# GRAVITY WAVES IN THE STABLE PLANETARY BOUNDARY LAYER

Carmen J. Nappo

*CJN* Research Meteorology Knoxville, Tennessee USA

Workshop on Diurnal cycles and the stable boundary layer 7-10 November 2011, Reading, UK

## ORIGINS OF GRAVITY WAVES OBSERVED IN THE STABLE PBL

#### **GLOBAL:**

WAVES OUTSIDE THE MODEL DOMAIN

#### LOCAL:

WAVES THAT CAN BE EITHER RESOLVED BY THE MODEL PHYSICS OR PARAMETERIZED AS FUNCTIONS OF THE MODEL PHYSICS.

#### **EXAMPLES**

#### **GLOBAL:**

- 1. SOLITARY WAVES
- 2. TROPOSPHERIC UNDULAR BORES
- 3. JET STREAKS
- 4. INERTIA-GRAVITY WAVES
- 5. LARGE-SCALE LEE WAVES

#### LOCAL:

- 1. DUCTED MODES
- 2. MESOSCALE UNDULAR BORES
- 3. LEE WAVES
- 4. CANOPY WAVES
- 5. VISCOUS WAVES



# WE DESCRIBE THREE WAVE MECHANISMS WHICH CAN BE CONSIDERED LOCAL:

- 1. LEE WAVE DECAY (SMITH *ET AL* 2002, *JAS*)
- 2. DISSIPATIVE WAVES (HOOKE & JONES 1986, *JAS* )
- 3. STABLE PBL INTERNAL WAVES (CHIMONAS, 2002, *BLM*)

#### LEE WAVE DECAY

OBSERVATIONS AND ANALYSES OF WAVES OVER MONT BLANC BY SMITH et al (2002)<sup>1</sup> SHOW THAT THE AMPLITUDES OF TRAPPED LEE WAVES DECAY DOWNSTREAM DUE TO THE ABSORPTION OF WAVE ENERGY IN THE PBL.

<sup>1</sup>Smith etal 2002: *J. of Atmos. Sci. 2073-2092* 

#### **THEORY**



# FOR PERFECT REFLECTION AT THE GROUND SURFACE

$$A+B=0$$

FOR WAVE ABSORPTION

$$A + qB = 0$$
$$0 < q < 1$$

q = REFLECTION FACTOR

## RESULTS FROM COAMPS (COUPLED OCEAN/ATMOSPHERIC MESOSCALE PREDICTION SYSTEM)



FIG. 2. Cross section of vertical velocity component (in grayscale), isentropes (interval: 4 K), and eddy viscosity coefficient (dashed contours, interval: 5 m<sup>2</sup> s<sup>-2</sup>) derived from simulations with (a)  $h_m = 100$  m and a free-slip condition and (b)  $h_m = 200$  m and a no-slip condition with  $z_o = 1$  m.

FROM Jiang et al (2006): *J. Atmos. Sci.* 617-633



FIG. 3. Cross section of the horizontal wind component (gray-scale), isentropes (solid contours, interval: 1 K), and TKE (dashed contours, interval: 1  $\text{m}^2 \text{ s}^{-2}$ ) from the same no-slip simulations as in Fig. 2b. The bold contour corresponds to Richardson number Ri = 0.5.

### MECHANISM (JIANG PC)





Energy flux

Momentum flux

Deceleration

Acceleration



Wavebreaking aloft



#### DISSIPATIVE WAVES IN THE STABLE PBL



# **DOWNWARD WAVE FRONTS UPWARD WAVE FRONTS**

#### **VISCOSITY**

$$\rho_0 \frac{\partial u'}{\partial t} = -\frac{\partial p'}{\partial x} + \mu \frac{\partial^2 u'}{\partial x^2} + \mu \frac{\partial^2 u'}{\partial z^2}$$

$$\rho_0 \frac{\partial w'}{\partial t} = -\frac{\partial p'}{\partial z} - \rho' g + \mu \frac{\partial^2 w'}{\partial x^2} + \mu \frac{\partial^2 w'}{\partial z^2}$$

$$\frac{\partial u'}{\partial x} + \frac{\partial w'}{\partial z} = 0$$

$$\frac{\partial \rho'}{\partial t} + w' \frac{\partial \rho_0}{\partial z} = \frac{\kappa}{\rho_0} \left( \frac{\partial^2 \rho'}{\partial x^2} + \frac{\partial^2 \rho'}{\partial x^2} \right)$$

## THERMAL CONDUCTIVITY

#### **WAVE EQUATIONS**

#### **INVISCID CASE:**

$$w = a_i \exp(\omega t - kx - nz) + a_r \exp(\omega t - kx + nz)$$
$$w(0) = 0 \Rightarrow a_i + a_r = 0$$

#### **DISSIPATIVE CASE:**

$$w = a_i \exp(\omega t - kx - n_g z) + a_r \exp(\omega t - kx + n_g)$$

$$+ a_v \exp(\omega t - kx + n_v z) + a_t \exp(\omega t - kx + n_t z)$$

$$w(0) = 0 \Rightarrow a_i + a_r + a_v + a_t = 0$$

#### THE VISCOUS WAVE



GENERATION OF SHEAR INSTABILITY?

#### LOCAL WAVE MODES IN THE STABLE PBL



#### **ANALYTICAL WIND PROFILE**



#### **GOVERNING EQUATION:**

$$\frac{d^{2}w}{dz^{2}} + \left[\frac{N^{2}}{(c-U)^{2}} + \frac{1}{(c-U)}\frac{d^{2}U}{dz^{2}} - \kappa^{2}\right] = 0$$

#### **MODAL BOUNDARY CONDITIONS:**

$$w(0) = 0$$
  $w(z \rightarrow \infty) = 0$ 

#### REQUIREMENTS FOR A GROWING MODE:

COMPLEX PHASE SPEED:  $c = c_r + ic_i$  a Critical Level:  $c_r = U(z_c)$ 

CRITICAL LEVEL RICHARDSON NUMBER:  $0 \le Ri(z_c) \le 0.25$ 

#### IN THE RESIDUAL LAYER:

$$\frac{d^2w}{dz^2} + \left[\frac{1}{(c-U)}\frac{d^2U}{dz^2} - \kappa^2\right] = 0$$

A CRITICAL LEVEL IS VERY LIKELY TO EXIST.

THEN WAVE AMPLITUDE GROWS AS:

$$A(t) = A(0)e^{c_i \kappa t}$$

#### **GROWTH RATE**



#### ABOVE THE RESIDUAL LAYER:

$$\frac{d^2w}{dz^2} + \left[\frac{N_{trop}^2}{\left(c - U_{trop}\right)^2} - \kappa^2\right] w = 0$$

AT SOME HEIGHT THE VERTICAL WAVENUMBER BECOMES COMPLEX

$$m = m_r + i m_i$$

**NOW SOLUTION IS:** 

$$w(z > H) = A(0) \exp[i\kappa(c_r t - x)] \exp[c_i t - m_i z]$$
PERIODIC GROWTH DECAY

#### FUNDAMENTAL MODE





#### **WAVE FRONTS**



DOMAIN OF POSSIBLE PHASE-VELOCITIES OF BOUNDARY LAYER MODES IF THE PROJECTION OF THE WIND PROFILE INTO THE PLANE OF THE MODE HAS A CRITICAL LEVEL.



#### CONCLUSIONS

WE HAVE DESCRIBED THREE DIFFERENT MECHANISMS FOR GENERATING LOCAL GRAVITY WAVES IN THE STABLE PBL.

THESE MECHANISMS LEND THEMSELVES
TO PARAMETERIZATIONS WITHIN A
MESOSCALE MODEL.

AT ANY TIME ALL THREE MECHANISMS CAN BE ACTIVE.



# IT'S PURE WEAPON'S GRADE BALONIUM

