches

- patch flux \(>>\) mean flux
- decrease rapidly to some height

\[\Psi_m = -\beta_m \frac{z_r}{L}\]
\[\Psi_h = -\beta_h \frac{z_r}{L}\]

Typical similarity profiles are linear (or near linear)

\(\Rightarrow\) Patch fluxes decrease in magnitude rapidly with decreasing \(L\) at a given \(z_r\)
Linear flux assumption

- Alternative parameterization developed for temperature transitions (Stoll and Porté-Agel, 2009)
- Apply ‘local’ scaling (Nieuwstadt, 1984) over the cold patch at the ‘blending height’ l_b (Wieringa, 1986).
- Assume linear q_L and $u_{\cdot L}$:
 - $q_L = (q_i/q_s - 1)z/l_b + q_s$
 - $u_{\cdot L} = (u_{\cdot i}/u_{\cdot} - 1)z/l_b + u_{\cdot}$
- Using q_L and $u_{\cdot L}$ define new Ψ_M and Ψ_H.

\[
\begin{align*}
\Psi_M &= -Az - \frac{\beta}{L} \left[\frac{B - A}{A^2(Az + 1)} - \frac{B - A}{A^2} + \frac{B}{A^2} \ln(Az + 1) \right] \\
\Psi_H &= \alpha \frac{B - A}{B} \ln(Az + 1) + \frac{\beta}{L} \left[\frac{(3B^2z^2 + 3Bz + 1)A^2 + (3Bz + 1)BA + B^2}{3A^3(Az + 1)^3} - \frac{A^2 + BA + B^2}{3A^3} \right]
\end{align*}
\]

where $A = \left(\frac{u_{\cdot i}}{u_{\cdot}} - 1 \right) \frac{1}{l_b}$ and $B = \left(\frac{q_i}{q_s} - 1 \right) \frac{1}{l_b}$.
Testing average models: roughness

- All cases follow mean similarity ➔ just need to specify $z_{o,\text{eff}}$
- Many models, difference is mostly definition of what height scale to use:

$$\left[\ln \left(\frac{l_b}{z_{o,e}} \right) \right]^{-1} = \sum_{i}^{n} f_i \left[\ln \left(\frac{l_d}{z_{o,i}} \right) \right]^{-2}$$

<table>
<thead>
<tr>
<th>Case</th>
<th>L_c (m)</th>
<th>R</th>
<th>LES</th>
<th>Taylor</th>
<th>Mason</th>
<th>Wood and Mason</th>
<th>Bou-Zeid et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>400</td>
<td>2.3</td>
<td>0.0329</td>
<td>0.0316</td>
<td>0.0435</td>
<td>0.0435</td>
<td>0.0348</td>
</tr>
<tr>
<td>A2</td>
<td>200</td>
<td>2.3</td>
<td>0.0344</td>
<td>0.0316</td>
<td>0.0458</td>
<td>0.0458</td>
<td>0.0371</td>
</tr>
<tr>
<td>A3</td>
<td>100</td>
<td>2.3</td>
<td>0.0379</td>
<td>0.0316</td>
<td>0.0482</td>
<td>0.0483</td>
<td>0.0395</td>
</tr>
<tr>
<td>B1</td>
<td>400</td>
<td>4.6</td>
<td>0.0172</td>
<td>0.0100</td>
<td>0.0308</td>
<td>0.0310</td>
<td>0.0202</td>
</tr>
<tr>
<td>B2</td>
<td>200</td>
<td>4.6</td>
<td>0.0192</td>
<td>0.0100</td>
<td>0.0340</td>
<td>0.0341</td>
<td>0.0227</td>
</tr>
<tr>
<td>B3</td>
<td>100</td>
<td>4.6</td>
<td>0.0233</td>
<td>0.0100</td>
<td>0.0376</td>
<td>0.0378</td>
<td>0.0253</td>
</tr>
<tr>
<td>C1</td>
<td>400</td>
<td>6.9</td>
<td>0.0109</td>
<td>0.0032</td>
<td>0.0260</td>
<td>0.0262</td>
<td>0.0146</td>
</tr>
<tr>
<td>C2</td>
<td>200</td>
<td>6.9</td>
<td>0.0130</td>
<td>0.0032</td>
<td>0.0297</td>
<td>0.0299</td>
<td>0.0170</td>
</tr>
<tr>
<td>C3</td>
<td>100</td>
<td>6.9</td>
<td>0.0173</td>
<td>0.0032</td>
<td>0.0338</td>
<td>0.0340</td>
<td>0.0199</td>
</tr>
</tbody>
</table>

- Can argue that $z_{o,e}$ is a property of the surface roughness (Bou-Zeid et al, 2004)
Testing average models: roughness

Taylor (1987)

Testing average models: combined

• Tile method (Avissar and Pielke, 1989):
 - Use M-O locally between each ‘tile’ and the average temperature and velocity

$$\langle q_s \rangle = \sum_i^n f_i \left[\ln \left(\frac{z_r}{z_i} \right) - \Psi_m \left(\frac{z_r}{L_i} \right) \right] + \Psi_n \left(\frac{z_r}{L_i} \right)$$
Testing average models: combined

• Using Stoll and Porté-Agel (2009)
• With $z_{o,eff}$ for mean fluxes (to get blending height values)
Coupling to turbulence models

• Surface temperature heterogeneity test
• Simple single-column model:
 - 1st-order PBL turbulence model (Beljaars and Viterbo, 1998)
 - Coupled with bulk model
 - Coupled with basic tile model

<table>
<thead>
<tr>
<th>Case</th>
<th>$\langle \tau_s \rangle$</th>
<th>$\langle q_s \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homo</td>
<td>0.0676</td>
<td>-0.0117</td>
</tr>
<tr>
<td>Het3</td>
<td>0.0692</td>
<td>-0.0112</td>
</tr>
<tr>
<td>Het6</td>
<td>0.0734</td>
<td>-0.0098</td>
</tr>
<tr>
<td>1D Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homo</td>
<td>0.1179</td>
<td>-0.0087</td>
</tr>
<tr>
<td>Het3</td>
<td>0.1179</td>
<td>-0.0084</td>
</tr>
<tr>
<td>Het6</td>
<td>0.1196</td>
<td>-0.0077</td>
</tr>
</tbody>
</table>
Summary

• Models developed to represent the average effect of surface heterogeneity do not represent the fluxes correctly in the heterogeneous SBL over surface temperature transitions.

• It is possible to develop models that can mimic the effect of flux enhancement.

• Roughness transitions do appear to be represented well under wind conditions.

• Correlation between surface properties is especially important (and problematic) in the heterogeneous SBL.

• Flux boundary conditions and PBL turbulence models should be examined as a coupled systems in addition to ‘offline’
Future Directions

• Study weak wind conditions when stability will be higher and flow won’t be dominated by advection
• Larger range of patch sizes and impact of using the ‘wrong’ blending height
• Realistic surface heterogeneity patterns
• Impact of moisture on heterogeneity (more realistic local coupling)
• Examine a wider range of PBL schemes in SCM tests
Surface temperature heterogeneity

\[\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z} \right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z} \right)^2} \]

\[\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \langle \theta \rangle}{\partial z} \]

similarity profiles

\{ \text{Businger et al. (1971)} \}

\{ \text{Beljaars and Holtslag (1991)} \}
Surface roughness heterogeneity

\[\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z} \right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z} \right)^2} \]

\[\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \langle \theta \rangle}{\partial z} \]

Similarity profiles

\{ \quad \text{Businger et al. (1971)} \quad \}

\{ \quad \text{Beljaars and Holtslag (1991)} \quad \}
Combined roughness-temperature

\[\Phi_M = \frac{\kappa z}{u_*} \sqrt{\left(\frac{\partial \langle u \rangle}{\partial z} \right)^2 + \left(\frac{\partial \langle v \rangle}{\partial z} \right)^2} \]

\[\Phi_H = \frac{\kappa z}{\theta_*} \frac{\partial \langle \theta \rangle}{\partial z} \]

Similarity profiles

Businger et al. (1971)
Beljaars and Holtslag (1991)