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ABSTRACT

Advances are discussed in the area of nonhydrostatic soundproof equations. The performance of the governing
soundproof partial differential equations for scales relevant to climate and weather is highlighted with global
aquaplanet and baroclinic instability calculations usinga research model EULAG (www.eulag.org). Consistent
numerical integrals of the anelastic Lipps-Hemler and the pseudo-incompressible Durran systems are compared
with hydrostatic results. On the algorithmic side, a progress towards an unstructured-mesh option of EULAG is
illustrated with simulations of atmospheric wave dynamicsacross a range of scales

1 Introduction

A lesson learned from the collection of works in the special issue [1] is that there is no set of govern-
ing equations uniformly adopted throughout the NWP community, and all operational models differ in
some aspect already at the theoretical level. In spite of theongoing debate on the preferred theoretical
formulation of the governing partial differential equations (PDEs), the dominant opinion seems to be
that soundproof equations are not appropriate for predicting weather and climate. On the other hand,
the soundproof models progress, expand their predictive skill and range of validity, and keep attracting
interests of the community. In particular, the last decade saw numerous developments consequential
for the advancement of nonhydrostatic soundproof models for weather and climate. For substantiation,
consider an abbreviated list of works exemplifying the community efforts. The list starts with [2] that
quantified departures of normal modes of atmospheric soundproof PDEs from normal modes of the fully
compressible Euler equations. Although the authors questioned the suitability of soundproof equations
for weather and climate, their work in fact extended the validity of anelastic models beyond the ear-
lier arguments of scale analyses [3, 4]. In [5, 6] soundproof models were generalized to incorporate
time-dependent curvilinear coordinates, thereby enabling approximations of elastic boundaries (such
as finite-amplitude free surface) in soundproof equations and facilitating a coupling of nonhydrostatic
anelastic and hydrostatic primitive equation models; see [6] for examples. More recently, the work [8]
generalized the pseudo-incompressible system [9] to spatially inhomogeneous and time-dependent ref-
erence states, extending up-scale the accuracy of soundproof approximations. Concomitantly, in [10, 11]
the authors compared standard aquaplanet simulations [12, 13] conducted with three different dynamic
cores, including nonhydrostatic anelastic model EULAG [14], within the framework of the Community
Atmosphere Model (CAM). They reported favorable comparability of EULAG with the spectral and
finite-volume hydrostatic dynamic cores, and found no evidence of inadequacy of anelastic nonhydro-
static equations for climate simulations, epitomized by the aquaplanet benchmark. In a recent work [15]
the authors proposed a hybrid system of atmospheric PDEs combining nonhydrostatic soundproof and
hydrostatic primitive equations, thus paving the road for anew class of general circulation models. Us-
ing techniques of multiple-scale asymptotic analysis, a current work [16] showed a formal validity of the
Durran pseudo-incompressible [9] and the Lipps-Hemler anelastic [4] equations for realistic magnitudes
of the tropospheric potential temperature stratification,in contrast to single-scale asymptotics [3] and
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common beliefs. On the algorithmic side, the developments in [17, 18, 19] generalized proven conserva-
tive numerics of EULAG to fully unstructured meshes, while sustaining the accuracy of structured-grid
differencing on differential manifolds. This adds yet another path to the advancement of soundproof
models.

The goal of this paper is to address the performance of soundproof models in applications relevant
to climate and weather, and to comment on the potential of unstructured meshes for meteorological
simulation. Because all key results presented employ either EULAG or its derivatives, next section
briefly summarizes the concepts behind this model. Section 3brings to the reader’s attention the results
of [10] for the aquaplanet simulations using different dynamic cores in CAM, and supplements them
with recent results [20] of the global baroclinic instability benchmark [21]. Section 4 highlights the
progress with generalization of the class of nonoscillatory forward-in-time schemes that underlie the
EULAG numerics on fully unstructured meshes. Remarks in section 5 conclude the paper.

2 EULAG, a numerical laboratory for atmospheric flows

The computational model EULAG is a general purpose virtual laboratory for simulating fluid flows
across a wide range of scales and physical scenarios; see [14] for a review and a comprehensive list
of references. Even though the primary applications are atmospheric circulations [22], the EULAG’s
optional dynamic cores encompass a range of diverse research areas, with extreme examples of micro
flows in porous media [23] and global solar magnetohydrodynamics [24]. In consequence, the gov-
erning PDEs incorporate many options, including compressible/incompressible Boussinesq equations,
fully incompressible (non Boussinesq) Navier-Stokes’ equations, several anelastic systems including the
Durran pseudo-incompressible equations [25], and fully compressible Euler equations of gas dynamics
[17]. Furthermore, all the optional model PDEs are integrated with consistent numerical schemes, which
is important for unobscured model intercomparisons.

The scope of this paper justifies a brief symbolic description of the governing soundproof equations. In
general, to address a broad class of flows in a variety of domains — with, optionally, Dirichlet, Neumann,
or periodic boundaries in each direction — the EULAG governing PDEs are formulated (and solved)
in transformed time-dependent curvilinear coordinates [5, 6, 7]. Here, we dispense with geometric and
numerical intricacies and refer the interested reader to technical expositions in the references provided.
Furthermore, we focus attention on adiabatic, inviscid equations and numerical approximations using
finite-volume conservative schemes. With these assumptions both the anelastic Lipps-Hemler and in-
compressible Boussinesq equations used in this paper can betechnically viewed as special cases of the
Durran pseudo-incompressible equations. The latter can bewritten in a perturbation form

∇ · (ρ∗v) = 0 ;
Dθ ′

Dt
= −v ·∇θe ;

Dv
Dt

= −θ∇π ′−g
θ ′

θe
− f ×

(
v−

θ
θe

ve

)
, (1)

whereρ∗ denotes a generalized density,θ is potential temperature, vectorsg andf are gravity acceler-
ation and Coriolis parameter,π ′ is a normalized pressure-perturbation variable;1 and primes symbolize
deviations from geostrophically balanced environmental (ambient) state(ve, θe), implied by the gov-
erning equations. There are two noteworthy differences between the pseudo-incompressible system
(1) and the Lipps-Hemler anelastic system. First,ρ∗ = ρb(θb/θo) in (1) but ρ∗ = ρb in the anelastic
mass-continuity equation — subscriptb refers to a static horizontally-homogeneous reference state, and
θo denotes a constant reference value. Second, the momentum equation in (1) is non-approximated,
whereupon factors proportional toθ appear in the pressure-gradient and Coriolis accelerations, andθe

replacesθb in the denominator of the buoyancy term. Consequently, the differences between the pseudo-
incompressible and anelastic solutions are expected to amplify with increasing stratification and/or with

1Note that the definition of the actual pressure variable in soundproof equations is flexible and depends on the coefficient
in front of the gradient; cf. anelastic equations (5) in section 4.2.
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increasing vertical and horizontal scales of the studied problem. Technically, the anelastic Lipps-Hemler
equations reduce to the incompressible Boussinesq system by setting the reference profilesρb andθb to
constant valuesρo andθo, respectively.

The prognostic equations in (1) are of the formDψ/Dt = R, with ψ symbolizing either the potential
temperature or a velocity component. Accordingly, their mathematically equivalent conservation-law
form can be written as

∂ρ∗ψ
∂ t

+ ∇ · (ρ∗vψ) = ρ∗R . (2)

The nonoscillatory forward-in-time algorithm employed inEULAG to integrate soundproof equations
(2) to the second-order in time and space can be written in a compact functional form

ψn+1
i = Ai(ψ̃ ,vn+1/2,ρ∗)+0.5δ tRn+1

i ≡ ψ̂i +0.5δ tRn+1
i ; (3)

whereψn+1
i is the solution sought at the mesh point(tn+1,xi), ψ̃ ≡ ψn + 0.5δ tRn, andA denotes a

second-order-accurate finite-volume nonoscillatory two-time level transport scheme MPDATA [26, 27].
Equation (3) represents a system implicit with respect to all dependentvariables in (1), because velocity,
pressure, and potential temperature are assumed to be unknown at n+ 1. Due to nonlinearity of the
pressure gradient term in (1), the algorithm (3) is executed iteratively

θ ′|n+1,ν
i = θ̂ ′

i −0.5δ t
(
vn+1,ν ·∇θe

)
i (4)

vn+1,ν
i = v̂i −0.5δ t

[
θn+1,ν−1∇π ′|n+1,ν +g

θ ′|n+1,ν

θe
+ f ×

(
vn+1,ν −

θn+1,ν−1

θe
ve

)]

i

whereν = 1, ..,m numbers the iterations, and at each iteration the linear elliptic problem — implied by
the continuity equation in (1) — is formulated on the mesh and solved using a preconditioned general-
ized conjugate-residual (GCR) approach; cf. [14] and references therein. Note that the only elements
lagged behind in (4) are the∝ θ factors in the pressure-gradient and Coriolis accelerations. With the first
guessθn+1,0 predicted using the non-perturbation form of the entropy equationDθ/Dt = 0 no iterations
are required for second-order accuracy. Nonetheless, the iterations converge rapidly, add little overhead
compared to the anelastic solver, and, in practice, there isno gain in usingm> 2. For example in the
global baroclinic instability calculations in the next section, ‖ θ ′|n+1,ν −θ ′|n+1,ν−1 ‖∞ O(10−4)◦K and
O(10−6)◦K for m= 2 andm= 3, respectively; while the work within the GCR solver decreases dra-
matically pastν = 1. Furthermore, for solution of the anelastic and Boussinesq equations on a sphere
an analogous iterative procedure is adopted to account for nonlinearity of the metric forces.

3 Soundproof models of idealized climate and weather

3.1 Aquaplanet simulations

For typical atmospheric conditions, the differences between the solutions of nonhydrostatic soundproof
equations and either primitive hydrostatic equations or compressible Euler equations increase with the
depth and horizontal extent of the simulated problem [2, 15]. Consequently, assessing the performance
of the nonhydrostatic soundproof models in simulation of global weather and climate is mandatory.
However, since there are no available operational NWP and climate codes based on nonhydrostatic
soundproof equations, such assessments must start with idealized benchmarks. In the two part work
[10, 11] the authors report on the implementation of EULAG, with theanelastic nonhydrostatic Lipps-
Hemler governing PDEs, as a dynamical core in the Community Atmospheric Model (CAM, version
3). In particular, Part I [10] presents a series of aquaplanet simulations and demonstrates that CAM3-
EULAG (CEU) results compare favorably with those from CAM simulations at standard CAM res-
olution that used current finite-volume (CFV) or Eulerian-spectral (CES) hydrostatic dynamical core
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Figure 1: Zonally averaged total precipitation (mm day-1) from the aquaplanet simulations: a total precipitation,
b convective precipitation, and c nonconvective precipitation.

options. In addition, both parts show the benefits of grid adaptivity implemented in CAM3-EULAG
via generalized time-dependent curvilinear coordinates,allowing higher resolution in selected regions
without evidence of anomalous behaviors anywhere in the model. For details of the model coupling,
computational setups, and thorough solution analysis, theinterested reader is referred to the original
work. Here we only mention the key aspect of the experiment and highlight its outcome with a few
selected results.

The model vertical domains extended to 50 mb in CFV and CES, and to 30 km in CEU; all resolved
with 26 vertical levels. In the horizontal, the 2◦×2.5◦ (meridional× zonal) resolution was used in CEU
and CFV, and T42 in CES. Each experiment ran for 18 months of simulated time, with CEU initialized
from rest and reaching statistical equilibrium after 4 months. Both CFV and CES were initialized
from previous statistical steady states. The integration time stepδ t was 600 s in the CEU simulations
and 900 s in the CFV and CES runs. All models were forced using afixed zonally symmetric SST
distribution — the same as the control case in [12] — with a maximum 27◦C at the equator and a
constant SST of 0◦C poleward of 60◦ latitude in both hemispheres.

In general, the results in [10] evince quite similar dynamical fields for all three models,and CEU pro-
duces roughly the same climatology as CFV, CES and The Met Office Unified Model [13]. The basic
features are sub-tropical westerly jets peaking at 12 km (190 mb) and 30◦ latitude in each hemisphere,
and weak easterlies in the tropics and high latitudes (see their Fig. 4). CEU produces the weakest sub-
tropical jets (∼55 ms−1) while CFV produces the strongest (∼65 ms−1). CES produces jets with the
speed (∼60 ms−1), the same as in the [13] control simulation.2 The tropical easterlies extend from the
surface to 14-15 km (∼150 mb) in CFV and CES, and extend from the surface to 13 km (190mb) in
CEU. The strongest easterlies below 4 km (600 mb) are about -10 ms−1 in all three models. The zonally
averaged vertical winds from the models are also similar (see Fig. 5 in [10]) showing strong ascent in

2With an alternative CAM physics package, the CEU jets also reach the∼60 ms−1 speed; Babatunde Abiodun, 2010,
personal communication.
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the tropics, subsidence in the sub-tropics, and a weak ascent in the mid-latitudes. The maxima of the
tropical ascent are at 9-10 km (300 mb) and at 3◦ off-equator in both hemispheres. CEU simulates the
strongest peaks (0.04 ms−1), about twice the values in CES (0.018 ms−1) and CFV (0.022 ms−1). Below
800 mb CEU and CFV produce vertical winds of 0.012 ms−1, twice the value in CES. This comparabil-
ity, free of conclusive difference in favor of hydrostatic primitive equations, extends to thermodynamic
fields of the potential temperature and moisture as well as totropical convective activity. This is sub-
stantiated in Fig.1 that shows zonally averaged rainfall. The three models produce maximum rainfall in
the tropics and local maxima at mid-latitudes, and suppressprecipitation in the sub-tropics and in high
latitudes. The mid-latitude rainfalls from the models are in good agreement both in magnitude and lo-
cation; all the models predict surface rainfall of about 4.0mm day−1 at 38◦ latitude. In the tropics, CEU
and CFV produce nearly the same precipitation, with a peak-to-peak average of∼16 mm day−1. CES
produces a lower peak-to-peak average of∼12 mm day−1, consistent with CES’s lack of non-convective
precipitation in the tropics.

Figure 2: Kinetic energy spectra from the aquaplanet simulations; courtesy of David Williamson, NCAR.

To conclude, Fig.2 shows kinetic energy spectra for the three models with common CAM physics
package for the aquaplanet simulation. The figure is self-explanatory. Of particular note is an agreement
with the planetary Rossby modes in terms of kinetic energy, notwithstanding the concerns expressed in
[2].

3.2 Global baroclinic instability

The results of the preceding section addressed the performance of a soundproof model in archetypal cli-
mate simulations. One might argue that the demonstrated level of comparability of the nonhydrostatic
anelastic and hydrostatic primitive-equations models owes much to filtering out in analyses many in-
termittent temporal and spatial scales important for weather prediction but possibly auxiliary to climate
studies. Thus, to address the performance of soundproof models in meteorology simulations we con-
sider here the global baroclinic instability benchmark [21] conducted with the Lipps-Hemler anelastic
nonhydrostatic option of EULAG in [20]. We refer the interested reader to the latter work for the details
of implementation, grid convergence study and a thorough discussion of the comparison with the hydro-
static primitive-equation results in [21]; here we only highlight a key conclusion of this study. Figure 3
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Figure 3: Baroclinic wave test, day 6 (linear phase of the evolution); surface pressures shown with color and lines
correspond to the hydrostatic and anelastic results of [21] and [20], respectively.

compares surface pressures after 6 days of simulated evolution of the instability, a time representative of
the linear growth phase. Noteworthy, the EULAG horizontal resolution 1.4◦ is twice coarser than that in
[21], and the grid convergence study in [20] shows that the comparability of the wave group in the zonal
improves for finer resolution. The result shown in Fig3 reveals no pathologies predicted for the anelastic
model in [2]. Furthermore, it illustrates a key conclusion in [20] that during the linear growth phase —
the only time when phase speeds can be compared with high accuracy — differences between the EU-
LAG and hydrostatic [21] dycore results are insignificant for the synoptic waves simulated here. During
the baroclinic wavebreaking phase of the evolution, starting at about day 10 (not shown), differences
between EULAG simulations and those of [21] emerge in details, while maintaining good agreement
in the overall global structure of the flow. By 16 days, when the northern jet contains a broad range of
scales, the two model solutions appear as two different realizations of a turbulent flow, with phases of
various highs and lows advanced or retarded and amplitudes less or more accentuated in the two sim-
ulations. At this stage it is impossible to conclude which factors — differences in governing PDEs or
model numerics — are responsible for the differences observed and which solution better captures the
flow evolution.

In order to qualify the significance of comparability/disparity of the two model results in [20], Fig. 4
juxtaposes four solutions obtained with various EULAG options. All calculations used second-order
numerics on a 64×128 (2.8◦) lat-lon grid and 23 km deep domain resolved with 46 uniformδz= 500m
grid intervals. The calculations in the left column of the figure employed the anelastic versus pseudo-
incompressible PDEs, integrated withδ t = 300 s by the same semi-implicit finite-volume scheme dis-
cussed in section 2. The calculations in the right column both employed the Lipps-Hemler anelastic
equations but different numerical schemes. The result in the upper right panel used an explicit gravity-
wave scheme withDθ/Dt = 0 in lieu of the perturbation form in (1), whereas the one in the bottom
panel used the default semi-implicit scheme but with the semi-Lagrangian (non-conservative) transport
operator forA in (3); see [14] and the references therein for further discussion. Noteworthy, the explicit
solution uses (and requires) 20 times smallerδ t = 15s than semi-implicit runs. While the differences
between the results in the two upper panel are minor, the explicit run is computationally about 20 times
more expensive. In general, the differences between all three runs based on the Lipps-Hemler equations
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Figure 4: Baroclinic wave test, day 8, comparison of surfacepotential temperature perturbation using anelastic
versus pseudo-incompressible EULAG options (upper and lower left, respectively) using the default semi-implicit
finite-volume and a comparison of the anelastic option but using the explicit gravity-wave scheme versus semi-
implicit but semi-Lagrangian integrator (upper and lower right, respectively).

are on the order of differences between the Lipps-Hemler andprimitive hydrostatic equations discussed
in [20]. Comparatively, the differences between the Lipps-Hemler and the Durran equations in the two
panels on the left are dramatic. While the two solutions agree reasonably well phase wise, the pseudo-
incompressible equations result in twice larger amplitudeof the baroclinic wave. In terms of the wave
amplitude, the evolution of the pseudo-incompressible solutions is about day ahead of the anelastic and
hydrostatic solutions. An extensive sensitivity study aiming at better understanding of these solution
behaviors is in progress, and its results will be reported elsewhere.

4 Unstructured mesh modeling of atmospheric waves

4.1 Background

The last decade saw increased interest and numerous developments in modeling atmospheric flows on
meshes alternative to regular Cartesian grids common in meteorological models; see [28] for a sub-
stantiation. Although studies exploring unstructured meshing date back to the nineteen sixties [29], the
interests in flexible mesh adpativity have emerged more recently (cf. the collection of papers in [30])
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with the advent of multiscale Earth-system modeling and climate prediction. In spite of a high level of
activity, as yet, adaptive-mesh atmospheric models have not met the demands of the modern operational
weather prediction and climate studies, reviewed in the collection of works [1]. To date, research into
unstructured mesh atmospheric models was largely confined to idealized applications addressing either
synoptic flows in the lowest order long-wave approximation governed by the shallow water equations, or
small-scale buoyant phenomena occurring in a neutrally stratified quiescent atmosphere — prototypes of
natural convection and density currents. Compared to thesetwo diverse classes of motions, applications
addressing the dynamics of internal inertia-gravity wavesare scarce. These waves are consequential for
weather and climate and, because of their intricacy, numerical solutions of internal wave problems con-
stitute canonical benchmarks for NWP codes. Here we highlight the progress with unstructured mesh
modeling of atmospheric wave phenomena, following [17, 18, 19] and references therein.

jSi j

Figure 5: The edge-based, median-dual discretization approach in 2D. The edge connecting vertices (viz. data
points) i and j pierces the face Sj shared by 2D computational (dual) cells surrounding vertices i and j. Open
circles represent centers of the polygonal mesh cells; see [18] for a discussion.

The algorithmic framework suitable for the development of all-scale atmospheric flow unstructured/hybrid
mesh models generalizes the methodologies proven in the structured grid model EULAG. A distinct key
element of the framework is the suit of median-dual finite volume edge-based (Fig.5; [31]) nonoscilla-
tory advection schemes MPDATA, derived from first principles for an arbitrary unstructured mesh [27].
Remaining elements of the framework — a robust nonsymmetricKrylov-subspace elliptic solver [32]
and a class of nonoscillatory forward-in-time (NFT) algorithms for integrating governing PDEs (see [17]
for a recent review) — closely follow their structured grid predecessors. In EULAG the structured grid
NFT framework is formulated in generalized time-dependentcurvilinear coordinates, enabling dynamic
grid adaptivity via continuous mappings in either Cartesian or spherical domains [14]. Unconvention-
ally for flexible mesh models, the unstructured mesh NFT framework is also formulated in curvilinear
coordinates. In particular, this is useful for modeling global circulations in spherical geometry [18]
employing a classical geospherical reference frame with the governing equations cast in the latitude-
longitude surface-based coordinates (section 7.2 in [33]). While retaining the benefits of the classical
formulation, common in theoretical geo/astro physics, itsnotorious limitations associated with the con-
vergence of meridians in the polar regions are circumventedby exploiting the flexibility of unstructured
meshes. The latter is highlighted in Figure6, which shows two alternate views of the mesh employed in
simulations of global rotating stratified flows past an isolated mountain discussed in section 4.3.

4.2 A local area nonhydrostatic soundproof model

To illustrate the potential of unstructured meshes for meteorological simulation, here we highlight (after
[19]) the performance of a local area nonhydrostatic soundproof model based on the governing PDEs
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Figure 6: Triangular mesh in the physical space on a sphere and in a transformed (computational) latitude-
longitude domain underlying the geospherical framework

written in the conservation-law form

∇ · (ρbV) = 0 , (5)

∂ρbV I

∂ t
+ ∇ · (ρbVV I) = −ρb

∂π ′

∂xI + ρbg
θ ′

θo
δI3 ,

∂ρbθ
∂ t

+ ∇ · (ρbVθ) = 0 .

The system (5) is a special case of (1), and it encompasses several particular anelastic models depending
on the selection of the reference profiles “b”. Here,V I (I = 1 andI = 3) refers to the velocity components
in the horizontal and the vertical, andπ ′ = (p− pe)/ρb with p denoting the pressure. The Boussinesq
benchmark problem addressed is a stratified ambient flow witha constant buoyancy frequencyN = 1 s−1

and uniform windV0 = (U0,0), U0 = 10 ms−1, impinging on an isolated ridge of the formh(x) = h0[1+
(x/L)2]−1 centered at the origin of the[−16.7L,25L]× [0,25L] domain. The hill’s half-widthL is fixed,
whereas the heighth0 = 0.25L or h0 = 0.5L. The respective Froude numbers,Fr = U0/Nh0, areFr =
1.66 orFr = 0.83 indicating a weakly- and strongly-nonlinear gravity-wave responses. The problem is
nonhydrostatic, becauseNL/U0 = 2.4; that is, the horizontal scale of the problem is comparableto the
asymptotic wavelengthλ0 ≈ 2πU0/N of the induced mountain wave.

Calculations were conducted on an unstructured mesh (Fig.7; see also Fig. 2 in [19] for details) with
approximately 39,500 vertices, refined to represent the hill geometry and the main portion of the wave
train. The minimum spacing of vertices was prescribed atL/12 in the middle of the hill’s base and was
gradually reduced with altitude toL/8 spacing following the main wave train. The spacing was also
smoothly reduced in the upwind and downwind directions (away from the main portion of the wave
train) to 5L/3 andL/2, respectively.

Figure8 highlights the model solutions for the weakly- and strongly-nonlinear responses by showing the
isentropes in a developing flow after dimensionless timeτ = tU0/L = 150. In the former case, the moun-
tain wave propagates at an angleα ≈ 60◦ off the horizontal consistent with the linear steady-statetheory
prediction [19]. In contrast, forFr <

∼1 the lee wave breaking and strong downslope winds (evidenced
by isentrope compression) with the turbulent flow aloft are indicative of much studied wind-storm phe-
nomena in mountainous terrain. Both solutions were compared with similar solutions generated with
structured grid EULAG model, using the standard terrain-following mapping with a uniform spacing
(in the computational space) of≈ L/12 covering identical domain with 157,184 grid points. Regardless
of the fundamental differences in the spatial discretization the two model solutions match closely each
other. For example, in the weakly-nonlinear case the structured grid and unstructured mesh solutions
both differ from the linear theory estimates by no more than≈ 3% in the wavelengthλ0 and by no more
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Figure 7: Model domain with the refined triangular mesh.

Figure 8: Isentropes simulated using the two-dimensional nonhydrostatic model; Fr<∼2 and Fr<∼1, in the left and
right plate, respectively.

than≈ 8% in the propagation angleα . Furthermore, they both show the same distribution of the wave
amplitude with height, with an average per wavelength (overseven wavelengths) loss of≈ 7% attributed
primarily to the dispersive character of the nonhydrostatic mountain wave.

The canonical Boussinesq benchmark discussed above is supplemented with the simulation of the non-
Boussinesq amplification and breaking of a 60km deep 2D mountain wave [34]. In contrast to the
preceding example with the uniform reference profilesθb and ρb and linearly increasing constant-
stratification ambient profileθe, here the reference profiles coincide with the ambient stateand both
change exponentially — such that the amplitude of the wave amplifies by one order of magnitude in the
middle of the vertical extent of the model, reaching the value equal to the wavelength of the dominant
mountain waveλ0, thus inducing wave overturning and breaking. The problem is inherently nonhydro-
static withNL/U0 ≈ 1, while only weakly nonlinear (Fr ≈ 1.6) with respect to the linear Boussinesq
theory. Figure9 shows the model solutions using two different meshes with similar number of points.
On the left the unstructured mesh mimics the structured grid(in physical space) resulting from the stan-
dard terrain-following coordinate transformation. On theright a fully unstructured triangular edge mesh
is employed; cf. Fig.5. Only mesh portions are shown in the vicinity of the hill. Both results agree with
the EULAG flux-form predictions, and their departures are insignificant compared to the discrepancies
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Figure 9: Meshes (top) and simulated isentropes (bottom) using the anelastic model for non-Boussinesq amplifi-
cation of a mountain wave propagating in isothermal atmosphere.

between the consistent flux-form and semi-Lagrangian EULAG’s solutions [34].

4.3 Towards a global unstructured mesh nonhydrostatic soundproof model

As documented in the literature and illustrated in section 3, the nonhydrostatic structured grid EULAG
can be executed as a global model in the spherical geometry. The equivalent unstructured mesh variant
of the code is under development, and the results of the preceding section together with those in [18, 19]
already indicate that such an extension can be successful. For substantiation and illustration, here we
summarize the results of [18, 19], where the wave phenomena in rotating stratified orographic flows
were simulated on reduced planets [35] using isopycnic/isentropic coordinates. The calculations in [18]
used isopycnic (viz. a soundproof yet mathematically elastic) framework, and kept the Earth rotation
fixed while reducing the planet’s radius hundredfold. Effectively this simulated a mesoscale response
for different stratification regimes, from large to small Froude numbers. These calculations successfully
captured characteristic flow features — from 3D wave solution at a large Froude number, to the upwind
flow reversal and lee eddies formation at a low Froude number —well known from the theoretical,
laboratory and numerical studies. In [19] the isentropic framework was used (viz. a compressible
hydrostatic set of governing PDEs) yet the large Rossby number solutions were hardly distinguishable
from the isopycnic results. Following [19], here we show the result comparing the rapidly and slowly
rotating low Froude number flow past an isolated hill on the small globe.

Figure10 shows the instantaneous distribution of the isentropes in the equatorialxzcross-section after
four hours of the simulated time. Figure11 shows the concomitant displacements of the isentropic sur-
faces with the undisturbed equatorial heightH(λ ,ϕ = 0, t = 0,) = 0.25πU0N−1 (i.e., the eight of the
dominant vertical wavelengthλ0 at Ro ≫ 1) together with the flow vectors on these surfaces. Concur-
rently, Figs.10 and11 illustrate salient flow features. For the slowly-rotating,strongly-stratified case
(left panels) the results evince flow blocking on the lower upwind side of the hill and intense lee ed-
dies, characteristic of low Froude number 3D mesoscale flows[36]. For the hundredfold faster rotation
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Figure 10: Isentropes in the equatorial-vertical plane, simulated using the 3D hydrostatic model for global oro-
graphic flow with Fr= 0.5; Ro≫ 1 (left), and Ro>∼1 (right).

Figure 11: As in Figure10 but for vertical displacements of, and superimposed flow vectors at, the isentropic
surface with the undisturbed equatorial height≈ 0.25πU0N−1; contours of the hill height are also superimposed.

Ro ≈ 5,3 the Rossby deformation radiusLR = hoN/ f ≈ 13·103 m becomes comparable toL, upon which
the effects due to the rotation and stratification occur on similar horizontal scales while counteracting
each other. The planetary rotation produces strong uplift of the isentropes on the mountain lateral sides
and compensates the vorticity of the lee eddies, whereas aloft the mountain wave disperses with alti-
tude. These effects are consistent with theoretical predictions [38, 36], and with the equivalent EULAG
solutions (not shown) on the 128×64×91 grid. Noteworthy, the unstructured mesh shown in Figure6
(repeated at 91 isentropic levels) consists of 4532 nodes, thus effecting in about twice smaller computa-
tional problem then in EULAG. Insofar as the economy of computations is concerned, the unstructured
mesh code is competitive with structured-grid program [19].

5 Remarks

There are a number of particular soundproof models used in computational meteorology. While some
of them may be more restrictive than others, it has been difficult to find a numerical example reason-
ably relevant to NWP and climate studies conclusively showing a failure of soundproof approximations.
The cumulative computational experience demonstrates surprising flexibility and a broader than antic-
ipated range of validity of soundproof approximations. Nonhydrostatic soundproof equations imply
non-negligible numerical advantages over fully compressible equations, and the developments of the
last decade document growing interest of the community in exploiting their strengths.

3Becausef = 0 at the equator but the results depend on the rotation rate,f = 2Ωsin(L/a) is used as a more representative
value; cf. section 4 in [37] for a discussion.
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An increased activity and rapid progress in modeling atmospheric flows on unstructured/hybrid meshes
with flexible adaptivity have already provided evidence of the potential and merits of finite-volume
discretizations for modeling all-scale atmospheric circulations. In particular, results emerge indicating
the competitiveness of the unstructured-mesh models in terms of accuracy and computational efficiency.
Even though unstructured-mesh models are not yet (and may never be) poised to substitute for the
operational weather and climate codes traditionally formulated on structured grids, it is quite conceivable
that future Earth System models will blend unstructured meshes and structured grids for the benefit of
forecast and research.
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