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Summary 

Adjoint diagnostic tools are here presented, in particular the observation influence in the analysis and the 
observation impact on the forecast error are described and their use to monitor the assimilation and forecast 
system. I 

In this paper, the corresponding concepts to the influence matrix used in ordinary least-squares applications for 
monitoring statistical multiple-regression analyses have been derived in the context of linear statistical data 
assimilation in Numerical Weather Prediction. Results show that, in the January 2008 operational system, 7% of 
the global influence is due to the assimilated observations in any one analysis, and the complementary 93% is the 
influence of the prior (background) information, a short-range forecast containing information from earlier 
assimilated observations. Low-influence data points usually occur in data-rich areas, while high-influence data 
points are in data-sparse areas or in dynamically active regions. Background error correlations also play an 
important role: High correlation diminishes the observation influence and amplifies the importance of the 
surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of 
background and observation error covariance matrices can be identified, interpreted and better understood by the 
use of influence matrix diagnostics for the variety of observation types and observed variables used in the data 
assimilation system. 

This paper also describes the use of forecast sensitivity to observations as a diagnostic tool to monitor the 
observation impact on the quality of the short range forecasts (typically 24 hour). Overall, the assimilated 
observations decrease the forecast error. However, locally some poor performances are detected that are related 
either to the data quality, the sub-optimality of the data assimilation system or biases in the model. It is also 
found that some synoptic situation can deteriorate the quality of certain measurements or can induce some local 
weather variability over small areas that the assimilation system cannot correctly resolve. Finally, the 
performance of the current operational version (2009) of the data assimilation system for the last four months of 
2008 shows a consistent overall positive impact of the observations. 

1. Introduction 
Over the last decade, data assimilation schemes have evolved towards very sophisticated systems, 
such as the four-dimensional variational system (4D-Var) (Rabier et al. 2000) that operates at the 
European Centre for Medium-Range Weather Forecasts (ECMWF). The scheme handles a large 
variety of both space and surface-based meteorological observations. It combines the observations 
with prior (or background) information on the atmospheric state and uses a comprehensive (linearized) 
forecast model to ensure that the observations are given a dynamically realistic, as well as statistically 
likely response in the analysis. Effective performance monitoring of such a complex system, with an 
order of 108 degrees of freedom and more than 107 observations per 12-hour assimilation cycle, has 
become an absolute necessity.  

The assessment of each observation contribution to the analysis is among the most challenging 
diagnostics in data assimilation and numerical weather prediction. Methods have been derived to 
measure the observational influence in data assimilation schemes (Purser and Hung 1993, Cardinali et 
al. 2004, Fisher 2003, and Chapnick et al. 2004). These techniques show how the influence is assigned 
during the assimilation procedure, which partition is given to the observation and which is given to the 
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background or pseudo-observation. They therefore provide a indication of the robustness of the fit 
between model and observations and allow some tuning of the weights assigned in the assimilation 
system. Measures of the observational influence are useful for understanding the DA scheme itself: 
How large is the influence of the latest data on the analysis and how much influence is due to the 
background? How much would the analysis change if one single influential observation were 
removed?  How much information is extracted from the available data? 

To answer the questions it is necessary to turn to the diagnostic methods that have been developed for 
monitoring statistical multiple regression analyses and 4D-Var is a special case of the Generalized 
Least Square (GLS) problem (Talagrand, 1997) for weighted regression, thoroughly investigated in the 
statistical literature. 

The structure of many regression data sets makes effective diagnosis and fitting a delicate matter. In 
robust (resistant) regression, one specific issue is to provide protection against distortion by anomalous 
data. In fact, a single unusual observation can heavily distort the results of ordinary (non-robust) LS 
regression (Hoaglin et al. 1983). Unusual or influential data points are not necessarily bad data points: 
they may contain some of the most useful sample information. For practical data analysis, it helps to 
judge such effects quantitatively. A convenient diagnostic measures the effect of a (small) change in 
the observation iy  on the corresponding predicted (estimated) value iy . In LS regression this 

involves a straightforward calculation: any change in iy  has a proportional impact on i y . The desired 

information is available in the diagonal of the hat matrix (Velleman and Welsh, 1981), which gives the 
estimated values iy  as a linear combination of the observed values . The term hat matrix was 

introduced by J.W. Tukey  (Tukey, 1972) because the matrix maps the observation vector y into ŷ, but 
it is also referred to as the influence matrix since its elements indicate the data influence on the 
regression fit of the data. The matrix elements have also been referred to as the leverage of the data 
points: in case of high leverage a unit y-value will highly disturb the fit (Hoaglin and Welsh, 1978). 
Concepts related to the influence matrix also provide diagnostics on the change that would occur by 
leaving one data point out, and the effective information content (degrees of freedom for signal) in the 
data. 

iy

Recently, adjoint-based observation sensitivity techniques have been used (Baker and Daley 2000, 
Langland and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Xu and Langlang, 2006, 
Zhu and Gelaro 2008, Cardinali 2009) to measure the observation contribution to the forecast, where 
the observation impact is evaluated with respect to a scalar function representing the short-range 
forecast error. In general, the adjoint methodology can be used to estimate the sensitivity measure with 
respect to any parameter of importance of the assimilation system. Very recently, Daescu (2008) 
derived a sensitivity equation of an unconstrained variational data assimilation system from the first 
order necessary condition with respect to the main input parameters:  observation, background and 
their error covariance matrices. The paper provides the theoretical framework for further diagnostic 
tool development not only to evaluate the observation impact on the forecast but also the impact of the 
other analysis parameters. Sensitivity to background covariance matrix can help in evaluating the 
correct specification of the background weight and their correlation. Limitations and weaknesses of 
the covariance matrices are well known, several assumptions and simplifications are made to derive 
them. Desroziers and Ivanov (2001) and Chapnik et al. (2006) discussed the importance of diagnosing 
and tuning the error variances in a data assimilation scheme. 
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The adjoint-based observation sensitivity technique measures the impact of observations when the 
entire observation dataset is present in the assimilation system and also it measures the response of a 
single forecast metric to all perturbations of the observing system. It provides the impact of all 
observations assimilated at a single analysis time. 

The adjoint-based technique is restricted by the tangent linear assumption, valid up to 3 days. 
Furthermore, a simplified adjoint model is usually used to carry the forecast error information 
backwards, which limits further the validity of the linear assumption, and therefore restricts the use of 
the diagnostic to a typical forecast range of 24-48 hours. One implication to use a simplified adjoint 
model is that the analysis uncertainties obtained throughout the adjoint integration can be incorrect if 
the propagating back signal is weak (Isakseen et al., 2005).  

In this paper, first the influence matrix diagnostic for ordinary least-squares regression is explained in 
Section 2. In Section 3 the corresponding concepts for linear statistical DA schemes are derived. It will 
be shown that observational influence and background influence complement each other.  In Section 4, 
the theoretical background of the forecast sensitivity (observation and background), the numerical 
solution and the calculation of the forecast error contribution from observations are shown. Section 5 
some illustrations and selected examples related to data influence on the analysis and on the forecast 
are presented. Conclusions are drawn in Section 6. 

2. Classical statistical definitions of influence matrix and self-sensitivity 
The ordinary linear regression model can be written 

  2.1 y = Xβ + ε

where y is an m×1 vector for the response variable (predictand); X is an m× q matrix of q predictors; β 
is a q×1 vector of parameters to be estimated (the regression coefficients) and ε is an m×1 vector of 
errors (or fluctuations) with expectation E(ε)=0 and covariance var(ε)=σ2Im (that is, uncorrelated 
observation errors). In fitting the model (2.1) by LS, the number of observations m has to be greater 
than the number of parameters q in order to have a well-posed problem, and X is assumed to have full 
rank q.  

The LS method provides the solution of the regression equation as β=(XTX)-1XTy. The fitted (or 
estimated) response vector ŷ is thus:  

 ŷ = Sy  2.2 

where 

  2.3 -1TS = X(X X) XT

is the m×m influence matrix (or hat matrix). It is easily seen that  

 
ˆ∂

=
∂
yS
y

 2.4 
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and that 
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for the off-diagonal (i≠j)  and the diagonal (i=j) elements, respectively. Thus, Sij is the rate of change 
of ˆiy  with respect to jy  variations. The diagonal element Sii, instead, measures the rate of change of 

the regression estimate ˆiy  with respect to variations in the corresponding observation yi.  For this 

reason the self-sensitivity (or self-influence, or leverage) of the ith data point is the ith diagonal 
element Sii, while an off-diagonal element is a cross-sensitivity diagnostic between two data points. 

Hoaglin and Welsh (1978) discuss some properties of the influence matrix. The diagonal elements 
satisfy  

  2.6 .........0 1 1,2,...,iiS i≤ ≤ = m

as S is a symmetric and idempotent projection matrix (S=S2). The covariance of the error in the 
estimate y , and the covariance of the residual ˆ= −r y y  are related to S by  

  2.7 
2
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The trace of the influence matrix is 

  2.8 
1

( ) ( )
m

ii
i

tr S q rank
=

= = =∑S

(in fact S has m eigenvalues equals to 1 and m-q zeros). Thus, the trace is equal to the number of 
parameters. The trace can be interpreted as the amount of information extracted from the observations 
or degrees of freedom for signal (Wahba et al. 1995). The complementary trace, , 
on the other hand, is the degree of freedom for noise, or simply the degree of freedom (df) of the error 
variance, widely used for model checking (F test). 

( ) (tr m tr= −I - S S

A zero self-sensitivity Sii=0 indicates that the ith observation has had no influence at all in the fit, 
while Sii=1 indicates that an entire degree of freedom (effectively one parameter) has been devoted to 
fitting just that data point. The average self-sensitivity value is q/m and an individual element Sii is 
considered ‘large’ if its value is greater than three times the average (Velleman and Welsh, 1981). By 
a symmetrical argument a self-sensitivity value that is less than one-third of the average is considered 
‘small’. 

Furthermore, the change in the estimate that occurs when the ith observation is deleted is  

 ( )ˆ ˆ
(1 )

i ii
i i

ii

S
iy y

S
−− =

−
r  2.9 
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where   is the LS estimate of yi obtained by leaving-out the ith observation of the vector y and the  

ith row of the matrix X. The method is useful to assess the quality of the analysis by using the 
discarded observation, but impractical for large systems.  The formula shows that the impact of 
deleting ( ,  on 

( )ˆ i
iy −

iy x )i ˆiy  can be computed by knowing only the residual ri and the diagonal element Sii - 

the nearer the self-sensitivity Sii is to one, the more impact on the estimate ˆiy . A related result 

concerns the so-called cross-validation (CV) score: that is, the LS objective function obtained when 
each data point is in turn deleted (Whaba, 1990, theorem 4.2.1): 

 
2

( ) 2
2

1 1
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−

= =

−
− =
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This theorem shows that the CV score can be computed by relying on the all-data estimate ŷ  and the 
self-sensitivities, without actually performing m separate LS regressions on the leaving-out-one 
samples. Moreover, equation (2.9) shows that self-sensitivities can be used to compute the change in 
the estimate by the leaving out one observation. 

The definitions of influence matrix (2.4) and self-sensitivity (2.5) are rather general and can be applied 
also to non-LS and nonparametric statistics. In spline regression, for example, the interpretation 
remains essentially the same as in ordinary linear regression and most of the results, like the CV-
theorem above, still apply. In this context, Craven and Wahba (1979) proposed the generalized-CV 
score, replacing in (2.10)  Sii by the mean tr(S)/q.  For further applications of influence diagnostics 
beyond usual LS regression (and further references) see Ye (1998) and Shen et al. (2002). The notions 
related to the influence matrix that we have introduced here will in the following section be derived in 
the context of a statistical analysis scheme used for data assimilation in numerical weather prediction 
(NWP). 

3. Observational influence and self-sensitivity for a DA scheme 

3.1. Linear statistical estimation in Numerical Weather Prediction 

Data assimilation systems for NWP provide estimates of the atmospheric state x by combining 
meteorological observations y with prior (or background) information xb. A simple Bayesian Normal 
model provides the solution as the posterior expectation for x, given y and xb. The same solution can 
be achieved from a classical frequentist approach, based on a statistical linear analysis scheme 
providing the Best Linear Unbiased Estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS 
solution to the analysis problem (see Lorenc, 1986) can be written 

 a nx = K by + (I - KH)x  3.1 

The vector xa is the ‘analysis’. The gain matrix K (n× p) takes into account the respective accuracies of 
the background vector xb and the observation vector y as defined by the n× n covariance matrix B and 
the p×p covariance matrix R, with 

 1 1 1T T 1− − − −K = (B + H R H) H R  3.2 
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Here, H is a p× n matrix interpolating the background fields to the observation locations, and 
transforming the model variables to observed quantities (e.g. radiative transfer calculations 
transforming the models temperature, humidity and ozone into brightness temperatures as observed by 
several satellite instruments). In the 4D-Var context introduced below, H is defined to include also the 
propagation in time of the atmospheric state vector to the observation times using a forecast model. 

Substituting (3.2) into (3.1) and projecting the analysis estimate onto the observation space, the 
estimate becomes 

 

b ˆ a p=y = Hx HKy + (I - HK)Hx  3.3 

It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background 
(in observation space, Hxb) and the observations y, weighted by the p×p square matrices I - and 

, respectively.  
HK

HK

Equation (3.3) is the analogue of (2.1), except for the last term on the right hand side. In this case, for 
each unknown component of Hx, there are two data values: a real and a ‘pseudo’ observation. The 
additional term in (3.3) includes these pseudo-observations, representing prior knowledge provided by 
the observation-space background Hxb. From (3.3) and (2.4), the analysis sensitivity with respect to 
the observations is obtained 

 
ˆ T T∂

∂
yS = = K H
y

 3.4 

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by  

 
ˆ

( )
T T∂

=
∂ b

y I - K H
Hx

=Ip−S 3.5 

We focus here on the expressions (3.4) and (3.5). The influence matrix for the weighted regression DA 
scheme is actually more complex (see Appendix 1), but it obscures the dichotomy of the sensitivities 
between data and model in observation space.  

The (projected) background influence is complementary to the observation influence. For example, if 
the self-sensitivity with respect to the ith observation is Sii, the sensitivity with respect the background 
projected at the same variable, location and time will be simply 1-Sii. It also follows that the 
complementary trace, tr(I−S)=p−tr(S), is not the df for noise but for background, instead. That is the 
weight given to prior information, to be compared to the observational weight tr(S). These are the 
main differences with respect to standard LS regression. Note that the different observations can have 
different units, so that the units of the cross-sensitivities are the corresponding unit ratios. Self-
sensitivities, however, are pure numbers (no units) as in standard regression. Finally, as long as R is 
diagonal, (2.6) is assured, but for more general non-diagonal R-matrices it is easy to find counter-
examples to that property. 

Inserting (3.2) into (3.4), we obtain 

  3.6 1 1 1 1T− − − −= +S R H(B H R H) HT
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1)−As  is equal to the analysis error covariance matrix A, we can also write S=R-

1HAHT. 

1 1( T− −+B H R H

3.2. An idealized case, for illustration 

Assume there are two observations, each coincident with a point of the background - that is H=I2. 

Assume the error of the background at the two locations have correlation, that is B=
2

2
b

b

σ α
α σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

with variance σb
2, and that R= . For this simple case S is obtained with 2 1 0

0 1oσ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
2

11 22 2

1
2 1

rS S
r r

α
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+ −
= =

+ + −
 3.7 

 12 21 2 2 1
rS S

r r 2

α
α

= =
+ + −

 3.8 

where 2
o br 2σ σ= . We can see that if the observations are very close (compared to the scale-length 

of the background error correlation), i.e α ~1, then 

 11 22 12 21
1

2
S S S S

r
= = =

+  3.9 

Furthermore, if σb=σo, that is r=1, we have three pieces of information with equal accuracy and 
S11=S22=1/3. The background sensitivity at both locations is 1-S11=1-S22=2/3. If the observation is 
much more accurate than the background (σb>>σo), that is r~0, then both observations have influence 
S11=S22=1/2, and the background sensitivities are 1-S11=1-S22=1/2.  

We now turn to the dependence on the background-error correlation α, for the case σb=σo (r=1). We 
have  

 
2

11 22 2

2
4

S S α
α

−
= =

−
 3.10 

 12 21 24
S S α

α
= =

−
 3.11 

If the locations are far apart, such that α~0, we obtain S11=S22=1/2, the background sensitivity is also 
½ and S12=S21=0. We can conclude that where observations are sparse, Sii and the background-
sensitivity are determined by their relative accuracies (r) and the off-diagonal terms are small 
(indicating that surrounding observations have small influence). Conversely, where observations are 
dense, Sii tends to be small, the background-sensitivities tend to be large and the off-diagonal terms are 
also large.  
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It is also convenient to summarize the case σb=σo (r=1) by showing the projected analysis at location 1 

 2
1 1 12

1ˆ (2 ) 2 ( )
4 2 2y y x x yα α

α
⎡ ⎤= − + − −⎣ ⎦−

 3.12 

The estimate ŷ1 depends on y1, x1 and an additional term due to the second observation. We see that, 
with a diagonal R, the observational contribution is generally devalued with respect to the background 
because a group of correlated background values count more than the single observation [α→± 1, (2-
α2)→1]. From the expression above we also see that the contribution from the second observation is 
increasing with the correlation’s absolute value, implying a larger contribution due to the background 
x2 and observation y2 nearby observation y1. 

Note that Eq.(2.9) can be applied to quantify how much the analysis at a given observation location 
would change by deleting the observation itself. The change depends only on the self-sensitivity and 
the residual value at that location. Note also that the tr(S) provides estimates of the information 
content of the data with respect to the background, and is equal to the degrees of freedom for signal as 
studied by e.g. Purser and Huang, 1993, Rabier et al. (2002) and Fourrié and Thépaut (2003) in the 
context to remote-sensing retrieval applications. In particular, Rabier et al. (2002) use a “data 
resolution matrix”, which is basically the same as the influence matrix. Recently Fisher (2003) 
computed an estimate of the global tr(S) by using the Bay et al.(1996) method, without explicitly 
computing the individual elements Sii. Comparison with Fisher’s (2003) estimate has provided 
validation of our method, in terms of the global trace. 

4. Forecast sensitivity to the observations 
Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in 
the context of variational data assimilation. Let us consider a scalar J-function of the forecast error. 
Then, the sensitivity of J with respect to the observations can be written using a simple derivative 
chain as: 

 

a

a

J J ∂∂ ∂
=

∂ ∂ ∂
x

y x y  4.1 

aJ∂ ∂x  is the sensitivity to forecast error to initial condition xa (Rabier et al. 1996, Gelaro et al., 

1998). From (3.1) the sensitivity of the analysis system with respect to the observations and the 
background can be derived from: 

 

Ta

T Ta

b

∂
∂
∂

−
∂

x = K
y
x = I H K
x  4.2  

By using (4.2) and (3.2) the forecast sensitivity to the observations becomes: 

 

1 1 1 1( )T T

a a

J J J− − − −∂ ∂
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A third (or second) order sensitivity gradient needs to be considered in 4.3 because only superior 
orders than first contain the information  related to the forecast error. In fact, the first order one only 
contains information on the sub-optimality of the assimilation system (Cardinali 2009). To compute 
the third order sensitivity gradient, two forecasts of length f starting from xa and length g starting from 
xb have to be considered. Both forecasts verify at time t. Following Langland and Baker (2004) and 
Errico (2007) the third order sensitivity gradient is defined as  

 

f g

a a

J JJ

bx x
∂ ∂∂

= +
∂ ∂ ∂x  4.4 

Where Jf  and  Jg are a quadratic measure of the two forecast errors (xt the verifying analysis, taken 
here as the truth), and C is a matrix of dry energy norm weighting coefficients. It is clear from (4.4) 
that the adjoint model maps the sensitivity (with respect to the forecast) of Jf along the trajectory f and 
the sensitivity of Jg along the trajectory g. 

Once the forecast sensitivity is computed (see Cardinali 2009 for details), the variation δJ of the 
forecast error expressed by J can be found by rearranging (3.1) and by using the adjoint property for 
the linear operator: 

 
, , ( ) , ,T T

a b b
a a a a

J J J J JJ ,δ δ δ∂ ∂ ∂ ∂ ∂
= = − = − = =

∂ ∂ ∂ ∂ ∂
x K δy Hx K y Hx K y y

x x x x y 4.5 

where a a bδ = −x x x  are the analysis increments and bδ =y y - Hx  is the innovation vector. The 

sensitivity gradient aJ∂ ∂x is valid at the starting time of the 4D-Var window (typically 09 and 21 

UTC for the 12h 4D-Var set-up used at ECMWF). As for K, its adjoint KT incorporates the temporal 
dimension, and the δy innovations are distributed over the 12-hour window. The variation of the 
forecast error due to a specific measurement can be summed up over time and space in different 
subsets to compute the average contribution of different component of the observing system to the 
forecast error. For example, the contribution of all AMSU-A satellite instruments, s, and channels, i, 
over time T will be:  

 

s
AMSU A it

s S i channel
t T

J Jδ δ−
∈ ∈

∈

= ∑ ∑
 

The forecast error contribution can be gathered over different subsets that can represent a specific 
observation type, a specific vertical or horizontal domain, or a particular meteorological variable. 

5. Results 

5.1. Observation Influence or Analysis sensitivity to observations 

The diagonal elements of the influence matrix have been computed for the operational 4D-Var 
assimilation system. The calculations in Eq(3.15) have been carried out on 91 model levels at T255 
spectral truncation. The observation departures (y-Hxb) were calculated by comparing the observations 
with a 12-hour forecast integration at T511 resolution. The counts of assimilated observations for each 
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main observation type are given in Table.1. A large proportion of the used data is provided by satellite 
systems (Thépaut and Andersson 2003): ASCAT and QuikSCAT near-surface winds, AMV 
(Meteosat, Goes, GMS and MODIS) cloud-drift winds, AMSU-A and HIRS infrared radiances, SSMI 
microwave imager, GOES and METEOSAT water-vapour radiances, AMSU-B and MHS microwave 
sounder radiances, AIRS and IASI infrared sounder radiances, GPS-RO radio occultation, 
MTSATIMG infrared imager radiances, AMSE radiometer radiances and Ozone data. The remainder 
are surface-based observing systems (see WMO 1996). 

 

Table 1:  Observation type, 20090901-12 UTC.  

Type of Data Description 

SYNOP Surface Observations from land and ship stations: measuring ps, T, RH , u and v  

SCAT Satellite microwave scatterometer: derived measurement is u and v at the ocean surface 

DRIBU Drifting buoy measuring ps, T, RH, u and v 

Meteosat AMV Satellite cloud drift winds (European) 

Goes AMV Satellite cloud drift winds (American) 

GMS AMV Satellite cloud drift winds (Japanese) 

MODIS AMV Polar Satellite cloud drift winds  

TEMP Radiosondes from land and ship measuring ps, T, RH , u and v  

AMSUA Satellite microwave sounder radiances 

PILOT Sondes and Wind profiler measuring u and v 

AIRS Satellite infrared radiances 

IASI Satellite infrared radiances 

HIRS Satellite infrared radiances 

MSG METEOSAT Second Generation [satellite] 

AIREP Aircraft measurements of T, u and v 

SSMI Satellite microwave imager radiances 

MHS Satellite microwave radiances 

AMSU-B Satellite microwave radiances 

GPS-RO Satellite Radio Occultation 

GOES Geostationary satellite infrared sounder radiances 

OZONE Satellite ozone retrieval  

METEOSAT-R Geostationary satellite infrared sounder radiances 

GOES-R Geostationary satellite infrared sounder radiances 

MTSATIMG  

 

5.1.1. Self-sensitivity examples 

Self-sensitivities for SYNOP surface pressure observations are shown in Fig.1. Each box indicates the 
observation influence at the observation location. Low-influence data points have large background 
influence (see 3.4 and 3.5), which is the case in data-rich areas such as North America and Europe 
(observation influence ~ 0.2). In data-sparse areas individual observations have larger influence: in the 
Polar regions, where there are only few isolated observations, Sii ~ 1 and the background has small 
influence on the analysis.  
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In dynamically active areas (Fig.1: North Atlantic cyclone genesis), several fairly isolated 
observations have large influence on the analysis. This is due to the evolution of the background-error 
covariance matrix as propagated by the forecast model in 4D-Var (Thépaut et al. 1993, 1996). As a 
result, the data assimilation scheme can fit these observations more closely. 

Similar features can be seen in Fig.2 showing the influence of u-component wind observations for 
aircraft (AIREP), radiosonde (TEMP), wind profiler and Atmospheric Motion Vector data between 
300 and 200 hPa. Isolated flight tracks over Atlantic and Pacific oceans show larger influences than 
measurements over data-dense areas over America and Europe. 

 

 
Figure 1: Synop surface pressure observation influence and MSLP field superimposed. 

 

 
Figure 2: Observation influence of u component of wind for Aircraft, Radiosonde, Profiler and AMV  
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5.1.2. Trace diagnostic 

We define the Global Average Influence (GAI) as the globally averaged observation influence. It is 
given by 

 
( )trGAI
p

=
S

 5.1 

where p is the total number of observations. In our experiment we found that GI=0.07. Consequently, 
the average background global influence to the analysis at observation points is equal to 0.93 (see 3.5).  
Another index of interest is the Partial Influence (PAI) for any selected subset of data  

 
ii
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I

S
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p
∈=
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 5.2 

where pI is the number of data in subset I. The subset I can represent a specific observation type, a 
specific vertical or horizontal domain, a particular meteorological variable, for example. Figure 2 
shows the GAI for the ECMWF operational system (January 2008). 
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Figure 3: Average observation influence for all observation type assimilated. ECMWF January 2008 

5.1.3.  Information content 

In Section 2 we showed that tr(S) can be interpreted as a measure of the amount of information 
extracted from the observations. In fact, in non-parametric statistics, tr(S) measures the ‘equivalent 
number of parameters’ or degrees of freedom for signal. Having obtained values of all the diagonal 
elements of S (see Cardinali et al 2004 for details) we can now obtain reliable estimates of the 
information content in any subset of the observational data. In Figure 4 we illustrate this in one 
example. The figure shows the information content for all main observation types. We see that AIRS 
radiances are the most informative data type, followed by IASI, AMSU-A and GPS-RO data. The 
information content of AIREP, TEMP and SYNOP is the higher for conventional observations 
comparable to SCAT and HIRS data. DRIBU information content is small but on the contrary (Fig.3) 
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the mean influence is very large. This implies that the DFS is affected by the low number of 
observations.   
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Figure 4: Information content or DFS(%) for observation type. ECMWF January 2008. 

5.2. Forecast sensitivity to observations 

The forecast sensitivity to the observation (FSO) has been computed from 15 June to 15 July 2006 at 
00 and 12 UTC based on the forecast error calculated for the control experiment of the Observing 
System Experiments (OSE) performed by Kelly and Thépaut (2007). The FSO calculation (4.4) has 
been carried out on 60 model levels and with a horizontal truncation of T159 to match with the OSE 
final inner loop resolution and also based on both 00 and 12 UTC forecast error (only the 00 impact is 
shown). As for the OSE, the observation departures were computed at T511 (model trajectory 
resolution, Rabier et al. 2000). All the experiments were performed using the third order sensitivity 
gradient defined in section 4 and based on the 24 hour forecast error. The sensitivity to the humidity 
initial condition is obtained as a secondary effect due to the adjoint of the linearized moist physical 
processes used in the sensitivity gradient calculation (Lopez and Moreau 2005, Tompkins and 
Janisková 2004, Janisková et al. 2002) which accounts for the dependency of the forecast error at the 
verification time due to the humidity errors in the initial conditions. The energy norm diagnostic 
function was computed from the OSE control (using all available observations) experiment forecast 
error. 

5.2.1. Global impact   

The global observation performance over this month, as described in 4.5, is summarized in Fig.5. 
Negative (positive) values correspond to a decrease (increase) of forecast error due to a specific 
observation type. The range of the results accuracy is estimated to be ~16%, therefore small negative 
and small positive values should be regarded quantitatively as neutral observation impact. 
Nonetheless, degradation observed in the error range can bring useful information on the possible 
causes affecting the data performance on the forecast, as will be shown. 

The largest error decrease is due to AMSU-A (four satellites) and AIRS radiances followed by 
SYNOP (mainly surface pressure), AIREP and DRIBU (mainly surface pressure) conventional 
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observations. Good error reduction is also observed from SCAT (Quikscat and ERS scatterometer) and 
AMSU-B radiance observations. An increase of forecast error is caused by AMVs (Atmospheric 
Motion Vector) from geostationary satellites. Some degradation is also observed from PILOT 
observations. 

 

 
Figure 5: 24-hour forecast error contribution (third order sensitivity gradient) in J/kg of the components 
(types) of the observing system in summer 2006. Negative (positive) values correspond to a decrease 
(increase) in the energy norm of forecast error. 

 
Figure 6: Forecast error contribution (third order sensitivity gradient) of the observed u-component of 
the wind on pressure levels and grouped by satellite types: GOES (G, two satellites GOES-8 and 9), 
METEOSAT (M, two satellite METEOSAT-7 and 8) and MODIS (MO, two satellites: Terra and Aqua) 
and by frequency bands: infrared (IR), visible (V) and water vapour (WV). Negative (positive) values 
correspond to a decrease (increase) of forecast error 
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5.2.2. AMV 

A more detailed diagnostic of the forecast error contribution from AMVs is shown in Fig.6. The 
contribution to the forecast error of the observed u-wind component is grouped by pressure levels, 
satellite types, such as GOES (G, two geostationary satellites GOES-8 and 9), METEOSAT (M, two 
geostationary satellites METEOSAT-7 and 8) and MODIS polar instruments (MO, MODIS Terra and 
Aqua), and by frequency bands: infrared (IR), visible (V) and water vapour (WV). The largest 
degradation is due to the visible and infrared frequency band at levels below 700 hPa, (mainly at 850 
hPa) from METEOSAT (to a larger extent) and from the GOES satellites. 

The geographical locations of the degradation are shown in Fig 7 which displays the 00 UTC forecast 
error contribution of the visible and infrared bands between 1000 and 700 hPa accumulated over the 
summer month. The largest degradation is found over the southern equatorial band, in particular over 
the Atlantic (area-1) and Indian ocean (area-2) where the METEOSAT satellites are located, followed 
by the one over the West Pacific (area-3) where GOES is operated. In the Indian Ocean, a well 
established Indian Monsoon circulation was taking place, characterized by a strong low level wind 
from South-East towards the Indian continent. Such a situation is not well represented by the model 
that tends to reinforce too much the low level circulation. The degradation due to the AMV in the 
area-2 is therefore likely attributed to a model bias. On the contrary, over the South of the Atlantic 
ocean (area-1) due to the presence of semi-permanent anti-cyclone circulation in the tropical band, the 
associated large scale subsidence reinforces the trade inversion with a subsequent suppression of deep 
clouds (around 30 degrees), leaving only the shallow ones. This synoptic situation has implication 
with the methodology applied by the data provider to measure the height of the top of the clouds, 
resulting in a degradation of the data quality. Similar synoptic situation to area-2 is also noticed in 
area-3, it is therefore believed that, even for this case, the degradation is attributed to the data quality. 

 

 
Figure 7: 00 UTC forecast error contribution (J/kg) (third order sensitivity gradient) of the observed u-
component of the wind between 700 and 1000 hPa from GOES and METEOSAT visible wavelength bands 
accumulated over one month in summer 2006. Negative (positive) values correspond to a decrease 
(increase) of forecast error. 
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Figure 5 shows also a forecast error increase due to PILOT observations (Table 1). The geographical 
display of the forecast error for PILOT observations (not shown) indicates that the degradation was 
coming from the American wind profilers. Problems with the American wind profilers at low levels 
(below 700 hPa) were known in spring time due to bird migration contamination (Wilczak et al. 
1995). But other meteorological situations also produce a contamination of profiler measurements 
(Ackley et al. 1998), one of which is the limitation of the local horizontal atmospheric uniformity 
assumption that must be satisfied to have a correct mean wind measure. Meteorological conditions in 
which short spatial and temporal scales of variability have amplitudes as large as the mean, as for 
example in the presence of a CBL (Convective Boundary Layer) and severe storms, limit the 
horizontal wind measurement. It was effectively found that the CBL-activity was rather high for this 
period as can be seen from the large height of the boundary layer at the station locations, averaged 
among all profiler stations (not shown). It was also found that both CAPE and TCWV compared with 
the ERA climatology (Uppala et al. 2005) indicated larger CAPE and humidity advection from the 
Gulf of Mexico in areas where wind profilers are located (not shown). Together, high TCWV and 
CAPE, triggered the convection activity. The lessons learnt with wind profilers is that their impact on 
the forecast can change quite a lot given the meteorological situations, therefore monitoring their 
impact on forecast skill, on a daily basis, would allow a more efficient screening of the contaminated 
measurements. 

5.3. Analysis and Forecast Sensitivity comparisons 

In this section the observation influence is compared to the observation impact on the 24 hour forecast 
error. The ECMWF operational system in September 2008 is used and both sensitivities are computed 
at the resolution T255 for 91 model levels. The model trajectory resolution is T511. Figure 8 shows 
the information content (8 a) and the variation of the forecast impact (8 b) due to all different 
observation types assimilated. Both impacts are shown in percentage. It is evident that the two impacts 
are quite similar. In particular, the figures show the degree of the dependency of the two different 
measures to KT. In fact, when Eq. 3.4 and Eq. 4.5 are compared, we can see that whilst the observation 
influence depends only by KT, the forecast error variation contains two extra-terms, the forecast error 
(sensitivity gradient) and the innovation vector. Therefore, the differences between the two plots 
would depend on these two components. AMSU-A data with the largest contribution on the forecast 
error reduction have smaller influence in the analysis than AIRS which is considered the most 
influential observation type. Similar is for IASI when compared to AMSU-A. It can be possible that 
the contribution in the forecast error decreases with respect to the analysis observation influence due 
to presence of model biases. Viceversa small observation influence and large contribution in the 
forecast could be due to some sub-optimality of the assimilation system that prevent the extraction of 
all the information from the data.    
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Figure 8: Information content (a) and Forecast error contribution in percentage for all data type 
assimilated in September 2008 at ECMWF. 

6. Conclusions 
Over the last few years, the potential of using derived adjoint-based diagnostic tools has been 
increasingly exploited.  

The influence matrix is a well-known concept in multi-variate linear regression, where it is used to 
identify influential data and to predict the impact on the estimates of removing individual data from 
the regression. In this paper we have derived the influence matrix in the context of linear statistical 
analysis schemes, as used for data assimilation of meteorological observations in numerical weather 
prediction (Lorenc 1986). The self-sensitivity provides a quantitative measure of the observation 
influence in the analysis. In robust regression, it is expected that the data have similar self-sensitivity 
(sometimes called leverage) - that is, they exert similar influence in estimating the regression line. 
Disproportionate data influence on the regression estimate can have different reasons: First, there is 

 
ECMWF Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7-10 September 2009 137 

 



CARDINALI, C.: ADJOINT DIAGNOSTICS OF DATA ASSIMILATION SYSTEMS 

the inevitable occurrence of incorrect data. Second, influential data points may be legitimately 
occurring extreme observations. However, even if such data often contain valuable information, it is 
constructive to determine to which extent the estimate depends on these data. Moreover, diagnostics 
may reveal other patterns e.g. that the estimates are based primarily on a specific sub-set of the data 
rather than on the majority of the data. In the context of 4D-Var there are many components that 
together determine the influence given to any one particular observation. First there is the specified 
observation error covariance R, which is usually well known and obtained simply from tabulated 
values. Second, there is the background error covariance B, which is specified in terms of transformed 
variables that are most suitable to describe a large proportion of the actual background error 
covariance. The implied covariance in terms of the observable quantities is not immediately available 
for inspection, but it determines the analysis weight given to the data. Third, the dynamics and the 
physics of the forecast model propagate the covariance in time, and modify it according to local error 
growth in the prediction.  The influence is further modulated by data density. We showed examples for 
surface pressure and conventional wind observations indicating that low influence data points occur in 
data-rich areas while high influence data points are in data-sparse regions or in dynamically active 
areas. Background error correlations also play an important role. In fact, very high correlations 
drastically lessen the observation influence (it is halved in the idealized example presented in Section 
3.2) in favour of background influence and amplify the influence of the surrounding observations.  

In this study the global observation influence per assimilation cycle has been found to be 7%, and 
consequently the background influence is 93%. Thus, on average the observation influence is low 
compared to the influence of the background (the prior). However, it must be taken into account that 
the background contains observation information from the previous analysis cycles. The theoretical 
information content (the degrees of freedom for signal) for each of the main observation types was 
also calculated. It was found that AIRS, IASI and AMSU-A radiance data provide the most 
information to the analysis followed by GPS-RO. AIREP, TEMP and SYNOP is the higher for 
conventional observations and then SCAT and HIRS data.  

Self-sensitivities provide an objective diagnostic on the performance of the assimilation system. They 
could be used in observation quality control to protect against distortion by anomalous data (however 
this aspect has not been explored within the current study). In fact, the leaving-out-one observation, 
that is not practical for large system dimension, uses the discarded observation to assess the quality of 
the analysis. It has been shown (Eq. 2.9) that Self-sensitivities provide a similar diagnostic without 
performing separate least square regressions. Self-sensitivities also provide indication on model and 
observation error specification and tuning. Incorrect specifications can be identified, interpreted and 
better understood through observation influence diagnostics, partitioned e.g. by observation types, 
variable, levels, and regions. 

In the near future more satellite data will be used and likely be thinned. Thinning has to be performed 
either to reduce the observation error spatial correlation (Bormann et al. 2003) or to reduce the 
computational cost of the assimilation. The observation influence provides an objective way of 
selecting observations dependent on their local influence on the analysis estimate to be used in 
conjunction with forecast impact assessments. It would be interesting to see if a small sub group of 
very influential data (i.e. satellite observations) have the same impact in the forecast than the full 
amount of data. If this is the case, a dynamical thinning can be thought that selects, every assimilation 
cycle, the most influent partition of a particular remote sensing instrument measurements, from 
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information based on the previous cycle. Clearly, it can be assumed that components of the observing 
network remains constant and background error variances remained almost unchanged for close 
assimilation cycles. 

The forecast sensitivity to the observation has been based on the forecast error of the control 
experiment from observing system experiments that have been performed at ECMWF (2007). Forecast 
sensitivity to observations can only be used to diagnose the impact on the short-range forecast, namely 
24 to 48 hours, given the use of a simplified adjoint of the data assimilation system and the implied 
linearity assumption. On the other hand, the use of FSO allows the identification of potential problems 
and directs further investigations. the global impact of observations was found to be positive and the 
forecast errors decrease for almost all data type. Problems have been noticed with Atmospheric 
Motion Vectors mainly derived from visible and infrared wavelength bands (and for low-level winds). 
Problems with conventional observations, wind profilers was mainly due to the local synoptic 
situation. Wind profiler measurements were corrupted by the presence of strong convection activity in 
the boundary layer.  

Over the four months most recent period examined in autumn 2008, the impact of all type of 
observations on the short-range forecast has impressively increased and it has been shown that 
microwave satellite measurements (AMSU-A) are responsible for the 18% of the forecast error 
reduction, infrared measurements (AIRS and IASI) for the 12% and the 10% of error reduction is due 
to radio occultation observations. Conventional observations (surface pressure, vertical profiler and 
aircraft) are as well decreasing the forecast error being responsible for an average reduction of 6%. 

The observation influence is compared to the observation impact on the 24 hour forecast error. The 
ECMWF operational system in September 2008 is used and both sensitivities are computed. The two 
sensitivities impact is quite similar showing strong influence in the analysis and the short range 
forecast of the Kalman gain. 
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