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Specification of rain gauge representativity error for dessimilation ECMWF

Abstract

The comparison of precipitation fields produced by numériegther prediction models with rain
gauge observations is often difficult because the formeassamed to represent grid box averages,
while the latter can be considered as point measurement®irdiy a reasonable estimate of the
representativity error (RE) for rain gauges is a preretpitsi their proper use in model validation
and above all in data assimilation.

In this work, RE is evaluated in terms of the spatial varigpdf precipitation over a typical model
grid box. It is also assumed that the total RE of rain gaugesbeasplit into a large-scale and a
small-scale contribution. The large-scale componenttismased from various ground-based radar
precipitation datasets, while the small-scale comporeigerived from several high-density rain
gauge networks.

A quantitative estimation of RE is obtained for rain ra® as well as for its logarithmic transform
(In[RR+ 1]), as used in ECMWF's 4D-Var assimilation of radar preciita data. Results confirm
that for a given rain rate, the RE of a single observationdases with the size of the target grid box
and the occurrence of convective precipitation (i.e. dyririd-latitude summer and in the tropics),
and decreases with the accumulation period. The contoibtiti RE from the small scales turns out
to be usually lower than that from the large-scales, butisiagligible. The relative total RE exceeds
100% for weak precipitation, but can drop down to 20% or les$&avier precipitation. This drop
in relative RE is even more pronounced fo(RR+ 1) than forRR while the range of RE values is
expectedly much reduced in terms ofRR+ 1).

Since limited availability of real-time information on ragauge spatial variability is anticipated,
this study proposes a simple parametrisation of RE in teriis(®R+ 1) that only depends on
target resolution and day of the year, with a distinctionaetn mid-latitudes and tropical regions.
A month-dependent parametrisation of precipitation spabrrelations as a function of separation
distance has also been formulated. Finally, the reductidREbdue to spatial correlations of the
rain field and to the availability of multiple nearby rain gges is considered. These parametrisations
are expected to be applicable to mid-latitude and tropaafall over flat terrain and to 6-hour rain
accumulations only.

1 Introduction

Rain gauge (RG hereafter) observations have been used fertivan a century to improve our knowl-
edge of the spatial and temporal distribution of precifmtabver land areas worldwide. Mainly three dif-
ferent types of RG are employed: (1) non-recording gaugssi(ple bucket), (2) weighing instruments
(time evolution of the bucket weight) and (3) tipping-buckeB hereafter) gauges, which electronically
counts the number of tips of a small (0.2-0.5 mm) seesawelikgainer, as precipitation fills it.

Even though the measurement principle is quite simple,aa®&G observations may be affected by a
large variety of errors.

First, systematic instrumental errors (WMO 2008) can oesua result of

e wind-induced undercatch due to aerodynamic effects artum®G (increases with collector height
above ground, wind velocity and in the presence of light caianow),

e mis-calibration of TBs,

e loss through the wetting of the inner walls (all RGs) and nigiemptying of the container (especially
for non-recording RGSs),

e splashing away from the collector,
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e evaporation between consecutive measurements (espdoalb-hourly synoptic station observa-
tions with non-recording RGS).

The error associated to wind is usually the largest (typicato 10% for rain, up to 10 to 50% for snow).

The second type of errors are "local” random errors, whicimipanclude

e discrete time sampling errors of TBs,

e variations of the wind effect caused by turbulent airflowusrd the RG,
e clogging of the collector (e.g., due to leaves or insects),

e failure of a TB to tip (mechanical or electrical problem).

Experimental studies using several RG over areas well b&imetres in size (e.g., Ciach 2003, Subedi
and Fullen 2009) suggested that local random errors fomagtations longer than 1 hour should remain
below 5%, except in very light rain rate or in snow. Besidés;dl” random errors usually decrease with
accumulation length.

The third type of errors, which arise when RGs are used to priecipitation information well beyond
their immediate vicinity, are referred to as representgtarrors (RE hereafter). For instance, RE can be-
come significant when RGs are to be compared with precipitdtelds produced by numerical weather
prediction (NWP) models, since the latter are usually agglita be spatial averages on the model hor-
izontal grid (from 100 m in cloud resolving models to 300 kmciimate models). The discrepancy
between individual RG point measurements and correspgrutid-box averaged observed precipitation
values is expected to grow when the grid becomes coarsa|daubver steep orography or in convective
precipitation events (due to increased small-scale \iditigb At the same time, RE is likely to increase
when time accumulation length gets shorter. In terms of ritag®e, RE is expected to be the dominant
source of observational errors for most applications wingl the comparison of RG data to equivalent
NWP model fields. This is true in model validation exercid®g,also in the context of data assimilation,
which is the primary goal of this work.

The aim of data assimilation is to blend information comingnf a set of observations with a priori
information originating from an NWP model in order to produmptimal three-dimensional representa-
tions of the atmospheric state (called the analyses). Téeslyses can then be used to initialize NWP
forecasts. Over the last decade, various data assimilatiproaches have been implemented by several
operational weather centres (e.g., USA, Japan, UK, Fraoca¥similate instantaneous ground-based
radar observations from their national networks, with salegree of success. These methods include
latent heat nudging (Macpherson 2001), diabatic initilan (Ducroccet al. 2002) and variational data
assimilation, such as 3D-Var (Caumaeital. 2010) or 4D-Var (Lopez and Bauer 2007 ; Lopez 2011,
Sun 2005; Koizumet al. 2005). Besides, it has recently become possible to assingt@aund-based
radar precipitation estimates that are accumulated overaehours (Lopez 2011), which was shown to
improve the validity of the fundamental linearity assuraptin 4D-Var.

However, as far as RGs are concerned, the lack of infformatimut RE estimates has hindered the
progress towards their use in operational global data @ssiom systems. Indeed, the assimilation pro-
cess requires the specification of reasonably accurate statistics for each observation, which should
include RE. Therefore, the aim of the present study is to fifyaRE for point measurements of precip-
itation at spatial scales ranging from 15 to 80 km and for taneumulations between 15 minutes and
6 hours. This is achieved by estimating the spatial vaitghilf precipitation from both ground-based
weather radar data and high-density RG observations, diferesht regions of the globe. In addition,
an estimation of the reduction of RE due to precipitationtiabaorrelations and to the availability of
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multiple nearby RGs is proposed.

It should be emphasised that RE estimates obtained in thity still only be valid for relatively flat
terrain regions, since orography often degrades the guatitl representativity of both RG and radar
observations (e.géaleket al. 2004). Their applicability to polar regions will also be gtienable due
to the unavailability of relevant precipitation datasethigh latitudes.

Section2 introduces the methodology employed here to obtain RG REat&s, while sectiof offers

a brief description of each observational dataset usedisrvtbrk. Statistical results are presented in
section4. A discussion is given in sectioh on how these statistics have been utilised to establish a
simple definition of RE that might be included in the futursiaslation of RG observations in 4D-Var.
Section6 summarises the findings from this study and their potengiplieations.

2 Methodology

2.1 Estimation of representativity error

The main assumption in the present work is that reasonaliteages of RG RE can be obtained for
selected target horizontal resolutions (15, 40 and 80 krme)hHgy computing the spatial variability of
precipitation measurements inside horizontal boxes wilkching area.

More generally, ifn rain observationsRR, withi = 1,...,n) are available inside a certain domain with
sizeA, RE can be approximated by the rainfall spatial standaréhtien

o = \/n%l_i[f(RR)—f@)]z (1)

where RR denotes the mean of all rain observations over the domairerefare it is assumed that
RE ando mean the same thing and both terms will be used indiscrielypdtereafter. Functior in
Eq.(1) is a variable transform that may be applied to the predipitefield, for instance for the purpose
of making the distribution of background errors closer tonmality in the context of data assimilation.
Here, statistics will be computed both for the precipitatiate itself RRin mm h1) and for the quantity
In(RRmm h 1] + 1) (LRR hereafter). This logarithmic transform was initially posed by Mahfouf
et al. (2007) and subsequently implemented by Lopez (2011) tondase ground-based radar data
in ECMWF's 4D-Var system. Since it is likely to be used alsofiiture attempts to assimilate RG
observations, it is essential to obtain RE estimates farghiticular variable as well.

Since no high-density precipitation observations arelalvk on the global scale, the strategy proposed
here is to assess rain spatial variability from ground-thasalar precipitation estimates, on the one
hand, and from high-density RG networks, on the other handdaRdata should help to assess the
contribution to RE from scales larger than a few kilometvelsich is denoted . On the other hand, RG
measurements are expected to provide a rough estimateadbéutions from all scales below the size
of the RG network, in particular from sub-kilometre scal€ven that most high-density RG networks
used in this study do not cover an area larger than 1% kme main contribution to RE estimates based
on RGs will come from scales smaller than a few kilometreswitidbe denotedos,

It can be shown that total RE (in other word} can be approximated by summing up the two variances
that are computed for the large and the small scales (i.en femlars and small-size high-density RG
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networks, respectively), that is

0 ~ /O + 02 (2)

It should be noticed that RGs can allow the direct estimadibtotal RE only when the size of the RG
network exceeds the target resolution, which is the casedrdy with the South Korean RG dataset (see
section3.4).

2.2 Display of statistics

For each dataset used here, the scatter plotwdrsusf (RR) is plotted and a fitting curve is constructed
based on a locally weighted scatterplot smoothing (LOES&hod (Cleveland 1979). In this fitting
procedure, a least-square-weighted local polynomial fibtained, in which a higher weight is assigned
to nearby points than to remote ones. The fitting algorithrpleyred in the present work is identical to
the one applied by Wooet al. (2000) to their rain gauge observations.

A Monte-Carlo bootstrapping method (Efron and Tibshira®8@) similar to that employed by Wood
et al. (2000) is used to assess the uncertainty of the LOESS fitte@.cln this approach, the original
dataset of length is split into blocks of length., << L and a random re-sampling with replacement of
certain blocks is performed in order to construct severadneds of new datasets of lendthfor each

of which a LOESS fitted curve can be calculated. The spreabeoflistribution of these fitted curves
yields an estimate of the uncertainty. Practically heretjcad bars show the spread between tHeahid
95" percentiles of the statistical distribution of all y-vasuef the LOESS fitted curves.

An example of scatter plot af versusRR with superimposed LOESS fitted curve (for the original non-
resampled dataset) and associated uncertainty bars pisydg in Fig.1. In the following, the cloud
of individual points will be omitted so as to improve plot ieijty and to permit the superimposition of
various datasets.
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Figure 1: Example of scatter plot (grey crosses)ofy-axis) versufRR (x-axis) with LOESS fitted curve
(blue line) and associated uncertainty bars (vertical bhaes). Red dotted isolines of the ratiyRR in
% are also drawn.
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3 Description of datasets

3.1 NCEP StagelV precipitation data

NCEP (National Centers for Environmental Prediction) 8tAghourly precipitation data combine pre-
cipitation estimates from about 150 Doppler NEXt-generaRRADars (NEXRAD) with about 5500 rain
gauge measurements over the conterminous USA (Baldwin atothéll 1996; Lin and Mitchell 2005).
During the production process, data from the original rauitegls (the size of which increases with radar
range) are averaged onto a 4-km resolution polar-sterpbigragrid.

Technically speaking, NEXRAD corresponds to the so-cal8R-88D (Weather Surveillance Radar,
1988, Doppler) (Fultort al. 1998). Each NCEP Stage IV precipitation analysis is iretla®5 min after
the end of each hourly collection period and may be updated aperiod of several hours with new
data coming from the twelve USA regional centres. A first inflof automatically generated precipita-
tion data is available within a few hours after the accuniatatime, while a second inflow of updated
manually-quality-controlled data becomes availablerl@tgth a delay of up to 12 hours). The spatial
coverage of the early release is usually not far away frormagimum extent. In this work, manually
quality controlled data were obtained from the JOSS/UCAR({IOffice for Science Support/University
Corporation for Atmospheric Research) archive (websitg://www.joss.ucar.edu/codigc/in the fol-
lowing, these observations will be referred to as "NEXRAD5ervations for simplicity.

These data are representative of a broad range of middat#nd tropical weather regimes, depending on
season and latitude. It should also be noted that only detadd east of 1085V have been used in order
to avoid the possible degradation in the quality of grouadda radar rainfall estimates over the Rocky
Mountains (due to radar beam blockage or orographic enhaeof precipitation). Besides, given the
large amount of data to be processed, the data sample hafirbi#éed to one year for RE computations
(see Tablel). Note however that three years (December 2006-Novemtd3)2if NEXRAD data have
been used for the calculations of spatial correlationsgotesl in sectiord.3.

3.2 OPERA rain composites

The OPERA (Operational Programme for the Exchange of we&Aeéar information) Pilot Data Hub
(Holleman 2008) is based at the Met Office in Exeter (UK) arajgles 15-mn precipitation rates ob-
tained from about 150 operational ground-based weatharsader Europe. Typically, these 15-mn data
are averages over three successive radar scans. OPER/AeBnropmposites are produced in quasi-real
time (within 30 minutes) by combining the data received freach individual countries, following the
method described in Harrisagt al. (2006). It should be noted that countries may send eithglesin
radar data or already processed national composites to BEER@ Pilot Hub, which might result in
inhomogeneities in the final European composites. At thellef/the Data Hub, quality control proce-
dures are applied to single site data to identify and remowargl clutter, anomalous propagation and
occultation occurrences, as well as to correct for vertirafile effects associated to bright band oc-
currence, resolution degradation with range and orogcaghihancement of precipitation. On the other
hand, no particular quality control is performed on theoral composites other than the one performed
by the national services themselves. The final OPERA cortgmare provided in BUFR format and on
a Lambert’'s azimuthal equal area projection (tangent &bl and 10E), with a pixel size of 4 km.

In this study, OPERA data have been restricted ¢/85°W and 48N-53°N (Germany) so as to be
representative of relatively flat terrain and mid-latitudeteorological conditions. Another justification
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for this choice lies in the fact that, according to Lopez @0MPERA data exhibit their best quality
over Germany. Similar to NEXRAD, the period of the OPERA dadad here extends from 1 December
2008 to 30 November 2009.

3.3 Darwinradar data

Rainfall estimates obtained from the ground-based scgrbiband polarimetric precipitation radar lo-
cated near Darwin in Australia (location: T®B'E/12°15'S; Keenaret al. 1998) were provided by
Monash University, Melbourne, for three consecutive raagsons (November to April) from 2004 to
2007. The spatial and temporal resolutions of the CAPPI ¢t Altitude Plan Position Indicator)
precipitation data are 2.5 km and 10 mn, respectively. Thiagkt is representative of monsoon-type
tropical weather regimes, often characterised by intenseective activity and heavy rainfall.

3.4 South Korearain gauge data

South Korea benefits from a rather high-density network otiab20 TB RGs (Sohast al. 2010), which
corresponds to an average separation distance just belkm.1Bata were obtained in the form of hourly
accumulations for each rain gauge and for the year 2009.€Tdeta are expected to be representative of
a wide range of weather regimes, from cold mid-latitude @omrs in winter to subtropical conditions
during summer.

3.5 HYREX data

The Hydrological Radar Experiment (HYREX) was conducte@amerset in the UK to study the spa-
tial and temporal variability of precipitation over the RivBrue catchment area, mainly for hydrolog-
ical purposes (Mooret al. 2000. A network of 49 TB RGs was installed over the entire catchime
area, with two high-density 4-kfnboxes featuring 8 gauges each. Also available from the HYREX
database were data from the two ground-based C-band piaticipiradars located at Wardon Hill, Dorset
(2°34'W/50°48’N) and Cobbacombe, Devon°@’'W /50°58’N). In this study, data from the low-relief
4-kn? box RGs as well as from the two radars have been used over tiod (S=ptember 1993 to May
2000. These data were supplied by the British Atmospheria Bantre from the NERC (Natural Envi-
ronment Research Council) HYREX Datadettyy://www.badc.rl.ac.uk/data/hyréx/

3.6 Walnut Gulch rain gauges

The 149 knd Walnut Gulch Experimental Watershed is located in souteeairizona (USA,; location:
110°04'W/31°43'N) and is currently equipped with 88 operational weighmecording RGs. A more
detailed description of the instrumentation can be foun@aodrichet al. (2008) and data are available
from the USDA-ARS (United States Department of Agriculldgricultural Research Service) website
on http://www.tucson.ars.ag.gov/dap/digital/event.a$pis site is characterised by a subtropical semi-
arid climate with dry springs and precipitation peakingusre mid-summer (convective). Measurements
used in the present work are those from 12 RGs (namely gawmaber 27, 28, 31, 32, 33, 39, 40, 71,
74, 80, 87 and 398) that are located inside a 16 kox in the northern part of the watershed, from 1
January 1999 to 31 December 2010.
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3.7 USDA Riesdl rain gauges

The USDA-ARS Grassland Soil and Water Research Laboratatgraheds near Riesel, Texas (USA;
location: 9653'W/31°28'N), provide long-time series (since 1937) of precipiatrecordings from
up to 57 RGs (see Harmet al. 2003). Data can be accessed hitp://www.ars.usda.gov/Research/-
docs.htm?docid=10216The Riesel region is characterised by flat terrain and ar@pisal subhumid
climate, with frontal precipitation in winter and heavy wentive rainfall during the warmer season,
peaking in May. To ensure temporal continuity and spatiakionity, only 13 TB RGs (hamely gauges
number wlb, wba, w2a, w6, w4, w3, w2, 84a, 75a, 70a, 89, 7Q,v@89ich are located inside a 4-K¥m
area, have been selected here, over the period 1 Januarydl®Y®ecember 2010.

Dataset Resol./RG density Location/Domain| Temporal coverage  Instrument Type
NEXRAD 4 km Eastern half USA| Dec 2008-Nov 2009 C-band Dop. Rad.
OPERA 4 km Europe (Germany) Dec 2008-Nov 2009 C-/S-band Dop. Rad
Darwin 2.5km Darwin, Australia | Dec 2008-Nov 2009 C-band Pol. Rad.
HYREX Rad. 2 km Wardon Hill, UK | Sep 1993-Apr 2000 C-band radar
2 km Cobbacombe, UK| Feb 1994-Apr 2000, C-band Dop. Rad.
South Korea | 520 RGs/10 km? South Korea Year 2009 TBRG
HYREX RGs 8 RGs/4 km Somerset, UK | Sep 1993-May 200( TB RG
Walnut Gulch 12 RGs/16 km Arizona, USA | Jan 1999-Dec 2010 WR RG
USDA Riesd 13 RGs/4 krd Texas, USA Jan 1970-Dec 2010 TB RG

Table 1: Main characteristics of precipitation observat# datasets used to assess RE: spatial res-
olution or RG density, geographical location, sample Iéngnd instrument type. Abbreviations:
Dop.=Doppler, Pol.=polarimetric, Rad.=radar, TB=TippaiBucket, WR=Weighting-Recording.
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4 Results

Results from each available dataset will be presented ifotheof fitted curves of the standard deviation
of precipitation observationgs, plotted against the mean precipitation vali€RR), as detailed in sec-
tion 2.2 Statistics have been computed for three different targdtlgpx sizes (15, 40 and 80-km) and
for each season of the year as well as for the whole year. éranthre, three precipitation accumulation
lengths have been considered: 6 hours (for all datasetgyudand 15 mn (for a few datasets). Only a
selected subset of these statistics will be shown here witlirticular focus on the 6-hour accumulation
length. Indeed, the latter is representative of most syogpation RG measurements and was found to
be the optimal accumulation length for the assimilation refcipitation observations in 4D-Var (Lopez
2011). Lastly, statistics for botRRandLRRwill be shown on panels (a) and (b) of each figure of this
section, respectively.

4.1 Ground-based radars

Statistics obtained from these datasets provide an estiofaprecipitation RE resulting from scales
ranging from a few kilometres to the size of the selectedetaggid box (15, 40 or 80-km). In other
words, this estimate of RE correspondsstoin Eq.(2).

Figure2 displaysoy againstf (RR) for 6-hourly precipitation accumulations, for all radatatsets and
for 15-km target grid boxes. This corresponds to the highpsttral truncation (T1279) currently used
in ECMWF's Integrated Forecasting System (IFS). In thisregstatistics apply to the entire period of
each dataset (see Taldlp

Both panels show that; monotonically increases with(RR) for most datasets. Only NEXRAD and
Darwin exhibit a curve which slightly drops for values of RR+ 1) larger than 1.0 (Fig2.b). As
expected from the application of a logarithmic transforng tange of; values is higher foRR(0.08-
7.0 mm h1) than forLRR(0.07-0.4). It is also remarkable that the spread amongdhrr datasets is
not too wide, with the exception of Darwin data for which is systematically larger, especially for
lower precipitation rates. This can be explained by the gmdadance of convection at the tropical site of
Darwin, which is accompanied by strong horizontal varigpbif the precipitation field.

In relative terms, the ratio / f (RR) usually decreases with RR) from around 100% to 20% fdRRand
from about 70% to 10% fotRR For Darwin data, the ratio exceeds 100% for the smalleripitation
amounts.

It is also worth noting that the smaller sample size of theddarHill and Cobbacombe radar datasets
results in increased uncertainty (i.e. wider error bars, s£tion2.2). As an illustration of seasonal
variability, Fig. 3 displayso;. againstf (RR) for 6-hourly NEXRAD precipitation on a 15-km horizontal
scale and for each season and the whole year. It is clear Ehet WReakest in winter and highest in sum-
mer, as a result of the predominance of stratiform versusemiive precipitation systems, respectively,
except for higher precipitation rates (mostly convectiv@h the other hand, spring and autumn exhibit
o, values close to yearly statistics. As an example of the digoae on target horizontal resolution,
Fig. 4 shows NEXRAD statistical results computed at 15, 40 andr@0<solutions and for the whole
year. For any giverf (RR) value, RE roughly doubles when the size of target boxes reased from 15

to 80 km. This simply reflects the corresponding reductioth@yamount of information that any single
4-km radar observation can provide about the target-boxarpezcipitation.
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Figure 2: Standard deviation of 6-hourly accumulated ppéeition as a function of mean precipitation

value computed over 15-km boxes and for all radar datasedd irsthis study: NEXRAD and OPERA

networks, Darwin, Wardon Hill and Cobbacombe individuadiaa sites. Panels (a) and (b) show statis-

tics in terms of RR and LRR, respectively. Statistics ar&l\fal the periods mentioned in Table

Red dotted isolines indicate standard deviation normdlisg mean gridbox precipitation (in %). Ver-

tical bars show the uncertainty of each curve, as assessed thie bootstrapping method described in
section2.2
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Figure 3: Same as in Fig, but for NEXRAD data only and for various seasons.
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Figure 4. Same as in Fige, but for NEXRAD data only and for target horizontal resabuis of 15, 40
and 80 km.

4.2 High-density rain gauge networks

Statistics obtained from these datasets give an estimgtecoipitation RE on scales finer than a few
kilometres, to complement those obtained from radars. &$tisnate of RE therefore correspondstp
in EQ.@2).

Figure5 displaysos againstf (RR) for 6-hourly precipitation accumulations, computed frolirhigh-
density RG datasets and over the respective network areas igi Tablel. Statistics are valid for the
entire length of each dataset. The curves show a similaegmthose obtained for radars in F&).but
the differences among RG networks is larger. Walnut Gulah @8DA Riesel networks, both based
in southern USA, exhibits values that are between three and four times as large asfthrabe UK-
based HYREX network, which can be attributed to more fretjgenvection over Arizona and Texas.
The HYREX RGos/ f(RR) ratio is in fact remarkably low, ranging from 40% for low raiates to
13% (resp. 7%) for high rain rates RR (resp. LRR space. This is the result of the predominance
of stratiform precipitation in North Atlantic cloud systemthroughout the year. Figu quantifies
the expected increase ok (by a factor between 3 and 5) when precipitation accumulagémgth is
shortened from 6 hours to 15 mn, in the case of the HYREX RGg. $bould also note that the increase
of gs when going from 1 hour to 15 mn is as large as that obtained \gbarg from 6 hour to 1 hour
accumulations. Besides, this degradatiorogseems to be stronger for low rain rates, which might be
related to the occurrence of isolated showers at scalew k.

4.3 South Korean rain gauge network

Statistics calculated from this dataset should be reptates of all scales up to the the target horizontal
resolution, including scales finer than the distance betwai gauges. The resulting estimate of RE
therefore corresponds tin Eq.(@2).
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Figure 5: Standard deviation of 6-hourly accumulated ppéeition as a function of mean precipitation
value from all high-density rain gauge datasets used in #figly: Walnut Gulch, USDA Riesel and
HYREX networks. Same layout as in Flg.
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Figure 6: Standard deviation of precipitation as a functieimean precipitation value from the HYREX
high-density rain gauge network and for rain accumulatiendths of 15 mn, 1 hour and 6 hours. Same
layout as in Fig.2.
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Figure7 shows RE as a function df(RR) for South Korean RGs, for three seasons (cold, transitich an
warm) and for two target horizontal resolutions (0.4 andd®gree, i.ea~ 40 and 80 km). Statistics at
0.15 degree resolution turned out to be impossible to catieulue to the lack of points in each target box,
as the mean separation distance over the South Korean R@rkaesnabout 15 km. "Cold” and "warm”
seasons refer to the periods December-March and JunerSmEpterespectively, while the "transition”
season comprises the months of April, May, October and Nbeem

Consistent with what was found from NEXRAD data (see B)gRE is clearly higher during the warm
season (convective activity) than during the cold seastatiferm precipitation), with the transition
season lying in-between. Also consistent with FIgRE increases when target horizontal resolution
is changed from 0.4 to 0.8 degree. Quantitativetyyalues from South Korean RG observations are
comparable to those displayed in Fgirom NEXRAD data. Indeed, yearly values affor RR(panel
(a)) range from 0.2 for the lowest rain rates to 3.0 mm for rain rates of 10 mmtt. In terms ofLRR
(panel (b)),o varies between 0.15 and 0.4 wheRRranges from 0.1 to 2.0. However, the seasonal
spread ofo for South Korean RGs (Figr) is slightly narrower than for NEXRAD data (not shown),
especially for rain rates lower than 1 mm'h

T T & (& 0. T RS o -
2000/~ () & 2000(0) & & ¢ e
——S. Korea gauges 0. 40deg Cold_.season OGFD —S. Korea gauges 0. 40deg Cold_season 06h
10.00-___s. Korea gauges 0.80deg Cold seaSOn 06h - - - S. Korea gauges 0.80deg Cold- : season 06h oo
—S. Korea gauges. 0. 40deg Transrr season Q&l 1.00-—S: Korea gauges.0. 40deg Transrt season
5.00----s. Korea gauges 0. 80deg Transrt season (%I’r --- S Korea gauges 0. 80deg Transrt season OQ\b
2.00 0.50F E

1.00

050}

o
D)
o

o\??

0.201 / S . . . . . .
—S. Korea gauges 0: 40deg Warm season 06h —S- Korea gauges O 40deg Warm season 06h |
0.10 S S Korea gauges 0. 80deg Warmn_season 06h | ---8. Korea gauges 0. BQdeg Warm:'season Oﬁfﬁ0
oréa gauges 0: 40deg Yéar 06h A— S. Korea gauges 0.40deg Year 06h

Standard deviation of In(RR+1)
o
N
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0.05 |- \i__,Korea gauges 0. SOdeg Year 06h L] 0.05 .- S Korea gauges 0. 80deg Year 06h \ N
0.1 0.2 05 1.0 20 5.0 10.0 20.0 0.1 0.2 0.5 1.0 2.0
Mean gridbox RR (mm h*) Mean gridbox In(RR+1)

Figure 7: Standard deviation of 6-hourly accumulated ppéeition as a function of mean precipitation

value from the South Korean rain gauge network. Statistiesdésplayed for the cold, transition and

warm seasons and for two target horizontal resolutions 4fahd 0.8 degree, as indicated in the legend.
Same layout as in Fig.

5 Discussion

5.1 Parametrisation of singlerain gauge representativity error

Results presented in sectidrusing all precipitation datasets helped to identify andngjfiathe mono-
tonic increase ofr and the monotonic decreaseaf f (RR) with f(RR). Therefore, an ideal formulation
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of RE for precipitation point-measurements ought to beiobththrough a function describing tlie
f(RR) relationship, with some additional dependence on seaspreoipitation type (convective versus
stratiform), and maybe on geographical location and opgrdrugged versus flat terrain) as well.

However, the development of such formulation for NWP agtians suffers from several practical lim-
itations. First, the actual value &R which would typically be observed precipitation averageer

a model grid box in this case, is usually unknown. The onlpiimfation available originates from in-

dividual RG observations, which are usually sparsely ithsted in space. This makes it impossible to
compute RG RE using a- f (RR) relationship.

Secondly, the inclusion of a direct dependence of RE on jpitation type could only be based on addi-
tional information coming either from other instrumentitforms (e.g., satellites) or from the forecast
model. However, other types of observations that are ct#dcaith RGs and capable of providing
reliable information about precipitation type are seldorailable on the global scale and in real-time
(operational context). The alternative of using model 8€lelg., convective available potential energy)
to identify precipitation type would be problematic as wéllonly because of potential misplacements
or mis-timing of convective/stratiform events in the mqd®ien at short forecast ranges. Furthermore,
since conventional RG measurements are provided in the ébrmrainfall accumulations over at least
6 hours, a change in precipitation type is likely to occurrastech a period of time as a result of the
displacement of cloud systems.

Therefore the only possible solution for applications in R¥hd in data assimilation is to specify a value
of RE which is (unfortunately) independent of precipitateimount, but which can still be modulated ac-
cording to season. This seasonal dependence would cructgyrat for typical changes in precipitation
regimes/types throughout the year. It should be emphasiisgdhe lack of dependence of RE on rain
amount should be less of an issue i&®Rthan forRR since the range af variations is much smaller
for the former variable than for the latter. This can be seendmparing panels (a) and (b) in all plots
of section4. One should also note thBRRis the variable used to assimilate precipitation obsesuati
at ECMWF (Lopez 2011).

To ease the definition of "universal” seasonal-dependehtegaof LRR RE, Figure8 offers a visual
representation of the range of values derived from all datasets for different seasons andafget
resolutions of 15, 40 and 80 km. For any individual curve @& tipe shown in sectiod, the range

is defined by the lowest and highddRR RE values for which the uncertainty is not too large (namely
Yiop < 2 Ybottom fOr the error bar). From Fig8 and with the help of the plots presented in sectiand

by taking into account Egj, the following (rather crude and subjective) formulation RE has been
established:

IT(D—112

o(D) = 09 + Ao sm{E ol

) + e ©

whereD is the day of the year andhemisis equal to 0 for the northern hemisphere and 1 for the sauther
hemisphere. Parametearg andAo depend on target resolution and geographical locationrdicapto
Table2. In this table, tropics are assumed to extend betweé8 ahd 25N and mid-latitudes between
25° and 60 in both hemispheres. Figugillustrates the variations af given by Eq.B) for the three
selected target resolutions and for both northern middiddis and tropics (constant value). The main
assumption is that RE is constant throughout the year inrthgcs to account for the omnipresence
of convective precipitation, while in the mid-latitudes REctuates with season, with lower values in
winter (stratiform rain) and higher values in summer (cative rain).
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Representativity error range, accum. length=06h, In[RR+1]
Resolution=15km
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Figure 8: Range of representativity error in terms of LRRqrall datasets and for target resolutions of

(a) 15 km, (b) 40 km and (c) 80 km, as determined from the culvsned in sectiod. Results are for

6-hourly precipitation accumulations. Each vertical barabelled with the dataset name and its colour

indicates the period of the year: winter (blue), spring @mg summer (red), autumn (orange) and whole

year (black). For South Korean RGs, the green bar correspdndhe "transition” season (April, May,

October and November). The three high-density RG netwaekstown separately on the extreme right
of each panel (independent of target resolution).
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Mid-latitudes | Tropics

Target resolution  og Ao oy | Ao
15 km 0.220| 0.070| 0.290| O

40 km 0.285| 0.085| 0.370| O

80 km 0.350| 0.100| 0.450| O

Table 2: Values of the two parameterg and Ao used in the parametrisation of RE for 6-hourly precip-
itation accumulations in terms of LRR (see BY).(for various target resolutions and for mid-latitudes
and tropics.
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Figure 9: Annual evolution of parametrised representayiv@rror of 6-hourly precipitation accumula-

tions (in LRR space) for target resolutions of 15 km (sol)j 40 km (dotted line) and 80 km (dashed

line), according to EqJ) and using Tabl&. Blue (resp. red) lines are for northern mid-latitudes (res
tropics).
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5.2 Impact of spatial correlations and number of rain gauges on representativity error

As explained earlier, our aim here is to specify RE for the mesue of a set of rain gauges available
over a certain target grid box. Even when only one RG is aviglanside the target grid box, horizontal
correlations of the precipitation field are expected to cedRE compared to the estimate given by Bj.(
Besides, when several rain gauges are available insidahe &rget grid box, the increased information
content should also lead to a drop in the RE of the RG grid bexaaed rainfall.

Morrisseyet al. (1995) showed that the R, for the average of RGs over the target box can be
assessed from the RE of individual point observatianghrough

g2 — o2 i s (di .)5(05(')_1 C T (dij)o(i)+ l +£N_l < (di;) (4)
= o?| 5 i;,;p i D= N2 ,le i N i;j:;lp ij
T1 T2 3 T4

wherep(d; j) is the spatial correlation between two rain gauges indeéxattl j and separated by the
distanced; ;. N is the number of rectangular sub-boxes artificially defiredivide the target area in
such way that either 0 or 1 rain gauge is present inside edeiba@x) as illustrated in FiglO. The

‘Target grid box (e.g. 15 km)

® ® ®
[
[ ]
l °
AT N,
Rain gauge (n) / L \\\
[ ® N\ Sub-box (V)

Figure 10: lllustration of the subdividing of a given tardgetx into N sub-boxes for the estimation of
the reduction in precipitation representativity error wha rain gauges are available instead of a single
one.

main underlying assumption in Ed)(is that precipitation over each sub-box is well approxedalby
the rain gauge measurement it contains, which requiresizeeo§ sub-boxes not to exceed a couple of
kilometres. It is also assumed thatis the same for each RG present in the target box. The quamtity
large brackets in Eq}] is the so-called variance reduction factor. Each term énltitackets correspond
to the influence of:

(T1) the correlations between RGs,

(T2) the spatial average of correlations around each RG,
(T3) the definition of sub-boxes (smallif large enough),
(T4) the spatial average of correlations between sub-boxes
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5.3 Spatial correlations

Spatial correlations between RGs (i@(d; j) in Eq.@)) should ideally be estimated from high-density
RG datasets with good spatial and temporal coverage. Howdwe to the unavailability of RG datasets
that fulfill these requirements, NEXRAD 4-km data have besgdlinstead, since these offer good spatial
and temporal coverage. This ensures that the correlatioeg@are not too noisy. The fact of using 4-km
radar data instead of point measurements for this estimatight lead to small differences in spatial
correlations (Gebremichael and Krajewski 2004), but tlif$erences are not expected to be significant
in data assimilation or model verification applications.

The computation 0b(d; ;) is based on the method applied in Gebremichael and Krajga8@#), which
uses the bivariate mixed lognormal precipitation distiiou of Shimizu (1993).

Resulting 3-year averaged spatial correlatignsas computed from 4-km resolution NEXRAD 6-hourly
precipitation accumulations, are plotted for each montRig 11 as a function of separation distance,
d; j, for bothRR(panel (a)) and.RR(panel (b)).

RR6h spatial correlation from InéRRGh + 1) spatial correlation from
NCEP Stage IV 4km precipitation obs NCEP Stage IV 4km precipitation obs

N RN R R A R R N U

(a) — Dec 2006-2007-2008; F (b) — Dec 2006-2007-2008;
Lop\ % L Jan 2007-2008-2009 | Lopg\¥%/2 L Jan 2007-2008-2009 |
--- Feb 2007-2008-2009 - --- Feb 2007-2008-2009 -
—— Mar 2007-2008-2009 | —— Mar 2007-2008-2009 |
-------- Apr 2007-2008-2009 - Apr 2007-2008-2009 -
--- May 2007-2008-2009 | --- May 2007-2008-2009 |
—— Jun 2007-2008-2009 - —— Jun 2007-2008-2009 -
““““““ Jul 2007-2008-2009 ] - Jul 2007-2008-2009 ]
--- Aug 2007-2008-2009 - --- Aug 2007-2008-2009 -
—— Sep 2007-2008-2009 | —— Sep 2007-2008-2009 |
-------- Oct 2007-2008-2009 - - Oct 2007-2008-2009 -

0.8 0.8

0.6 0.6/
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Figure 11: Precipitation spatial correlation as a functiaf separation distance, as computed from 3
years of NEXRAD 6-hourly precipitation accumulations inre of (a) RR and b) LRR. Each curve
corresponds to a given month, as indicated in the legend.

Figurell clearly shows that the drop of spatial correlations withesafion distance gradually becomes
more pronounced when going from winter to summer. The langpan is obtained in January and
December, the narrowest in July and August. This is the cpresee of the predominance of con-
vective activity during the warmer months, which is chagdsed by enhanced small-scale variability
of precipitation (convective cells embedded in mesoscgtems). In contrast, stratiform precipitation
which prevails during winter is usually associated with@ddread, rather uniform frontal cloud systems,
which explains the broader shape of the spatial correlatiowes. April, May, October and November
are clearly transition months affected by both types of ipition. The same seasonal trend of spatial
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correlations was found with South Korean RGs, but the cue® somewhat noisier due to the smaller
sample size and spatially discrete nature of the data (rowtrsh

A classical exponential fit to the correlation curves showhkig. 11is proposed as
p(d) = exp[b(M) d™] (5)

whered is the separation distance (in km) dnd/) andc(M) are coefficients which depend on the month
of the yearM. Figure12 shows the monthly variations of coefficieft@&ndc for both variablelRRand
LRRin northern hemisphere mid-latitudes. Figur2 indicate thatb and c oscillate rather regularly

0.8 \ \ \ \ \
c coeff (IN[RR+1])

0.6

0.4

0.2

Coefficients b and ¢

0.0

-0.2 | | | | | | | | ! ! ! !

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 12: Monthly variations of coefficients b (trianglesdasquares) and ¢ (diamonds and stars) used

in the exponential fit of the spatial correlations of NEXRAIDdurly precipitation accumulations, for

both RR (red) and LRR (black). The sine curves used to fit hyovafues are also shown. This plot is
valid for northern mid-latitudes.

between a maximum in January and a minimum in July. Thergfooathly values ob andc have been
fitted with the following sine functions (plotted in Fifj2)

. T |\/|—m)
b(M) = by + Ab sm{§< A )memm} 6)
c(M) = Co—i—ACSin{]—ZT(MA—mCmC)‘Fdwemisﬂ} (7)

wherehg, Ab, my, Amy, andcy, Ac, me, Am are given in Tabl&. This parametrisation is assumed to be
applicable in mid-latitude regions.

For the tropics, rough estimates of coefficiebtandc have been obtained by restricting the NEXRAD
correlation computations to the Peninsula of Florida (s@it29’N). Results (not shown) indicate only
weak variations of the two coefficients throughout the yeat a drop of correlation with separation
distance which is even sharper than for mid-latitude summanths (Fig.11). This is consistent with
the omnipresence of convection all year round and has Idtketegecification of fixed values bfandc
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given in Table3. The resulting tropical correlation functions are in agneat with those found by Habib
and Krajewski (2002) for hourly rain accumulations in thensoer over central Florida during the Texas
and Florida Underflight Experiment (TEFLUN-B). Here it issamed that Floridian correlations are
representative of the entire tropical band. This may seénerarude but this is the best we can do, until
alternative tropical precipitation datasets with betegnporal and spatial coverage become available.

Mid-latitudes Tropics

RR LRR RR LRR
bp | —0.078| —0.056| —0.197| —0.164
Ab | —0.055| —0.036
m, | 4.770 | 4.803

Amy | 2.444 | 2.481

C | 0655 0672 | O.
Ac | —0.090] —0.078
me | 4563 | 4.711
Ame | 2.619 | 2.548

~| | O| O | | O
o
©
o
~| | OO | - O
N
w

Table 3: Values of the eight parameters used to describe tmhty variations of the fitting coefficients

b and c for spatial correlations of 6-hourly precipitatiom@mulations (see E&), Eq.6) and Eq.7)).

Values are given for both variables RR and LRR and for bothlatitlides and tropics. In the tropics, b
and c are assumed to be constant throughout the year.

5.4 Practical implementation

Practically, the specification of RE for the average of a $§&®s over a selected model grid box, for
instance in the context of data assimilation, would conepifie following steps:

(1) Determination of the numberand positioning of RGs available inside the model grid box.
(2) Computation of individual RG RE from E@)and Table2.

(3) Definition of a regular lattice dil sub-boxes containing either 0 or 1 RG each.

(4) Computation of spatial correlations between sub-bosésy Eqs%)-(7) and Tables.

(5) Calculation of the final RE of the grid box averaged raisaation from Eq4).

Eventually, this RE value would then be added to the otherpomants (see sectiol) of the total
observation error to be used during the assimilation pgces

6 Summary and conclusions

In this work, representativity error has been defined as th@ ene makes when trying to assess the
averaged value of rainfall over a target area (e.g., a maiklbgx) from a set of point measurements
scattered over the same area. In particular, improving nawledge of RE for RGs is a prerequisite to
their possible assimilation in 4D-Var.

A quantitative estimation of RE for individual point measorents has been obtained from various radar
and RG datasets over different regions of the globe. Statistere computed for rain rate but also for
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its logarithmic transform (I(RR+ 1)), as the latter variable is already employed in ECMWF's 4&-V
assimilation of ground-based radar precipitation data.

Results confirmed that for a given rain rate, RE increasels thi¢ size of the target grid box and oc-
currence of convective precipitation (i.e. during midtlade summer and in the tropics), and decreases
with the accumulation period. The contribution to RE frora #imall scales turns out to be usually lower
than that from the large-scales, but is not always negkgiespecially in convection. The relative total
RE exceeds 100% for weak precipitation, but can drop dowrD86 2r less for heavier precipitation.
This drop in relative RE is even more pronouncedlf&Rthan forRR while the range of RE values is
expectedly much reduced in termsld®R

A simple formulation of RE in terms ofRR has been established, which includes a dependence on
season and target grid box resolution as well as the effecaiofall spatial correlations. It was not
possible to express RE as a function of grid box averagednadmbgrecipitation itself since the latter

is usually unknown. It should be emphasised that the coeffisiused in the proposed formulation
are only valid for 6-hour rain accumulations, which corss to the time sampling of most synoptic
station RGs, and therefore they should be recomputed if at@imulation lengths are considered.

The proposed formulation of RE involves two main steps.tfas estimate of RE for single point mea-
surements is obtained. Then, the total RE for the set ofathiobservations available over the selected
target grid box can be computed, taking into account theenfte of precipitation spatial correlations,
which tend to reduce RE. In mid-latitudes, single RG RE isiaed to vary sinusoidally according to
season from a winter minimum to a summer maximum, as a rektiiedransition from predominantly
stratiform to predominantly convective precipitationiregs. In the tropics, one assumes that single RG
RE is constant throughout the year, with values similar ts¢hobtained for mid-latitude summer con-
ditions. One should stress here that the lack of long enougle, coverage and accurate tropical rainfall
datasets clearly hinders our capacity to obtain betteisgtat over these regions.

The proposed RE parametrisation is mainly intended for dsgamilation purposes but could also very
well be applied to model validation. In particular, the pisito employ it as part of the future assimilation
of 6-hourly RG observations in ECMWF’s 4D-Var system to sfye@asonable observation errors at the
scale of the model grid box.
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