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Verification of the ECMWF ensemble forecasts of wind speed

Abstract

A framework for the verification of ensemble forecasts of near-surface wind speed is described.
It is based on existing scores and diagnostic tools, though considering observations from synoptic
stations as reference instead of the analysis. This approach is motivated by the idea of having a user-
oriented view of verification, with in mind the wind power application for instance. The verification
framework is specifically applied to the case of ECMWF ensemble forecasts and over the Europe
area. Dynamic climatologies are derived at the various stations, then serving as a benchmark. The
impact of observational uncertainty on scores and diagnostic tools is also considered. The interest of
this framework is demonstrated from its application to the routine evaluation of ensemble forecasts
and to the assessment of the quality improvements brought in by the recent change in horizontal
resolution of the ECMWF ensemble prediction system.

1 Introduction

One of the major recent breakthroughs in meteorological prediction comes from the transition from
point1 to probabilistic forecasting (Gneiting 2008; Palmer 2000). This phenomenon is not only observed
in the meteorological literature, since probabilistic forecasts are also becoming customary products in
economics and finance (Abramson and Clemen 1995; Tay et al. 2000; Timmermann 2000). Having an eye
on the use of meteorological prediction for decision-making in the energy field for instance, it has been
demonstrated that the optimal management and trading of wind energy generation calls for probabilistic
forecasts, see Matos and Bessa (2010) and Pinson et al. (2007a) among others. This actually follows
from a more general result which is that for a large class of decision-making problems, optimal decisions
directly relate to quantiles of conditional predictive distributions, as discussed by Gneiting (2011) for
instance.

Forecasts ought to be evaluated and various frameworks exist depending upon which of the forecasts
characteristics are to be highlighted. Primarily, one should make a difference between the quality and
value of the forecasts, following the discussion of Murphy (1993). The former relates to the objective
evaluation of intrinsic forecast performance, while the latter is based on the benefits perceived by forecast
users when making decisions based on these forecasts. Even though these two concepts have often been
kept apart in the forecast verification literature, their linkage has been the focus of a few works, with more
precisely that of Katz and Murphy (1997) and references therein for the case of forecasts of weather and
climate.

Forecast quality verification is a multi-faceted problem also in the sense that a large number of scores and
diagnostic tools may be considered. One could for instance start by looking at first-order statistics like
the bias of point forecasts or the marginal reliability of probabilistic forecasts. Scores (Mean Absolute
Error - MAE, Root Mean Square Error - RMSE, Continuous Ranked Probability Score - CRPS, etc.)
may additionally be considered, as well as corresponding skill scores after definition of a benchmark
e.g. climatology. Finally, diagnostic approaches may be based on the joint distributions of forecasts and
verifications (Murphy and Winkler 1987). The appraisal of verification statistics and scores consequently
is a subtle task, as rightly pointed out and discussed by Mason (2008).

A core aspect of forecast verification is the definition of the reference against which the forecasts are
evaluated. A common practice in the meteorological research community is to employ the model analysis
as such a reference, since it comprises our best estimate of the state of the atmosphere at spatial and

1By point forecast we mean forecasts consisting of a single value for any given location and lead time. This is to be opposed
to probabilistic forecasts which inform on the probability of various ranges of values
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temporal scales consistent with those of the forecasts issued by this same model. These forecasts are
then evaluated on the numerical grid of the model. While such an approach is relevant, it may not
reflect the final use of the forecasts which may be needed at any location on Earth (not just for the
model grid points). In that context, it may actually be more interesting and relevant to jointly verify the
forecasts against analysis and against actual observations. This is recognised by research and operational
weather forecasting centres like ECMWF, which aim at giving more importance to observations in their
verification suite.

A few works focusing on the evaluation of ensemble forecasting systems against observations have re-
cently appeared in the literature, see e.g. Candille et al. (2007) and Candille and Talagrand (2008).
Our primary objective with the present work is to look at this problem, with in mind the idea of evaluat-
ing the quality of the ensemble forecasts of wind speed issued over Europe by the European Centre for
Medium-range Weather Forecasts (ECMWF) against analysis and actual observations, while accounting
for observational uncertainty. The choice for this domain and for the wind speed variable takes root in
the growing interest in wind energy and its short-term forecasting, see Costa et al. (2008), Giebel et al.
(2003), Lange and Focken (2005) or Smith et al. (2009) among others. A side objective is to illustrate
the disparities that appear if performing forecast verification against analysis or against observations. A
final objective is then to discuss if such additional verification results may allow us to foresee ways of
further improving the quality of ECMWF ensemble forecasts of wind speed.

The data, including forecasts, analysis, and observations is first introduced in Section 2. Our forecast ver-
ification methodology accounting for observational uncertainty, as well as the time-varying climatology
employed as a benchmark, is then described in Section 3. The results from the application of the forecast
verification methodology against observations are subsequently gathered and commented in Section 4.
The applications considered include (i) the routine evaluation of the ensemble forecasts of wind speed
over a 3-month period (here from December 2008 to February 2009 - DJF09), and (ii) the assessment
of the impact of the change in horizontal resolution of the ECMWF ensemble prediction system. Sec-
tion 5 finally develops into a discussion of the implications of such findings, drawing conclusions and
perspectives for future work.

2 Data

2.1 Setup for the verification experiment, observations and analysis

The domain chosen for this study is Europe, while the forecast variable of focus is near-surface (10-
metre) wind speed. One of the reasons for this choice is that forecast users have shown more and more
interest for that variable over the last few years, owing to the significant wind power capacities operated
throughout Europe.

Verification is to be performed over a set of synoptic stations located onshore throughout Europe, for
which observational data is available through the Global Telecommunication System (GTS). The geo-
graphical distribution of these 731 stations can be seen from Figure 1. After inspection of the data at
the various stations, 98 of these stations were discarded as having too many missing data or too long
periods of suspicious behaviour in the recorded time-series. No statistical methods for outlier detection
has been employed. We have used there some empirical rules instead, considering for instance that (i)
very large spikes during a low wind speed period, or (ii) long periods (say, more than 2 days) with the
same recorded wind speed values (being non-zero), were to be seen as suspicious. The interest of con-
sidering wind speed near-surface observations from synoptic stations on land in this study is that such
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measurements are not used in the production of the model analysis (Uppala et al. 2005). An example
historical reason for that relates to the heterogeneity in the representiveness of these observations in view
of the very coarse spatial and temporal resolution of the model. One could then expect to see more dis-
parities between verification results obtained if verification is performed against the analysis or against
the actual observations. Local thermal and topographic effects may additionally step in and magnify the
aforementioned disparities.
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Figure 1: Map of all synoptic stations considered in this study. The domain is defined as Europe in a large sense,
with longitudes in the range [-10,23] degrees East, and latitudes in the range [35,58] degrees North.

We concentrate on a station-oriented view of the verification problem: instead of considering averaging
all verification scores for stations within a grid cell, we will interpolate all forecasts and analysis at
the stations, and calculate the scores for each of the stations individually. This idea of averaging per
grid cell (or for larger areas) has been employed and explored for the case of precipitation, see Ghelli
and Lalaurette (2000) or Pappenberger et al. (2009) for instance. This approach would also introduce
some form of filtering of the observations, and is not desirable in our case. Some may say that the
representativity issue, i.e. the fact that using raw observations is not consistent with the temporal and
spatial scales the model aims at resolving, is not accounted for. The users of the forecasts, however, are
not interested in the spatial and temporal scales of the model, they only want the best forecasts for the
given locations of their choice.

The ECMWF analysis data has a temporal resolution of 6 hours, while wind speed observations at synop-
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tic stations over Europe most often have a hourly temporal resolution. This difference will be accounted
for in the verification exercise, in order to be consistent with the forecasts which are described in the fol-
lowing. When verification scores calculated against observations or against analysis will be compared,
it will be done for time points for which both observations and analysis (and obviously forecasts) are
available.

2.2 Wind speed forecasts

The wind speed forecasts used as input to this verification study are some of the operational products
at ECMWF. Attention is given to ensemble forecasts of 10-metre wind speed, with the possibility of
extracting some single-valued forecasts from the ensembles, following a methodology that will be de-
scribed in a further paragraph. The forecast length considered is of 6 days, corresponding to the lead
times of interest to the wind energy sector. Note that the 6-day lead time also corresponds to a change
in the temporal resolution of the ensemble forecasts, with forecast output being coarser for further lead
times i.e. with a temporal resolution of 6 hours.

Let us briefly summarise the operational configuration of the ensemble forecasting system for lead times
up to 6-day ahead and for our European domain. Ensemble forecasts are issued twice a day at 00 UTC
and 12 UTC, with a horizontal resolution of about 50 kms (corresponding to a spectral truncation at
wave number 399) and a temporal resolution of 3 hours. Operational ensemble forecasts with such a
horizontal resolution were issued until the 25th January 2010. From the 26th onwards, this horizontal
resolution has been changed to about 33 kms, corresponding to a spectral truncation at wave number
639. Over a period spanning November 2009 - January 2010, 187 forecast series are available from
the operational forecasting system with the two horizontal resolutions. This will allow us to apply our
verification framework for the assessment of the impact of the change in horizontal resolution on the
quality of ensemble forecasts of near-surface wind speed.

The methodology employed for generation of the ECMWF ensemble forecasts is well documented and a
number of publications can be pointed at for its various components. For a general overview, see Palmer
(2000). It is not our objective to discuss competing methodologies for the generation of ensemble fore-

casts or more generally of probabilistic forecasts of meteorological variables. A comparison with other
global ensemble prediction systems can be found in e.g. Buizza et al. (2005). The ECMWF ensemble
predictions aim at representing uncertainties in both the knowledge of the initial state of the atmosphere
and in the physics of the numerical model used for integrating these initial conditions. For the former
uncertainties, singular vectors are employed, the core methodology being extensively described by Leut-
becher and Palmer (2008). A comparison of the different methodologies for the generation of initial
perturbations can be found in Magnusson et al. (2008). In parallel for the latter type of uncertainties,
stochastic physics is employed for sampling uncertainties in the parameterisation of the numerical model
(Buizza et al. 1999; Palmer et al. 2005). Note that the potential structural model uncertainty is therefore
not accounted for.

The ensemble forecasts for the 633 stations of interest are obtained by applying bilinear interpolation to
the gridded model output, i.e. as a weighted combination of model outputs at the 4 grid points around the
station. The same type of bilinear interpolation is used for downscaling the analysis data at the level of
the stations. By using such bilinear interpolation scheme the land-sea mask is thus not considered, and
grid nodes over land and sea are equally weighted.
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3 Verification methodology

3.1 Time-varying climatologies as a benchmark

Verifying forecasts against a benchmark is a common practice. A benchmark has the characteristics of
being a reference method, of being computationally cheap to implement, and ideally model-free. The
typical benchmark in the verification of probabilistic and ensemble forecasts in meteorology is climatol-
ogy. Roughly, climatology is based on all available observations over a long period of past observations,
the distribution of which serves as a predictive density for any lead time t +k. This benchmark is difficult
to outperform for longer-term lead times, typically further than 5-6 days for near-surface variable, though
quite easy to outperform for short-term forecasts, say, for lead times less than a day. At these shorter
scales, persistent forecasts issued based on the last available measurements become the most competitive
benchmark. Note that only climatology will be considered here since our focus will mainly be on the
medium-range (1 to 6 days).

Even though climatology is recognised as the central benchmark in the verification of meteorological
forecasts, some concerns are also raised regarding the possibility of misinterpreting forecast verification
results (Hamill and Jura 2006). It may indeed be possible that the observed skill of a forecast system when
evaluated against climatology is artificially good simply due to a drift between the reference climatology
and the state of the stochastic process of interest. The discussion by Hamill and Jura (2006) implies that
climatologies may (or should) be seen as time-varying, with the best estimate of climatologies permitting
to minimise potential misinterpretation of forecast verification results. Following that remark, Jung and
Leutbecher (2008) have proposed an approach to the computation of time-varying climatologies, which
we revisit here. Note that the approach of Jung and Leutbecher (2008) has led to the computation of
the climatologies routinely used at ECMWF for the verification of ensemble forecasts against analysis.
Following a similar argument, we will only compare skill scores representing improvements over the
climatology benchmark for climatologies calculated based on observations. This is since if considering
climatologies based on the model analysis, forecasts would then be evaluated against benchmarks with
different dynamic characteristics, hence potentially leading to misinterpretation.

Let us denote by {x(t,s)}t the time-series of wind speed measurements being a sequence of observations
for the related stochastic process {X(t,s)}t at the location s. Measurements are available over a period
ranging from t = 0 until t = N for the number of locations considered in this study. Since we are talking
about climatologies, N is supposed to be very large due to availability of several years if not decades of
data. The core idea of time-varying climatologies is that climatologies should be defined for each hour
of the year, or at least for each time of the year for which measurements are available, though smoothing
the high-frequency temporal features in the recorded time-series. This is in order to retain the diurnal
and seasonal variations in wind speed. Since we consider here observations instead of analysis data in
the case of Jung and Leutbecher (2008), more variability and high-frequency features are to be expected.

For convenience, let us introduce the operator ν which gives the calendar date (defined in terms of the
year y, month m, day d and hour h) for the absolute time t, while ν−1 performs the opposite operation

{y,m,d,h}= ν(t), t = ν
−1 ({y,m,d,h}) (1)

Our methodology for deriving climatologies is based on kernel density estimation (KDE), an overview
of which can be found in Silverman (1986). The basic idea is to attach a kernel to each of the available
measurements, and to consider the time-varying climatologies as a weighted mixture of these kernels.
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For simplicity, Gaussian kernels are employed here, which for a measurement x(t,s) is defined as

Kσ (x− x(t,s)) =
1

σx
√

2π
exp
{

(x− x(t,s))2

2σ2
x

}
(2)

with σ the standard deviation of the Gaussian density defining the bandwidth of the kernel. Such kernels
are censored at 0 however, in order to be consistent with the fact that wind speed must be greater than
or equal to 0. Both x and σx are in m.s-1, while Kσ (.) is non-dimensional since defining a probability
density related to a given wind speed observation. This yields

K+
σ (x− x(t,s)) =

{
Kσ (x− x(t,s)), x > 0

Φ(−x(t,s)/σx) , x = 0
(3)

where Φ is the cumulative distribution function of a standard Gaussian random variable N (0,1). Our
censored kernels put a probability mass on 0 for low and null wind speed values, being a function of the
observation itself and on the chosen kernel standard deviation.

Then for any time of the year, the climatological distribution F̄x of wind speed is defined as a weighted
mixture of kernels for the same hour of the current and neighbouring days of all years in the dataset, and
for the same location. In mathematical terms this writes

F̄x({m,d,h},s) =
1

Ny ∑ j w j
∑
y

∑
j

w jK+
σ

(
x− x

(
ν
−1{y,m,d + j,h},s

))
(4)

with Ny the number of years used for producing the climatology, and with w j a discounting factor per-
mitting to give less weight to days that are further from the day of interest. This discounting factor is
also chosen to be given by a Gaussian kernel, i.e.

w j = Kσd ( j) (5)

Since Gaussian kernels do not have a compact support the sum over js in Equation (4) involves an infinite
number of elements. In practice since the weight defined by Kσd becomes very low for | j| large, say for
| j| > 5σd , one can limit the sum over a window of size 10σd around the point in time of interest. The
other sum is over all N f years in the dataset.

In practice here, the data employed as input to the calculation of time-varying climatologies consists
of Ny = 29 years of wind speed measurements recorded with a temporal resolution of 3 hours, for the
633 (validated) meteorological stations. The temporal resolution of 3 hours is chosen in order to be
consistent with the temporal resolution of the ensemble forecasts. These 29 years range from 1981 to
2009. For some of the stations the length of the dataset may be shorter since recording started after
1981. Also after basic cleaning of the datasets, that is, based on simple rules and not on advanced
statistical approaches, some data may be missing or considered as invalid (i.e. negative wind speeds or
wind speeds greater than 60 m.s-1). The weights in Equation (4) can easily permit to account for these
aspects, by setting w j to 0 if measurements are missing or considered as invalid. The two bandwidths
σx and σd are selected in order to be consistent with the climatologies based on the analysis derived at
ECMWF. This yields σx = 1 m.s-1 and σd = 20 days so that seasonal cycles are revealed while higher
frequency fluctuations are smoothed. These bandwidth values could be further refined based on the
various rules available in the statistical literature, or alternatively on a cross-validation exercise. At the
end, since these climatologies have a nonparametric form, it is necessary to define them in terms of
quantiles with various nominal proportions. These nominal proportions are chosen to span the whole
unit range with 0.05 increments and with a finer description of the tails end, i.e. yielding a set of nominal
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proportions in {0.01,0.02,0.05,0.1, . . . ,0.9,0.95,0.98,0.99}. The mean and standard deviation values
of all climatological distributions are also recorded. We employ climatologies in their probabilistic form
since some of their characteristics (mean and median) as well as full densities will be necessary for
calculating the various scores for this benchmark, subsequently yielding skill scores for the ensemble
forecasts.

As an illustration, Figure 2 depicts an example of a time-varying climatology for the meteorological
station of Copenhagen Kastrup airport in Denmark for the months of April, May and June. This clima-
tology has a strong diurnal pattern in the mean wind speed, while it also exhibits longer-term variations
in the form of a seasonal trend. These dynamics at various temporal scales can also be observed for the
various quantiles of the climatology, with for instance a reduction of the maximum wind speeds from
April to June. The low frequency of occurrence of calm periods, even at night, is very site-specific. Such
a frequency of calm periods is substantially higher for stations located in less windy areas like in central
Germany for instance. It is finally worth noting that our time-varying climatologies may be refined in the
future by accounting for both rounding and measurement uncertainties in recorded wind speed values.

date
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Figure 2: Example of a time-varying climatology of 10-metre wind speed for the meteorological station of Copen-
hagen Kastrup airport in Denmark for the months of April, May and June.

3.2 Scores and diagnostic tools

A fairly common approach to the verification of ensemble forecasts is employed here. Following ar-
guments in a number of publications, focus is given to both reliability and sharpness of the ensemble
forecasts of wind speed. In parallel, since for a large number of applications forecast users may still pre-
fer to use point forecasts instead of ensemble or more generally probabilistic forecasts, we also perform
an evaluation of a few point forecasts that may extracted from the ensembles. Especially, in view of the
discussion by Gneiting (2010), the mean and median of ensemble forecasts are specific point forecasts
which aim at minimising a Root Mean Square Error (RMSE) and a Mean Average Error (MAE) crite-
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rion, respectively. Finally, the bias is generally assessed when considering the ensemble mean as the
point forecast to be extracted from the ensembles.

For a specific location s, we denote by {x̂ j(t + k|t,s)} j the set of 51 ensemble members (i.e. the control
forecast and the 50 perturbed ones) issued at time t for the lead time t + k. x̂ j(.) hence denotes the jth

ensemble member. The notations x̃(t + k|t,s) and x̄(t + k|t,s) are used for the median and mean of the
ensembles, respectively. The scores mentioned above are then simply given for each lead time k as

bias(k,s) =
1

N f

N f

∑
t=1

x(t + k,s)− x̄(t + k|t,s) (6)

and

MAE(k,s) =
1

N f

N f

∑
t=1
|x(t + k,s)− x̃(t + k|t,s)| (7)

and

RMSE(k,s) =
( 1

N f

N f

∑
t=1

(
x(t + k,s)− x̄(t + k|t,s)

)2
)1/2

(8)

where N f is the number of forecasts over the verification period.

If turning our attention towards the probabilistic skill of the ensemble forecasts, it is appropriate to
evaluate it with proper skill scores such as the Continuous Ranked Probability Score (CRPS) for instance.
The expression for the calculation of the CRPS for the lead time k is

CRPS(k,s) =
1

N f

N f

∑
t=1

∫
x

(
F̂(x; t + k|t,s)−1{x < x(t + k,s)}

)2
dx (9)

where F̂(x; t + k|t,s) is the cumulative distribution function of the set of ensemble forecasts {x̂ j(t +
k|t,s)} j, while the Heaviside function 1{x < x(t +k,s)} represents a perfectly sharp and calibrated prob-
abilistic forecast which would have predicted a probability mass on the actual observation x(t + k,s).
In the present case, F̂(x; t + k|t,s) is given by linear interpolation through the ensemble members: for
a set of 51 exchangeable members, the jth member defines the quantile of F̂(x; t + k|t,s) with nominal
proportion α j = j/52.

Corresponding skill scores are obtained by comparing for each lead time the error criteria calculated
for the ensemble forecasts and for the climatology benchmark. Single-valued forecasts are extracted
from climatologies in a similar fashion than for ensemble forecasts. I.e., the bias and RMSE criteria are
calculated for the ensemble mean, while the MAE criterion relies on the median of climatology predictive
densities. Skill scores are then defined as

SScore(k,s) = 1− Score(k,s)
Score0(k,s)

(10)

where ‘Score’ can be the ‘bias’, ‘MAE’, ‘RMSE’ and ‘CRPS’ error criterion given above, while Score0(k,s)
is the value of such a criterion if calculated for the time-varying climatology benchmark described in
Section 3.1. The resulting skill scores would therefore be denoted by ’Sbias’, ’SMAE’ or ’SRMSE’ for
instance. One may also obtain spatially averaged scores and skill scores by calculating the average over
s of the scores and skill scores introduced above.

Particular focus should be given to ensemble forecast reliability. Reliability refers to the correspondence
of empirical and nominal proportions of ensemble forecasts. In contrast recalibration relates to the post-
processing of ensemble forecasts in order to improve their reliability. Probabilistic reliability is visually
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assessed here based on PIT diagrams, being a cumulative version of Probability Integral Transform (PIT)
histograms, as used and discussed by Pinson et al. (2010) and Marzban et al. (2011) for instance. Such
PIT diagrams allows for straightforward visual comparison of the empirical proportions of the ensemble
members against the nominal ones. Indeed for a set of 51 exchangeable members, the nominal proportion
of the jth member is α j = j/52, meaning that there should be a probability of j/52 that the observed
wind speed lies below that ensemble member. PIT diagrams are therefore based on the indicator variable
ξ j(t,k,s), defined as

ξ
j(t,k,s) = 1{x(t + k,s) < x̂ j(t + k|t,s)} (11)

and its sample mean (over time, locations, potentially lead times). Indeed for the jth ensemble member
with nominal proportion α j = j/52, the empirical (or observed) proportion α̂ j(k,s) is estimated as

α̂ j(k,s) = E
[
ξ

j(t,k,s)|k,s
]
=

1
N f

∑
t

ξ
j(t,k,s) (12)

PIT diagrams consequently depict α j vs. α̂ j for all (51) ensemble members. Note that the potential
effect of sampling, or of the interdependence (spatial or temporal) in the forecast-verification pairs is
disregarded here. It could be accounted for in the future by using or extending the methods described by
Bröcker and Smith (2007), Marzban et al. (2011) and Pinson et al. (2010) for instance.

3.3 Accounting for observational uncertainty

One of the reasons why observations are often not favoured in verification studies is their underlying
uncertainty, along with their representativity. This is especially true for near-surface variables e.g. wind
speed and precipitation, for which observational uncertainty is known to be non-negligible, while surface
effects introduce additional noise to what the numerical models aim at resolving. We do not account for
that representativity issue here since we have a station-oriented view of the forecast verification problem.
Somehow a forecast user will not assess competing forecasting approaches conditional to the model
capabilities, but uniquely based on verification scores and statistics for the location(s) of interest.

Observational uncertainty can be accounted for during the forecast verification process. One may dis-
tinguish between the various sorts of observational uncertainties as in Pappenberger et al. (2009) and
potentially consider the interdependence structure (either in time or in space, or both) in the forecast
errors (Candille et al. 2007). Various approaches may be employed for the case of the verification of
ensemble forecasts, including the perturbed ensemble and observational probability proposals of Can-
dille and Talagrand (2008). The approach we follow here is of the observational probability type: the
uncertainty in the observations is represented by transforming them into random variables. We then look
at their impact on scores and diagnostics using a Monte-Carlo approach similar to that of Pappenberger
et al. (2009).

We consider two origins to the uncertainty in wind speed observations, which are rounding and measure-
ment errors. It is assumed that gross errors originating from reporting, transmission or archiving can be
easily cleaned out, or that observations in that case would be seen as missing. Measurement errors come
from the measuring devices themselves. They can be assumed to be Gaussian, spatially and temporally
uncorrelated, with a mean µ corresponding to a systematic error and a variance σ2

e for the actual mea-
surement uncertainty. µ and σ2

e could be defined for each station independently, but for simplicity they
will be uniquely defined here. This writes

em(t,s)∼ N
(
µ,σ2

e
)

(13)
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In parallel rounding errors come from the procedure of rounding measured wind speed to the closest in-
teger (in m.s-1), the common practice when reporting near-surface wind speed measurements. Rounding
errors can then be assumed to follow a uniform distribution around the reported value,

er(t,s)∼ U
[
−1

2
,
1
2

]
(14)

To summarise, if writing X(t,s) the random variable for the wind speed at time t and location s, and
x(t,s) the reported value, X(t,s) is given by the sum of x(t,s) with the above two random variables

X(t,s) = (x(t,s)+ em(t,s)+ er(t,s))1{x(t,s)+ em(t,s)+ er(t,s)≥ 0} (15)

with 1{x ≥ 0} indicating a censoring of the random variable at 0 since wind speed is a non-negative
quantity. Given a reported wind speed value, and the measurement error characteristics µ and σ2

e , the
density of X(t,s) can be obtained from a simple convolution operation. For simplicity, µ is assumed to
be 0 in the following, translating to having unbiased measurements.

Subsequently, in the spirit similar to the Generalised Likelihood Uncertainty Estimation approach em-
ployed by Pappenberger et al. (2009), a form of Monte-Carlo simulation can be used for assessing the
impact of observational uncertainty on scores and diagnostics. Based on the modelled densities of ob-
servations at each point in time and in space, one can draw a number M of potential actual wind speed
values x(i)(t,s), i = 1, . . . ,M, and calculate for each i the various scores and diagnostics defined in the
above paragraph. This is done by plugging the drawn values x(i)(t,s) in the various formula of Equa-
tions (7)-(11). It will then result in empirical distributions of scores (MAE, etc.), corresponding skill
scores (SMAE, etc.), but also of PIT diagrams. Indeed, in contrast to the case of Candille and Talagrand
(2008), it is possible by this approach to build a set of PIT histograms or of their cumulative version

in the form of PIT diagrams. This is since the set of ‘actual’ observations drawn from the modelled
densities are then of the same nature than the predicted ensemble elements.

It should finally be noted that such Monte-Carlo approach can be highly computationally expensive.
Deriving analytical expressions for the distributions of some of the simplest scores may be possible. For
the case of the bias, one could use known formulae for the distribution of the sum of Gaussian variables
and for the sum of Uniform variables, possibly non-identical (Bradley and Gupta 2002; Mitra 1971).
They could be extended to the case of the MAE, based on limiting assumptions. For scores like the
RMSE and CRPS the mathematical developments would become quite technical and show the difficulty
of deriving closed-form solutions. All these aspects related to the impact of observational uncertainty
on the distribution of scores are discussed in Appendix A. A similar remark goes for the case of PIT
histograms and diagrams. For these reasons, the computationally-intensive method described above is
preferred. The fact that computational costs may lead to some limitations has also been mentioned by
Candille and Talagrand (2008).

4 Application results

Two test case applications are considered, corresponding to what may be done in research and oper-
ational forecasting centres such as ECMWF. On the one hand, forecast verification is performed on a
routine basis, with various scores and diagnostics reported every quarter of a year for instance. On the
other hand specific verification exercises are carried out prior to an operational upgrade of the forecasting
system, in order to assess the extent of expected improvements. The verification framework discussed
above is applied in both cases, but with different objectives. In the first case, besides the actual routine
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verification we aim at commenting on the discrepancies between verification performed against analysis
and against observations for near-surface wind speed. The impact of observational uncertainty on the
routine scores that would be calculated and reported in such routine verification exercises is also illus-
trated and discussed. In the second case, our objective is mainly to assess the improvements brought in
by the upgrade of an operational forecasting system for near-surface wind speed, at the various European
stations.

4.1 Routine evaluation of ensemble forecasts

The first application case consists of the routine evaluation of the ECMWF ensemble forecasts of wind
speed over the quarter DJF09 (December 2008, January and February 2009) with focus on Europe. An
extensive set of maps and summary graphs have been produced for the various scores and diagnostics,
depending upon lead times and possibly location. Our verification suite allows for the definition of
a set of stations of interest, hence permitting to look at forecast verification for a given station, on a
country-by-country basis, or for a pre-defined region. Owing to the quantity of results that may be
generated, only a subset of the most interesting results will be shown and commented here. The effect of
observational uncertainty is disregarded in the first stage. It is then dealt with in a last part of this Section
(Paragraph 4.1.3).

4.1.1 Scores at stations

As a first illustrative example, the map of CRPS values at the various European synoptic stations for 10-
metre wind speed ensemble forecasts and for the lead time of 72-hour ahead is shown in Figure 3. These
CRPS values are calculated based on reported wind speed observations at the stations, hence without
considering observational uncertainty. Let us explain how the results are displayed there. In view of
the distribution of scores (CRPS and others) being quite skewed, it has been decided to divide such
distributions in a number of equally populated classes, except for the ‘extreme’ score values. The 5%
maximum score values represent the last one of these classes, somehow covering outlier stations. The 5
other classes represent equally populated classes of CPRS values for the 95% remainder of the stations,
hence containing each 19% of the scores data.

Most of the highest score values are for stations located in the Alps region and in coastal areas. This
could be expected since near-surface local effects are difficult to resolve at the fairly coarse resolution
(50 kms) of the ECMWF ensemble prediction system at the time. On a general basis though, these CRPS
values are low, being below 2.59 m.s-1 for 95% of the stations. They are even extremely low (below 1.2
m.s-1) for more than half of the stations. As a reference, the mean wind speed over all of these stations at
this period was of 3.76 m.s-1, while the mean wind speed was below 6.99 m.s-1 for 95% of these stations.
In parallel, it happens that for some of the stations even though the data collected was deemed acceptable
since their dynamical behaviour appeared realistic, a comparison with the forecast dynamics showed that
almost no correlation existed between the forecasts and measurements. Consequently, the various scores
calculated at these sites appeared to be independent of the lead time. Such situations may originate from
a low quality of observational data which hence could be discarded if refining the analysis. It could also
be explained by a questionable quality of the ensemble forecasts, for instance due to local effects not
represented in a model with such a coarse spatial resolution.

In parallel Figure 4 depicts the disparities between the CRPS values (for the same lead time) calculated
against analysis and observations at the various stations. It is in practice calculated as the difference
between the CRPS values calculated against observations and against analysis. Positive values are for
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Figure 3: Map of the CRPS values calculated against observations at all synoptic stations in the case-study (633).
These CRPS values are for 72-hour ahead forecasts.

scores values being larger if calculated against observations than if calculated against analysis. The sort-
ing into different classes is performed in a manner similar to the above. It appears that scores calculated
against observations can actually be lower than scores calculated against analysis. It happens here for
10% of the stations. One of the potential reasons stems from the impact of observational uncertainty
on the scores calculated against actual observations at the various stations. This impact will be further
examined below. However, our inspection of a large number of plots with the forecasts along with corre-
sponding analysis and observations actually revealed that for most of these stations, the forecasts really
looked like they better matched the observations than the analysis.

Generally, the results for the remainder 90% of the stations are consistent with intuitive expectations,
i.e. revealing that scores calculated against observations tend to be higher than if calculating against the
analysis. For 85% of the stations the discrepancies are up to 1.68 m.s-1, which is quite high in view of
the CRPS values shown in Figure 3. Similar results have been observed when considering other forecast
verification measures such as bias, MAE, RMSE, and the corresponding skill scores.

A final aspect that can be looked at is the distribution of score values for all stations. As an example,
Figure 5 depicts the distribution of RMSE values as a function of the lead time. These distributions
are represented by a set of intervals centred on the median, and with increasing proportions (from 10%
to 90%), in addition to the median and mean score values. Owing to the positive skewness of these
distributions, the mean values are larger than the median ones. Mean RMSE values increase from 2.1
m.s-1 for the first lead time to 2.4 m.s-1 for 6-day ahead forecasts. This is while for 90% of the stations
considered RMSE values may range between 1.1 m.s-1 and 5.2 m.s-1 depending on the station and lead
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Figure 4: Map of the difference in CRPS values (when calculated against analysis or observations) at all synoptic
stations in the case-study (633). These values are for 72-hour ahead forecasts.

time. This type of representation of score distributions can be very informative for having an overview
of the performance of a forecasting system over a large set of stations of interest. The periodic nature
of the RMSE curves is linked to the diurnal cycles in the wind speed magnitude, the amplitude of such
periodicities varying throughout Europe. To better identify the effect of the diurnal cycle on verification
statistics, one may refine the analysis performed here by verifying forecasts depending on the time of
the day (instead of the lead time), or by making a difference between forecasts issued at 00 UTC and 12
UTC.

4.1.2 Reliability of ensemble forecasts

A crucial aspect that we want to concentrate on is the reliability of the ensemble forecasts, for which
we expect significant disparities if evaluated against analysis or against observations. For that reliability
assessment, the PIT diagrams in the form of cumulative PIT histograms are employed (see Section 3.2 or
Pinson et al. (2010) for further details). We will not discuss the impact of observational uncertainty on
these PIT diagrams, since it has been found to be very limited. This might be explained by the fact that
perturbed observations randomly fall between different ensemble members, but without altering much
the counts over the evaluation period. Sampling or serial correlation effects on reliability statistics, as
discussed by Bröcker and Smith (2007) and Pinson et al. (2010), could also be considered in the future.
Their effect on the uncertainty of reliability statistics is expected to be larger than that of observational
uncertainty.
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Figure 5: Distribution of RMSE score values (of the ensemble mean) for the 633 stations, as a function of lead
time.

Example PIT diagrams are gathered in Figure 6 for the stations of Thyboron in Denmark, Cork airport in
Ireland, Cap Béar in France, as well as for all 633 stations altogether. These reliability assessment results
are for 72-hour ahead forecasts. In a fashion similar to other scores, our verification suite allows for the
assessment of reliability at single stations or at pre-defined groups of stations, for a given lead time or
for groups of lead time, thus permitting to focus certain geographical areas and certain forecast ranges.
When assessing reliability for various lead times and against the analysis, we observed a fairly known
result about ECMWF ensemble forecast, which is that they tend to be significantly under-dispersive in
the short-range, then being more reliable for the medium-range.

The three PIT diagrams for single stations in Figure 6 are representative of the typical results observed
over the routine verification study. The average case is similar to what is observed at Thyboron sta-
tion in Denmark: a very good reliability if evaluated against analysis, while this reliability can be seen
as significantly lower if assessed against observations. The ensemble forecasts appear to be slightly
under-dispersive but well centred in probability when seeing the analysis as the reference. This is while
ensemble forecasts appear to overestimate proportions, especially in the lower part of the ensembles,
when employing observations as the reference. If differentiating lead times, these reliability issues ap-
pear to be more pronounced for the first two days, then improving for further lead times, consistently
with what is observed when verifying ensembles against the analysis.

In parallel for (near-) coastal stations like Cork airport, or stations located in areas with specific local
wind regimes like Cap Béar, reliability statistics obtained against the analysis already are not that perfect,
while the picture clearly worsens if reliability is evaluated against observations. Similar comments can
be made for the case of the Alps region. Depending on cases, we have observed clear under- or over-
estimation of probabilities when assessing reliability against observations. For a stations like Cork, this
may be since the model forecasts stronger winds as if Cork was at sea. In contrast for a place like Cap
Béar, the very specific acceleration of local wind regimes like Tramontane and Vent d’Autan may be

14 Technical Memorandum No. 646



Verification of the ECMWF ensemble forecasts of wind speed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
ro

po
rt

io
ns

●
●

●
●

●
●

●●
●●

●
●

●●
●

●
●●

●
●

●
●

●●●
●●

●●
●●●

●
●●

●
●

●
●

●

●
●

●●
●

●
●

●●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● vs. analysis
vs. observations

6052 − 72−hour ahead

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions
ob

se
rv

ed
 p

ro
po

rt
io

ns

●●
●●●

●
●●

●●●●
●●●

●
●●

●
●

●●
●

●●
●●

●
●

●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● vs. analysis
vs. observations

3955 − 72−hour ahead

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
ro

po
rt

io
ns

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●
●

●●
●●

●
●●●●●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● vs. analysis
vs. observations

7749 − 72−hour ahead

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
ro

po
rt

io
ns

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● vs. analysis
vs. observations

all stations − 72−hour ahead

Figure 6: PIT diagrams for the reliability assessment of 72-hour ahead ensemble forecasts. These diagrams are
for Thyboron station in Denmark (station id 6052, top left), Cork airport (station id 3955, top right), Cap Béar
station in France (station id 7749, bottom left) and finally all stations altogether (bottom right).

overlooked by the model, then explaining a systematic underestimation of winds. Note that this does not
undermine the overall quality of the ensemble forecasts, as appropriate recalibration against observations
would correct for this lack of reliability, then improving overall skill scores.

To summarise the disparities in the reliability assessment versus analysis and observations, we define a
quantity based on the integrated absolute difference between the two reliability curves. This quantity
naturally takes values in [0,1] and is referred to as reliability disparity (RD). It is low in the case of
Thyboron in Figure 6, while being very high in cases like Cork and Cap Béar in this same Figure. A map
summarising the reliability disparity values at all stations is shown in Figure 7, for PIT diagrams based on
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Figure 7: Map of the reliability discrepancy at all synoptic stations in the case-study (633). These values are when
considering 72-hour ahead ensemble forecasts. P.u. stands for ‘per unit’.

72-hour ahead forecasts. Qualitatively similar patterns were observed for all other lead times. The sorting
of the RD values in different classes is similar to the cases of Figures 3 and 4. For the 5% most extreme
values, most of the corresponding stations are located either in complex coastal areas (Cornwall tip or
Galicia), on small islands which are impossible for the model to resolve (e.g. Baleares), or in the Alps
region. Cap Béar is one of these extreme cases. In parallel for around 40% of the stations the reliability
disparity is fairly low (that is, below 0.15) corresponding to cases like Thyboron in Figure 6. Theses
stations with lower disparity are spread over Europe, though a higher concentration can be observed
in certain parts of France, Spain, Northern Italy, Czech Republic and Switzerland. Larger disparities
tend to concentrate in North-Western parts of France (Brittany and Normandy) and Spain (Galicia), The
Netherlands and North-Western regions of Germany, Austria and the Balkan region.

These results are the most surprising and interesting ones obtained from this routine forecast verification
procedure: such disparities in the reliability assessment of ensemble forecasts if considering analysis
or observations as the reference were not expected beforehand. This can certainly be explained by the
fact that onshore wind observations are not accounted for in the production of the analysis, and also by
the significant difference in the variability of analysis and observations of wind speed. It allows us to
think that recalibration of near-surface winds against observations would certainly permit to significantly
improve their reliability and overall skill. This should be performed in a sufficiently generic and efficient
framework so that this recalibration is performed at once for the whole region, with properly identified
model structures and with model parameters estimated and optimised on a site-specific basis.
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4.1.3 Forecast quality over areas, and impact of observational uncertainty

Looking at summary verification statistics over certain areas may be particularly appealing to forecast
users. In addition, while the previous results disregarded the potential impact of observational uncertainty
on scores and diagnostics, it is accounted for and discussed in the following. Due to the computational
cost of the Monte-Carlo method described in Section 3.3, it would be too costly to jointly look at all 633
stations over the whole Europe over periods of several months. Due to assumed spatial and temporal in-
dependence of uncertainty sources, their impact on scores greatly diminishes as the number of stations or
the length of the evaluation period increases. We have observed that this effect would become negligible
if looking at more than 100 stations over periods of more than a month (with two forecast series issued
per day). For the case of the bias and MAE scores this can be directly supported by Appendix A, while
for other scores this can be observed from computer simulations. Consider the above set-up of 100 sta-
tions and one month of two forecast series issued per day, with a standard deviation of the measurement
error of σe = 1 m.s-1. In that case, the 99.7% confidence intervals for the estimated bias and MAE scores
would have a width of 0.001 m.s-1 only. The uncertainty in estimated scores would additionally decrease
with more stations, longer evaluation periods or higher measurement accuracy. In view of the application
in mind (wind power prediction), we can have a look instead at countries where significant wind power
penetration is observed and where it is known that forecast quality is crucial for the management of wind
power into the electricity network. We therefore selected Denmark and Ireland as illustrative test cases,
where respectively 8 and 7 validated stations can be employed.

Since no information is available about measurement accuracy at these stations we formulate the assump-
tion such that the standard deviation of the measurement error is σe = 0.5 m.s-1, with these measurement
devices being unbiased. This choice is supported by the review of the calibration uncertainty of state-
of-the-art anemometers performed by Coquilla and Obermeier (2008). For calibrated anemometers this
uncertainty may vary between 0.1 and 0.5 m.s-1 depending on the wind speed level and the type of
anemometer. We cannot be sure, however, that the measurement devices at all the synoptic stations con-
sidered are regularly calibrated. We have therefore chosen to consider 0.5 m.s-1 as a representative value
of all these stations, since representing the worst case for calibrated anemometers, while comprising a
lower bound of measurement uncertainty for anemometers that are not calibrated. In the future, verifica-
tion studies accounting for observational uncertainty could be refined by using up-to-date information on
the quality of measurements at the various stations, or even make σe a function of the wind speed level.
Other values for σe have been considered, leading to similar qualitative results. Obviously the higher σe

gets, the larger the uncertainty on calculated scores is. 200 Monte-Carlo simulations are performed to
estimate the uncertainty on the various scores and diagnostics performed.

As an example, Figures 8(a) and 8(b) depicts the CRPS as a function of the lead time for Ireland and
Denmark, respectively. Each Figure compares scores calculated against analysis (at the stations level),
against observations, and when accounting for observational uncertainty. In that last case, the mean of
the 200 Monte-Carlo simulations is shown, along with 90% confidence intervals.

The periodic nature of verification statistics discussed for the RMSE results of Figure 5 is also observed
here for the case of the CRPS. These periodicities are directly linked to the effect of the diurnal cycle,
which could be isolated if aiming at further refining the analysis. This effect does not cancel out by
pooling forecasts issued at 00 UTC and 12 UTC owing to the asymmetrical shape of the diurnal cycle,
with a low increase during the day and a sharper drop in the evening. This effect will also be noticeable
in other Figures.

For both Denmark and Ireland, there is a very large difference between CRPS scores calculated against
analysis and against observations, even if the general trends are similar. For Denmark and for lead
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Figure 8: Comparison of the CRPS calculated as a function of lead time, as an average over stations in a country.
It compares CRPS values calculated against analysis, against observations, with and without consideration of
observational uncertainty.

times shorter than 2 days ahead, the CRPS values calculated against observations are even twice those
calculated against analysis. The mean CRPS calculated when accounting for observational uncertainty
is significantly higher than if not. It even falls outside of the 90%-confidence intervals. These results
illustrate the discussion of Appendix A, where we explain that accounting for observational uncertainty
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Figure 9: Skill scores giving improvements with respect to climatology over Denmark for the MAE, RMSE and
CRPS scores, when accounting for observational uncertainty. Both the mean and 90% confidence intervals are
represented, for each of the skill scores.

would generally inflate the values of certain error criteria e.g. MAE, RMSE and CRPS (but not the
bias). By decomposing the distribution of RMSE scores (see Equations (23)-(25)), we have shown
that the mean score obtained when accounting for observational uncertainty is necessarily larger than
if not. Figures 8(a) and 8(b) illustrate the fact that such result also holds for the CRPS. The picture is
different if looking at reliability though. The general deviations from perfect reliability for Denmark and
Ireland are similar to those depicted in Figure 6 for the ’all stations’ case. The impact of observational
uncertainty is so limited that the PIT diagrams drawn for all 200 Monte-Carlo simulations cannot really
be distinguished. It seems that perturbations of recorded measurements globally does not significantly
change the counts serving to determine the reliability of ensemble forecasts.

We finally look at some of the skill scores of Equation (10), calculated against our time-varying clima-
tologies, while accounting for observational uncertainty. The results are depicted for Denmark only (as
the average for the 8 stations), the results for Ireland being fairly similar. The skill scores based on the
MAE, RMSE and CRPS are plotted as a function of the lead time in Figure 9.

The general pattern is similar to what would be observed if evaluating skill scores based on the analysis
as the reference for verification. The skill (with respect to climatology) consistently decreases with the
lead time, with the small subtlety such that of the skill score related to the CRPS is stable for the first 36
hours before starting to decrease. This is certainly due to the lack of sufficient spread of the ensembles
at early lead times, since the quality of the ensemble mean and median (that is, in terms of MAE and
NRME) is higher. As for the scores depicted in Figures 8(a) and 8(b), the impact of observational
uncertainty (for the chosen value of σe) is limited owing to spatial and temporal dampening effect. One
therefore expects that if calculating and analysing skill scores or score improvements over the whole set
of European stations (as will be done in the following Section), observational uncertainty would not be
an issue. Interestingly, the skill scores remain positive over the whole forecast length. Periodicity in their
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evolution from day 4 and onwards can be observed. This can certainly be explained by the fact that the
time-varying climatologies account for diurnal effects, making them more or less difficult to outperform
depending on the time of day for further lead times. This effect is negligible for shorter lead times since
the skill of ECMWF ensemble forecasts is highly significant while correctly capturing diurnal effects.

4.2 Evaluation of the impact of the change of horizontal resolution

The second application case relates to the assessment of the impact of the recent change of horizontal
resolution (from 50 kms to 33 kms) of the ECMWF ensemble prediction system (see Section 2.2) on the
skill of ensemble forecasts of near-surface wind speed. For that purpose two versions of the ECMWF
operational forecasting system were running in parallel for a targeted experiment over a period of al-
most 3 months. This experiment yielded 187 forecast series issued over a period starting from the 3rd

October 2009 and ending on the 26th of January 2010. Their starting times are 00 UTC and 12 UTC.
No forecasts are available between the 4th and 23rd November 2009. This type of experiment allows
assessing the improvements brought by the new version of the system before its actual start of operation.
Such improvements are usually looked at with the analysis as a reference, and by focusing on upper-air
variables (e.g. Z500). We concentrate instead on a near-surface variable while seeing observations as the
reference. It is foreseen that an increase in horizontal resolution yields improvements in forecast quality
for near-surface winds.
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Figure 10: Global improvement of scores over Europe. The left axis scale is for the MAE, RMSE and CRPS scores,
while the right one is for the bias.

Maybe the most important aspect is the improvement of overall scores, calculated for all stations, hence
giving an overview of potential improvements over Europe. They are given in Figure 10 as a function of
lead time, and expressed as a percentage of the scores obtained for the coarser resolution. The improve-
ments we look at are based on the bias, MAE, RMSE of point forecasts extracted from the ensembles, as
well as on the CRPS of ensemble forecasts. Note that the bias improvement is in terms of its magnitude
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and therefore calculated as a decrease in its absolute value. As mentioned above, the potential effect of
observational uncertainty is not considered, firstly owing to computational costs, and also since for an
average over such a large number of stations it is expected to be negligible.

All improvements are positive over the forecast range considered, up to 6 days ahead. They are between
2 and 4% for the MAE and RMSE scores, while ranging from 3 to 5.5% for the CRPS. In view of the
number of forecast series and stations involved, these improvements can be seen as noteworthy. They are
even more substantial for the bias, being up to 22% for 3-day ahead forecasts. In parallel, the periodicity
present for all scores (though especially for the bias, which then affect other scores) show that the change
of resolution also impacted the way local diurnal effects are captured by the models. The maximum
improvements for all scores are reached in the early medium range, that is, between 2 and 3 days ahead.
Finally, it is interesting to see that improvements in the CRPS are larger than improvements for the more
deterministic scores MAE and RMSE (since relying on point forecasts only). A potential explanation can
be that the forecast quality improvements are not only related to the better ability of ensemble forecasts
to target observations, and to a higher sharpness, but also originates from a better calibration.

Consequently, we have investigated that point by assessing the change in the reliability of the ensemble
forecasts induced by the increased spatial resolution. This is done based on an alternative presentation of
the PIT diagrams of Figure 6, which focuses on the probabilistic bias of ensemble forecasts (Marzban et
al. 2011; Pinson et al. 2007b). The probabilistic bias is mathematically defined as the difference between
observed and nominal proportions of ensemble members. It visually corresponds to the distance between
the reliability curve and the ideal diagonal case in the plots of Figure 6. Another alternative would be to
draw these PIT diagrams on the probability paper in the spirit of Bröcker and Smith (2007).

Example results are gathered in Figure 11, for the example case of 72-hour ahead ensemble forecasts.
Qualitatively similar results were obtained for other lead times. For a large number of stations, the
situation is similar to that shown for Amsterdam Schipol and Cork airports. It consists of a substantial
improvement of probabilistic reliability for the finer resolution forecasts. For some other stations e.g.
Thyboron in Denmark, however, probabilistic reliability actually seems to be worse for the forecasts
with finer horizontal resolution. This is also the case for some of the stations where the worst reliability
statistics were observed in Section 4.1.2 like Cap Béar in the South of France. Such a result is counter-
intuitive since one would expect that more local regimes e.g. coastal effects may be better captured by
increasing resolution. This may well also depend upon the physics behind the models instead. When
looking at all stations altogether, the improvement in ensemble forecast reliability seems to exist, though
being small.

5 Conclusions and discussion

The question of verifying ensemble forecasts against observations has been the focus of this work, with
emphasis on the ECMWF ensemble prediction system and the European region. The main motivation
behind this work is to argue for the proposal of verification frameworks that permit to develop a critical
view of the quality of ensemble forecasts with respect to both analysis and observations. While it is fair
to verify forecasts against the analysis since this one is made consistent in space and in time with the
forecasts, it is also crucial to see how a forecasting system performs against actual observations. This
certainly matters to the forecast users who would consider verification against observations as informing
about the real quality of the forecasting system. These forecast users today have energy-related activities
(e.g. wind power producers, traders, transmission system operators), are involved in airport traffic control
or ship routing, etc. This approach to verification is surely also of interest to modellers and forecasters
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Figure 11: Impact of the change of horizontal resolution on the reliability of 72-hour ahead ensemble forecasts at
stations. The diagrams depicts the probabilistic bias of ensemble forecasts as a function of the nominal proportions
of the ensemble members. They are for all stations (top left), Amsterdam Schipol airport (station id 6240, top right),
Cork airport (station id 3955, bottom left) and finally Thyboron station in Denmark (station id 6052, bottom right).

in order for them to further identify and characterise weaknesses of their forecasting approaches, for
instance at the occasion of a system upgrade like the increase in spatial resolution considered here.

The disparity between verification versus observations and model analysis originally comes from the
difference in spatial and temporal scales of these references. The model analysis is obviously consistent
with the spatial and temporal scales of the model forecasts, since being based on the same numerical
model. Very local effects e.g. thermal or induced by the topography, are therefore not accounted for in
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the model analysis while being present in the dynamics of the observations. In addition here, the fact that
the near-surface wind observations on land are used in the production of the model analysis may magnify
these disparities. We observed that those were substantial, their magnitude being almost comparable to
the score values themselves (for the CRPS). We have also explained and shown that accounting for the
effect of observational uncertainty would make the scores even worse. The study performed may be
refined, if more information about measurement uncertainty at each and every station can be obtained.
But since spatial and temporal independence of rounding and measurement errors is a safe assumption,
the effect on average scores calculated over large period of times and areas should be negligible anyway.
Further work in that direction may allow issuing guidelines on the treatment of observational uncertainty
depending upon the magnitude of measurement error, as well as the spatial and temporal scales involved.

In parallel, it is while focusing on reliability that the disparities between verification against analysis
and observations are the most patent. The smooth characteristics of the analysis there contrasts with
the potentially strong fluctuations in observations, and consequently yields totally different reliability
statistics. The ensembles tend to overestimate observed wind speeds on a general basis. For certain sites
with strong local regimes though, we retrieve a more intuitive result such that ensembles significantly
underestimate wind speed. The impact of observational uncertainty on the PIT diagrams was said to be
minimal. This may originate from our proposal of employing a method of the observational probability
type. As discussed by Candille and Talagrand (2008), perturbing ensembles in a manner consistent with
observational uncertainty may allow to better account for the impact of observational uncertainty on
reliability assessments. A thorough investigation of these aspects should be performed in the near future
to further support results from the reliability evaluation of ensemble forecasts of wind speed against
observations.

Besides our main message, this work has allowed to reach a number of practical conclusions obtained
from the application of this verification framework. The most important ones relate to (i) the generally
good quality of ensemble forecasts of wind speed over Europe, (ii) the noteworthy improvement of scores
brought by the change of horizontal resolution in the system, and (iii) the scope for further improvements
of reliability and skill of wind speed ensemble forecasts. Regarding that last point, let us mention a
comparable study on ensemble forecasting of near-surface wind speed reported by Thorarinsdottir and
Gneiting (2010) for the North-West Pacific region of North America. Ensemble forecasts of 10-metre
wind speed were there issued based on the University of Washington Mesoscale Ensemble (UWME)
system. For an evaluation period covering the whole calendar year of 2008, the CRPS of ensemble fore-
casts for lead times up to 2-day ahead were shown to improve dramatically when employing appropriate
recalibration techniques. These results support our expectations such that significant improvement in
the reliability and overall skill of ECMWF ensemble forecasts (verified against observations) could be
achieved with appropriate post-processing techniques.

These various conclusions are of particular relevance for various meteorological applications based on
wind speed forecasts. We mainly think of the wind power application, for which it is known that forecast
accuracy greatly impacts the cost of managing wind power production while being critical for the overall
electricity networks safety.
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A On the distributions of some scores when accounting for observational
uncertainty

In this appendix we discuss the distributions of some of the scores that may be employed for wind
speed forecast verification. These distributions only account for observational uncertainty. Sampling
uncertainty is not considered, though it could be fairly easily additionally accounted for. It is explained
how some of the score distributions can be derived analytically, while it cannot be the case for some
others. This motivates the use of a simulation-based approach to their estimation.

For simplicity, let us disregard the censoring of the random variable X(t,s) in Equation (15). The error
e(t,s) around a reported measurement x(t,s) is given by a sum of random variables,

e(t,s) = em(t,s)+ er(t,s) (16)

which have been defined by Equations (13) and (14). It then allows us expressing the forecast errors
ε̃(t + k|t,s) and ε̄(t + k|t,s) as the following random variables

ε̃(t + k|t,s) = [x(t + k,s)− x̃(t + k|t,s)]+ em(t + k,s)+ er(t + k,s) (17)

ε̄(t + k|t,s) = [x(t + k,s)− x̄(t + k|t,s)]+ em(t + k,s)+ er(t + k,s) (18)

depending on the point forecasts being defined as the median or mean of ensemble forecasts.

One remembers that the observational and rounding part of the error are independent. We also assume
spatial and/or temporal independence of the observational errors e(t + k,s), which appears reasonable
if having a diversity of measuring systems geographically spread and appropriately maintained. In that
case, let us just first recall that the average of N independent Gaussian variables Yi ∼ N(0,σ2) is a
Gaussian variable such that

1
N

N

∑
i=1

Yi ∼ N(0,
σ2

N
) (19)

In parallel, from the result exposed in Cramér (1946) such that the sum of N independent Uniform
variables Zi ∼U[0,1] can be approximated (if N is large) by a Gaussian variable, one would obtain in the
present case

1
N

N

∑
i=1

Zi ∼ N(0,
1

12N
) (20)

Based on the above results, for a location s and only evaluating scores over time (over N f forecast series),
the bias for the lead time k is distributed as

bias(k,s)∼ N
( 1

N f

N f

∑
i=1

[
x(t + k,s)− x̄(t + k|t,s)

]
,
1/12+σ2

e

N f

)
(21)

In parallel in the case for which |x(t + k,s)− x̃(t + k|t,s)|> |e(t + k,s)|, ∀t, the distribution of the MAE
score accounting for observational uncertainty would similarly write

MAE(k,s)∼ N
( 1

N f

N f

∑
i=1
|x(t + k,s)− x̃(t + k|t,s)|, 1/12+σ2

e

N f

)
(22)

24 Technical Memorandum No. 646



Verification of the ECMWF ensemble forecasts of wind speed

The condition expressed above seldom holds in practice. It could however be a first acceptable approxi-
mation if the magnitude of observational uncertainty is globally far smaller than that of the forecast error.
If this assumption cannot be made, deriving the analytical expression of the MAE distribution becomes
fairly technical owing to the presence of absolute values.

For the case of the RMSE things also get complicated due to the fact one then has to deal with products
of random variables. After a little algebra, the distribution of the RMSE can be written as

RMSE(k,s)∼ N
( 1

N f

N f

∑
i=1

[x(t + k,s)− x̃(t + k|t,s)]2 ,2σε̄

[
1/12+σ2

e

N f

])
+

1
N f

N f

∑
i=1

e(t + k,s)2 (23)

where

σε̄ =

(
1

N f −1

N f

∑
i=1

[x(t + k,s)− x̄(t + k|t,s)]2
) 1

2

(24)

is the standard deviation of the forecast error of the mean of the ensemble forecasts calculated based on
reported observations.

The last term in Equation (23) involves calculating the mean of the squared distributions of observational
uncertainty, which would be difficult to derive analytically. One notes however that

E

[
1

N f

N f

∑
i=1

e(t + k,s)2

]
= E[e2] = σ

2
e > 0 (25)

which tells us that the mean RMSE when accounting for observational uncertainty will in any case be
larger than that calculated if not accounting for such observational uncertainty.

A similar problem arises when attempting to derive the distribution for the CRPS. This is since for
each time step one then integrates the squared difference between the probabilistic forecast and the
step function defined by the reported observation. Numerical approximation may be possible and could
be the topic of further research. But globally, owing to the resulting complexity of calculation of the
scores distributions, the necessity to additionally consider the potential censoring of observational error
distributions in Equation (16) since wind speed cannot be negative, a simulation-based approach like that
described in Section 3.3 may be seen as appropriate.
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