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Abstract 
Ensemble of data assimilations (EDA) methods have been shown to be able to provide flow-dependent estimates 
of analysis and background error statistics. For this reason, they potentially present a way to overcome one of the 
main limitations of current variational data assimilation systems. However, the limited number of ensemble 
members which can be realistically run in an operational context and the stochastic nature of the EDA approach 
lead to high levels of sampling noise in the relevant ensemble statistics. To answer this problem, an “objective 
filtering” technique of the sample ensemble variances proposed by Raynaud et al. (2009) has been implemented 
at ECMWF. In this paper we present a comparison of the ability of ensemble data assimilation systems of 
different sizes (10 to 50 members) to represent flow-dependent background-error variances. In particular, the 
ensemble-based variances are examined in the case of the severe storm Klaus (24 January 2009) over France and 
in the case of the Atlantic tropical hurricane Ike (1-14 September 2008). Our results show that, while a relatively 
small ensemble (10 members) can be sufficient to resolve the larger scale error structures connected to an extra-
tropical cyclogenesis, a larger ensemble is beneficial to resolve more localised anomalies like those connected 
with a hurricane. In this sense, the objective filtering technique provides a useful indication of the spatial scales 
the ensemble is able to resolve in a statistically robust way.  
The day-to-day variability of the ensemble statistics and how this affects the objective spatial filtering procedure 
are also examined. Our conclusion is that a time-independent implementation of the filter based on a climatology 
of truncation wavenumbers results in more robust ensemble statistics estimates, and ultimately in improved 
forecast skill scores. 

 

1 Introduction 
It is well known that an accurate specification of the statistics of background errors is a fundamental 
prerequisite of a successful data assimilation scheme. Methods based on an ensemble of perturbed data 
assimilations (EDA) have been successfully employed in the specification of background error 
statistics at ECMWF (Fisher, 2003) and Météo-France (Belo Pereira and Berre, 2006). However, these 
applications have relied on a static, climatological representation of the background-error matrix, thus 
implicitly renouncing to account for the flow-dependency of covariance errors.  

An attractive characteristic of EDA methods is their ability to provide day-to-day background-error 
statistics that represent the current meteorological situation, thus possibly overcoming one of the main 
limitations of covariance models currently in use in variational data assimilation systems. Early 
attempts to use flow-dependent error information from a 6 or 10 member EDA system have been 
reported in Kucukkaraca and Fisher (2006), Fisher (2007), Isaksen et al. (2007) and, more recently, in 
Raynaud et al. (2009, 2010). 

A critical aspect of any EDA system is the choice of the ensemble size. For operational applications 
ensemble size and spatial resolution are typically determined by a compromise between the desired 
accuracy of the background error estimates and the meteorological features that need to be 
represented. Affordable computational costs and operational time constraints also play an important 
role. So it is important to assess the possible gains that a larger ensemble would permit in the accuracy 
of the background error estimates. This is particularly relevant for the EDA systems which are based 
on the use of perturbed observations and boundary conditions. Being purely stochastic methods, one 
can expect the accuracy of error estimates sampled from the ensemble to increase proportionally to the 
square root of the ensemble size. This slow rate of convergence and the limited (O(10-100)) ensemble 
sizes which are viable in current NWP operational contexts require the use of ad-hoc filtering 
techniques (Raynaud et al., 2008,2009; Berre and Desroziers, 2010) on the raw ensemble estimates. 
Common to any filtering technique, however, is the problem that a fraction of the signal of interest is 
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lost in the filtering process. It is then of interest to quantify this loss of information and to what extent 
a larger ensemble would ameliorate the problem.  

In the practical implementation of the objective filtering technique proposed by Raynaud et al. (2009), 
the filtering step tries to maximize the signal-to-noise ratio of the sample ensemble variances. This can 
be done adaptively, or using values computed from a statistical sample. We review the pros and cons 
of the two approaches and perform assimilation experiments to determine the best configuration for 
the ECMWF EDA system. 

The paper is organized as follows. Section 2 describes the EDA system at ECMWF. A diagnostic 
study of total and local error variances is then presented in section 3, where the concept of the 
“effective” ensemble resolution is introduced. In section 4, ensemble-based variances for a severe 
extra-tropical storm case and an intense tropical hurricane are examined. The day-to-day variability of 
the sample ensemble variances and its impact on the variance filtering algorithm are investigated in 
section 5. Conclusions are given in section 6. 

 

2 Experimental setup 
ECMWF runs an ensemble variational data assimilation system (Isaksen et al., 2010) based on the 
explicit perturbation of the assimilated observations, the sea-surface temperature field and the model 
physics tendencies. The background states are implicitly perturbed because they are evolved from the 
perturbed analysis fields running a short range (t+12h) forecast with the model error parameterization 
term (“Stochastically Perturbed Parameterization Tendencies” method, SPPT, Palmer et al., 2009) 
active. Differences between the background fields of ensemble members provide surrogates for 
samples of background error (Fisher, 2003). All assimilated observations are randomly perturbed by 
sampling a Gaussian distribution with zero mean and standard deviation equal to the expected 
observation error. Error correlations are taken into account for atmospheric motion vectors (Bormann 
et al., 2003). Sea-surface temperature fields are also perturbed with correlated errors using the 
methodology currently applied in the ECMWF seasonal ensemble forecasting system (Vialard et al., 
2005). The analysis step is performed through the ECMWF 4D-Var with a TL399L91 outer loop (i.e., 
spectral triangular truncation T399 with linear grid and 91 hybrid vertical levels of the ECMWF 
model) and two successive inner loops at TL95 and TL159 triangular spectral truncations. The 
assimilation window is 12 hours. The 10 member ECMWF pre-operational EDA system will provide 
estimates of analysis uncertainty and initial time perturbations for the Ensemble Prediction System 
(Buizza et al., 2008). The ECMWF EDA can also be used to provide flow-dependent background-
error variances to the operational deterministic 4D-Var, in replacement of the current quasi-static 
background errors estimates derived from the “randomization” technique (Fisher and Courtier, 1995; 
Fisher, 2003). The “randomization” errors are essentially computed from random samples of the static 
B matrix used at the start of the 4D-Var analysis with a small flow-dependent component which 
results from the application of the non-linear balance equation and the omega equation linearized 
around the background state. The ensemble variance estimates are used as proxies of the background 
errors both in the minimization step and in the observation quality control check.  

For this study, two 50 member EDA were run for 45 days with the same configuration as the pre-
operational 10-member EDA, over both a boreal winter (January-February 2009) and a summer 
(August-September 2008) period. 
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3 Sensitivity of sample standard deviations to ensemble size  
In this section, a diagnostic study of ensemble-estimated standard deviations is presented, based on the 
results from the 50-member EDA experiment over the boreal winter period (January-February 2009). 

3.1 Total standard deviation 

The total standard deviation on each model level (i.e. the global spatial average of the ensemble 
background standard deviations) is the first global diagnostic to check in order to evaluate the impact 
of larger ensembles. Figure 1 presents the ratio between the vorticity standard deviations calculated 
from 20, 30, 40 and 50 member ensembles with respect to those computed from the baseline 10-
member ensemble. Results correspond to the particular date of 24th of January 2009 at 0900 UTC. It 
can be seen that the total standard deviation does not change noticeably with respect to the 10-member 
ensemble at each level since an increase of only 3% is obtained with the largest ensembles, and this 
increase tends to saturate from 40 members on.  

This result is reassuring because it gives an indication that even a relatively small 10-member 
ensemble is able to capture the main portion of variability of the underlying probability density 
function. 

 

 
Figure 1: Ratio between horizontal averages of standard deviations estimated with N members (N = 20, 
30, 40 and 50) and 10 members, as a function of model level, valid on 24th of January at 0900 UTC. 
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3.2 Geographical variations 

Raw standard deviation maps derived from 10 and 50 members are displayed in Figure 2(a)-(b) for 
vorticity at model level 64 (close to 500hPa) on 24th of January 2009 at 09 UTC. It can be noticed that 
the spatial structures (from large to relatively small scales) represented by the 10 and 50-member 
ensembles are similar, while the associated sampling noise, of smaller scale than the useful signal, is 
markedly reduced with 50 members. The average Pearson product moment correlation between the 
two fields is equal to 91%, which points to a good robustness of the 10-member standard deviations. 
This result basically holds for all model levels and over the entire study period, as it is shown in Figure 
3, which presents the time-mean correlation between raw standard deviations estimated from the 10 
and 50-member ensembles. The correlation takes values between 90 and 95% in general, except from 
model levels 34 (70hPa) to 15 (5hPa) for which the correlation is between 80 and 90%. This decrease 
in correlation in the stratosphere is basically due to smaller correlation values in the Southern 
Hemisphere (66.6% average value) than globally (close to 80%). This does not reflect any 
fundamental issue with the underlying EDA system, but it is a consequence of the high level of 
activity of the Northern hemispheric stratosphere due to the disruption of the polar vortex circulation 
and stratospheric warming episode taking place during the test period (e.g., Figure 4). The 
corresponding subdued activity in the Southern hemispheric stratosphere reduces the signal energy 
spectrum and makes the sampling noise component relatively more important.   

It is also interesting to note that a residual, non-negligible sampling noise also affects the 50-member 
estimates (Figure 2(b)). This suggests that the implementation of a spatial filter remains a necessary 
step for most practical ensemble sizes (O(10-100)). 

These ideas are confirmed by a spectral analysis of the signal. Figure 5 shows the energy spectra of the 
raw vorticity variances at model level 64 (close to 500hPa) derived from 10 members (in blue) and 50 
members (in red), on 24th of January 2009 at 09 UTC. The comparison of the two power spectra 
reveals that, where the useful signal tends to predominate (large and medium scales, approx. up to 
total wave number 40), the two variance fields have nearly the same energy. For smaller scales, the 
variances estimated from the 10-member ensemble have larger energy, linked to a stronger level of 
sampling noise at these scales (Figure 6).  

Figure 2(c) presents the 10-member standard deviations (Fig. 2(a)) after the application of the 
objective spatial filtering proposed by Raynaud et al., (2009). The sampling noise is removed to a 
large extent while a large portion of the broad scale signal of interest is preserved. The corresponding 
energy spectra of the raw and filtered standard deviations (Figure 7) show that the amplitude of small 
scales is largely reduced, according to the high level of noise there. The amplitude of large and 
medium scales is also reduced (to a lesser extent): this is consistent with the fact that the whole 
spectrum is affected by a (more or less) strong sampling noise. One can finally notice that the large- 
scale structures of the filtered 10-member standard deviations are very close to the filtered 50-member 
standard deviations (Fig. 2(d)). 
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Figure 2: Standard deviations of vorticity at model level 64 (~500hPa), corresponding to 24 January 
2009 at 09 UTC. Unit: 5.10-5 s-1. (a),(b) Raw estimates from the 10 member and 50 member ensembles, 
respectively, (c),(d) filtered estimates from the 10-member and 50-member ensemble. The mean sea level 
surface pressure analysis is overlaid, contour: 10hPa. 
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Figure 3: Pearson correlation (averaged over the study period) between the background-error standard 
deviations of vorticity background fields derived from the 10 and 50-member ensembles, as a function of 
model level.  

 

 
Figure 4: Analysed temperature field at model level 20 (~13hPa), on 24th January 2009 at 12 UTC  
Unit: C°. 
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Figure 5: Energy spectra of raw ensemble-based vorticity variances at 500hPa, on 24th January 2009 at 
09 UTC: in blue (resp. in red) variances calculated with 10 members (resp. 50 members). Unit: s-2. 

 
Figure 6: Power spectra of ensemble short range (t+9h) forecast variance (green) and of the sampling 
noise (red) associated to the estimation of vorticity variances at model level 64 (~500 hPa) with a 10-
member ensemble. Unit: s-4. 
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3.3 Effective ensemble resolution 

As it is apparent from figure 6, the objective filtering procedure allows defining a truncation 
wavenumber beyond which the sampled error estimates are not deemed to be statistically significant. 
This implies that, at least in terms of forecast error estimation, the effective spatial resolution of the 
ensemble is typically lower than the nominal resolution at which the ensemble forecasts are actually 
run (Spectral triangular truncation T399 in the present case).  

Figure 8 shows the sample ensemble variance power spectra for temperature at model level 49 (~200 
hPa, continuous lines) for a particular date and the corresponding climatological sampling noise 
spectra (dashed lines) from a 10-member ensemble (red) a 20-member ensemble (blue) and a 50 
member ensemble (black). As expected, the portion of the spectrum corresponding to the large scales 
features (up to wavenumber 40 approx.) is virtually identical for all ensemble sizes. For smaller spatial 
scales, however, the sampling noise contribution to the total variance spectra is much smaller for the 
larger ensembles. The climatological noise spectra estimate is also correspondingly smaller, thus 
allowing the filter to retain finer scale structures from the original signal. In this context, the effective 
spatial resolution of the statistically significant error estimates that we can compute from the ensemble 
goes from around T70 for the 10-member ensemble to ~T90 for the 20-member ensemble to >T159 
for the 50-member ensemble. 

It is noteworthy that even for the 20 member ensemble (20) the effective spatial resolution of the 
ensemble sample error estimates is far coarser than the nominal ensemble resolution (i.e., ~T90 vs. 
T399). One needs to use a 50 member ensemble to be able to extract a relatively noise free signal over 
the whole spectral range shown in the figure (T159). This implies that, in the EDA framework, the 
most effective way to increase the ensemble resolution is by increasing its size. This conclusion is 
based on the assumption that sampling error is the dominant form of error in the ensemble estimates of 
first guess errors. Whenever other error types (i.e., model error) become prevalent,  running a larger 
ensemble will not provide the expected benefits. 

The hypothetical advantage of a larger ensemble being able to represent finer spatial details of 
background error fields should translate into more accurate analysis and forecasts. Preliminary results 
with a 20-member assimilation experiment show that increasing the sample size from 10 to 20 
members has a generally positive impact on forecast scores in the Northern Hemisphere and, more 
markedly in the Southern Hemisphere (Fig. 9), while the impact is neutral in the Tropics (not shown). 
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Figure 7:  Energy spectra of vorticity standard deviations at 500hPa, on 24th January 2009 at 09 UTC: in 
blue (resp. in red) raw (resp. filtered) variances calculated with 10 members. Unit: s-2. 

 

 
Figure 8: Power spectra of ensemble first guess variance valid on 21 Jan 2009 9UTC (continuous lines) 
and of the sampling noise (dashed lines) associated to the estimation of temperature variances at model 
level 49 (~200 hPa) for a 10-member ensemble (red), a 20-member ensemble (blue) and a 50 member 
ensemble (black). Unit: °C4. 
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Figure 9: Forecast skill scores difference (Anomaly correlation, Geopotential) of forecasts from 
deterministic 4D-Var analyses with background error variances estimated from a 20 member EDA versus 
using variance estimates from a 10 member EDA. Scores are averaged over the period 20080807–
20080916. Positive differences contoured in red, negative in blue (contour interval=0.5). 

 

4 Case studies  
In this section we examine two different severe weather events. The first is a severe winter storm in 
the northern extra-tropics (the Klaus storm in January 2009), the second a tropical hurricane 
(Hurricane Ike in September 2008) which heavily affected the Caribbean Islands and the southern 
USA. These two case studies will allow us to a) examine the error variances estimated with EDA 
systems of different size and their link with the prevailing meteorological conditions; b) highlight the 
impact of using cycled EDA variances in the ECMWF deterministic analysis cycle; c) evaluate the 
strengths and weaknesses of the objective filtering technique which is currently used to reduce the 
impact of sampling noise on the EDA variances and d) qualitatively assess the possible benefit of 
using a larger EDA system. 
 

4.1 The Klaus storm (24th January 2009) 

After having caused serious damages in Spain, the severe storm Klaus hit large parts of central and 
southern France. In the early morning on the 24th of January, the storm reached the Atlantic coast and 
moved eastwards towards the south-east coast throughout the day (Figure 10). Its intensity was 
comparable to storm Lothar in December 1999. Wind gusts were recorded of intensity stronger than 
36 m/s inland (e.g. 45 m/s in Bordeaux), while they reached 47 m/s along the Atlantic coast and 
exceeded 53 m/s in the Mediterranean Sea.  
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a) b) 

 
Figure 10: Storm Klaus the 24th January 2009. (a) Satellite image at 5 am UTC and (b) trajectory of the 
storm and maximum intensity of observed wind. (Data supplied by Météo-France/Dclim).  

 

Flow-dependent background error standard deviations can potentially have a significant impact in the 
analysis and forecast of severe storm events (Kucukkaraca and Fisher 2006) through an improved 
representation of the uncertainty in the background state in dynamically active areas. 

Figure 11 presents ensemble-based standard deviations of vorticity near the surface, valid on the 24th 
January 2009 at 09 UTC over Europe and the near Atlantic. Panels (a)-(e) correspond to the raw 
estimates obtained with 10, 20, 30, 40 and 50 members respectively. The similarity of the different 
maps and the connection with the underlying dynamical situation are apparent. The uncertainty 
associated to the low over the Atlantic Ocean is well captured, and all the estimates show a pattern of 
high standard deviation values in the southern and central parts of France, with local maxima located 
along the Mediterranean coast. This suggests that an ensemble of only 10 members is thus sufficient to 
represent fairly accurate (in terms of both position and intensity) estimates of background error 
associated to this extra-tropical storm event. The objective spatial filtering applied to the 10-member 
estimates (panel (f)) tends to smooth the geographical variations while keeping an area of large values 
over the regions most affected by the storm. 

A more quantitative assessment of the impact of using flow-dependent background-error estimates in 
the data assimilation process can be obtained from an examination of the forecast skill of an 
analysis/forecast experiment using EDA variances. For that purpose, an impact experiment has been 
performed over a one-month period in January-February 2009 with the ECMWF operational 
assimilation and forecast systems (IFS). This experiment was run using 4D-Var at resolution T799, 
and filtered background error variances estimated from a 10-member ensemble run at T399 resolution 
were used both in the first-guess check and in the background error term of the cost function.  
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Figure 11: Standard deviations of vorticity near the surface, corresponding to 24 January 2009 at 09 
UTC. Unit: 5.10-5 s-1. Raw estimates calculated with : (a) 10 members (b) 20 members (c) 30 members (d) 
40 members and (e) 50 members. (f) Filtered estimates from the 10-member ensemble. The mean sea level 
surface pressure analysis is overlaid, contour: 10hPa. 

Figure 12 presents the RMS error of t+48h forecasts of surface pressure over Europe for the period 
20/01/2009-24/01/2009. Scores are calculated for the control experiment, which uses the operational 
“randomised” errors, and for the experiment using flow-dependent variances. One can first notice that 
the EDA variance experiment is improved upon the control experiment over the whole period, with a 
reduction of RMS error up to around 0.3 hPa. The largest improvement is obtained for the 48h forecast 
starting from 22 January at 00 UTC and valid on 24 January at 00 UTC.  

The temporal evolution of the storm forecasts is presented in Figure 13 for both the control run and the 
EDA variance experiment (ENS10), along with the analysis valid on 24th January at 00 UTC. The 
forecasts are issued from analyses valid on 20, 21, 22 and 23 January at 00 UTC. It can be noticed that 
the two experiments produce quite similar 96h forecasts that already provide a relevant warning signal 
of the storm. The location of the storm, as well as the position and intensity of strong 10m winds, are 
coherent with the verifying analysis. The EDA variance experiment somewhat outperforms the control 
run in forecasting a deeper cyclone and a more accurate area of strong winds. However, both forecasts 
predict a considerably higher central pressure than the analysed one. The central pressure reaches 
983.5 hPa in the control run and 980.8 hPa in the ensemble variance run, while the analysed value is 
967.6 hPa. The 72h forecasts tend to confirm the development of the storm. The intensity of associated 
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winds is more accurately forecasted compared to the verifying analysis, but the central pressure is still 
higher (982,8hPa for the control run and 982,3hPa for the experimental run). The two 48h forecasts do 
not suggest such a clear scenario since both experiments seems to lose track of the developing 
cyclone. There is still an indication of a surface pressure minimum along the Spanish coasts, but the 
central pressure has increased and the winds are weaker. The EDA variance run is still better at this 
lead time, with a better positioning of the 992hPa pressure isoline, a stronger pressure gradient and a 
deeper central pressure (988,4hPa compared to 992hPa in the control run). 24 hours before the storm 
reaches Spain, the two experiments produce very similar forecasts. The low pressure system is 
accurately located and the intensity of the winds is quite well captured. The central pressures, although 
still too high (975hPa in the control and 975,5hPa in the experiment), are shallower than in the 
previous forecasts. Table 1 summarizes the results of the control and the EDA variance experiments in 
terms of storm central pressure and maximum wind intensity. 

 
Figure 12: Skill scores of t+48h forecasts of mean sea level pressure over Europe for the period between 
20090120 and 20090124, for the control run and for the experiment which used background-error 
variances derived from the 10-member EDA. 

 
Time range/ 
Experiment 

Ctrl ENS10 

96h forecast 983.5 hPa - 24.6 ms-1 980,8 hPa - 24.6 ms-1 

72h forecast 982.8 hPa - 25.6 ms-1 982,3 hPa - 25.4 ms-1 

48h forecast 992.0 hPa - 16.7 ms-1 988,4 hPa -17.0 ms-1 

24h forecast 975.0 hPa - 24.9 ms-1 975,5 hPa - 24.9 ms-1 

 
Table 1: Central pressures of the storm Klaus, forecasted by the control run and the 10-member EDA 
variance experiment, for 96h to 24h time ranges. 
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Figure 13: (a) Operational ECMWF analysis of MSLP (contour interval: 4hPa) and 10 metre wind speed 
(m.s-1) valid on 24 January at 00 UTC, central pressure of the low is 967,6hPa and the maximum wind 
speed is 29.5 m.s-1. (b) - (i) Forecasts of MSLP and 10 metre wind speed valid on 24 January at 00 UTC: 
control run (left panels) and 10 member EDA variance run (right panels). (b) Ctrl 96h-forecast : 983.5 
hPa, 24.6 m.s-1; (c) ENS10 96h-forecast : 980.8 hPa, 24.6 m.s-1; (d) Ctrl 72h-forecast : 98.,8 hPa, 25.6 
m.s-1; (e) ENS10 72h-forecast : 982.3 hPa, 25.4 m.s-1; (f) Ctrl 48h-forecast : 992 hPa, 16.7 m.s-1;  
(g) ENS10 48h-forecast : 988.4hPa, 17 m.s-1; (h) Ctrl 24h-forecast : 975 hPa, 24.9 m.s-1; (i) ENS10 24h-
forecast : 975.5hPa, 24.9m.s-1. 
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4.2 Hurricane Ike (1-14 September 2008) 

Hurricane Ike was the most intense hurricane of the 2008 Atlantic hurricane season and one of the 
costliest to make landfall in the continental USA, with maximum sustained winds of 64 m/s and an 
estimated central pressure of 935 hPa. Starting as a tropical disturbance off the coast of West Africa, 
Ike intensified to become a tropical depression on the 1st of September 2008 and further strengthened 
to hurricane status on the 3rd of September. When it made landfall in Cuba Ike had reached category 4 
status, while it was down to a category 2 hurricane on landfall in Galveston, Texas (Fig. 14, 15).   

In figure 16 three snapshots of the first-guess EDA standard deviations for vorticity at model level 64 
(~500 hPa) are shown. They capture three different stages of the hurricane development: hurricane 
formation in the Mid-Atlantic (4/09/08, 0900 UTC), landfall in Cuba (7/09/08, 0900 UTC) and 
landfall in Texas (12/09/08, 0900 UTC). It is apparent that even the 10-member ensemble (left 
column) is able to identify and track the main error features of the hurricane. The most striking 
difference with the 50-member ensemble (right column) is the considerably higher level of sampling 
noise present in the 10-member ensemble. As a consequence, the spatial filtering algorithm needs to 
suppress smaller scale features much more aggressively in the 10-member variances in order to retain 
the statistically robust signal. This can be seen in figure 17, where the objectively filtered EDA 
standard deviations are shown for the same verification times. It is apparent that the filtered 10-
member EDA (left column) is able to resolve only the larger scale features of the hurricane error 
structures, while the errors’ magnitude is severely reduced. On the other hand, the filtered 50-member 
EDA (right column) allows a much more precise characterization of the relevant error structures. 

A general conclusion that may be drawn from the discussion of the two case studies is that the 
objective filtering technique of Raynaud et al., 2009, allows for the statistically significant part of the 
EDA variance signal to be extracted from the raw ensemble first-guess forecasts. However, the higher 
level of sampling noise of a small ensemble leads the filter to being much more scale selective, thus 
retaining only the larger scale features of the raw EDA variances. This approximation is still 
acceptable when modelling relatively large scale synoptic features linked to extra-tropical 
cyclogenesis, but it is clearly inadequate if we aim to represent smaller scale meteorological events 
such as tropical hurricanes. In this sense, the objective filtering technique should not be seen as a 
substitute for employing as large an ensemble size as operational constraints allow. 

 
Figure 14: Hurricane Ike (1-14 September 2008) track. Colour code scheme from the Saffir-Simpson 
Hurricane Scale. Source: Wikimedia Commons from data from NASA and National Hurricane Center. 
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Figure 15: Hurricane Ike in the mid-Atlantic (4/09/2008, 12 UTC), at landfall in Cuba (7/09/2008, 12 
UTC), at landfall in Texas (12/09/2008, 12 UTC). Data from NOAA. 
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Figure 16: Standard deviations of vorticity at model level 64 (close to 500 hPa) valid on 4 September 
2008, 09 UTC (first row); 7 September 2008, 09 UTC (second row); 12 September 2008, 09 UTC (third 
row). Unit: 5.10-5 s-1. Raw estimates calculated with: 10-member ensemble (first column); 50-member 
ensemble (second column). The mean sea level surface pressure analysis is overlaid,5 hPa contour. 
Position of Hurricane Ike is highlighted by red arrow pointer. 
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Figure 17: Standard deviations of vorticity at model level 64 (close to 500 hPa) valid on 4 September 
2008, 09 UTC (first row); 7 September 2008, 09 UTC (second row); 12 September 2008, 09 UTC (third 
row). Unit: 5.10-5 s-1. Filtered estimates calculated with: 10-member ensemble (first column); 50-member 
ensemble (second column). The mean sea level surface pressure analysis is overlaid,5 hPa contour. 
Position of Hurricane Ike is highlighted by red arrow pointer. 
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5 Daily variability of the ensemble-based variance filtering 
The objective filtering technique of Raynaud et al. (2009), which has been implemented in the 
ECMWF EDA system, is performed with the application to the raw spectral EDA variance fields of 
the spectral low-pass filter defined by:  

    ( ) ( )([ ]2/*0.5cos trunctrunc NNn,minπ=nρ ∗ )    (1) 

where n is the total spectral wavenumber and Ntrunc is the truncation wavenumber of the filter. The 
application of this low-pass filter in spectral space can be seen as a weighted spatial averaging 
technique in grid-point space, which enables the large-scale signal of interest to be extracted while 
filtering out the small-scale sampling noise. The essence of the algorithm is in the computation of 
Ntrunc, which is generally a function of model variable and vertical model level. This objective 
truncation wavenumber is determined according to the estimated signal-to-noise ratios of the ensemble 
first-guess raw variance fields. The sampling noise energy spectrum is based on the Legendre 
transform of a time- and space-averaged estimate of the ensemble raw covariances (i.e., Equ. (6) in 
Raynaud et al., 2009), while the signal power spectrum is computed on the sampled EDA raw 
variances. This time-adaptive filtering can thus adjust the truncation in real time to take into account 
the spatio-temporal evolution of the sampled variances. However, the daily variations of the sampled 
variances power spectrum can lead in some particular cases to an erratic behaviour of the filter. An 
example of this is shown in figure 18, which presents the energy spectra of temperature variances near 
the surface for two consecutive ensemble runs, the 20th of January at 0900 UTC (in black) and 2100 
UTC (in red), along with the climatological noise spectrum. While the two variance spectra look rather 
similar, the algorithm for computing the truncation wavenumber (based on the idea of fitting the 
analytical filter defined by equation (1) to the calculated filter, which is derived from spectral signal-
to-noise ratios, Raynaud et al., 2009) ends up producing two very different truncation numbers, 
respectively 160 and 71. This is a clear indication that a simple, adaptive computation of the truncation 
wavenumber can lead to unstable estimates for parameters and model levels where day-to-day 
variability is non negligible (this is another kind of sampling noise, this time with respect to the 
estimation of the signal power spectrum).   

To clarify this issue, the objective filtering technique has been applied to a one-month long sample of 
EDA first-guess error variances valid at 0900 and 2100 UTC. In this way, we obtain a 60-member 
statistical sample of truncation total wavenumbers for each model variable and vertical level. Figure 
19(a) shows the vertical profile of the sample median truncation values for vorticity, along with the 
first and third quartiles. First, similarly to Raynaud et al. (2010), one can notice that the truncation 
tends to decrease with altitude, apart from a small increase in the lower stratosphere (model level 39 
approximately corresponds to 100 hPa). The sample variability of the truncation appears to be rather 
limited, especially up to model level 23 (20hPa). The case of temperature (Figure 19(b)) is somewhat 
different: the truncation is subject to strong daily variations in the boundary layer and between model 
levels 56 (300hPa) and 34 (70hPa) with an interquartile range than often exceeds 100. Moreover, this 
large variability does not seem to have a plausible physical explanation, but rather to be an artefact of 
the way we estimate the truncation wavenumber.   

We are thus faced with the problem of finding a more robust estimator of the truncation wavenumbers. 
Recomputing the sample truncation wavenumbers over a summer (August-September 2008) case did 
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not show noticeable seasonal variations to the estimates in figure 19(a,b). This indicates that the 
monthly-averaged values provide sufficiently robust estimators of underlying sample statistics. This 
idea has been verified by performing two analysis/forecast experiments using 10-member EDA 
variances, over a January-February 2009 period. Experiment ENS10/FT uses daily varying filters for 
each model variable and vertical level, whereas the experiment ENS10/FM uses time-stationary filters, 
which are calculated using the median values of the monthly truncation wavenumbers’ distribution. A 
control run using the currently operational randomization technique (Fisher and Courtier, 1995) to 
compute the initial background-error variances was also performed. Both experiments using EDA 
variances show some improvement over the control, which suggests that there is an advantage (more 
pronounced for the Southern Hemisphere) in using a constant filter instead of a time-dependent filter. 
For example, forecast scores over the Southern Hemisphere for 500hPa geopotential height (Figure 
20) show an improvement with the constant filter, especially in the latter part of the forecast range. 

 
Figure 18: Energy spectra of temperature variances near the surface calculated with a 10-member 
ensemble. The verification date is 20th January 2009 at 09 UTC (in black) and 21 UTC (in red). The 
associated sampling noise spectrum is shown in green. Unit: K-2. 

 

Figure 19: Vertical profiles of objective truncation for the filtering of raw ensemble-based variances of 
(a) vorticity and (b) temperature. In black: median truncation, in red: first and third quartiles. 
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Figure 20: Forecast scores for 500hPa Geopotential height over the Southern Hemisphere for the winter 
period between 20090107 and 20090216 for the experiments which used ensemble-based background-
error variances from a 10-member ensemble with (ENS10/FT, in blue) day-to-day variations of the filter, 
and (ENS10/FM, in red) a median truncation. The control run, which uses the error variances calculated 
with the current operational method, is shown in black. (a) Anomaly correlation and (b) rms error 
forecast. 
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6 CONCLUSIONS 
The main goal of this study was to assess the robustness of the background error estimates that are 
diagnosed from the forecast variances of an ensemble of perturbed data assimilations. Two aspects 
have been evaluated: a) the sensitivity of the error estimates to the ensemble size and b) the sensitivity 
of the filtering procedure to the variances’ daily variability.  

As regards the first aspect, the results presented here broadly confirm the validity of conclusions from 
previous work on the subject by Kucukkaraca and Fisher (2006), Isaksen et al. (2007) and Raynaud et 
al. (2008, 2009). Namely, it was shown that a fairly accurate estimate of background-error variances 
can be obtained with a limited number of ensemble members (10 in the present case). In particular, the 
uncertainty in the background state associated with an extra-tropical severe storm event was seen to be 
well captured by an ensemble of only 10 members.  

However, our investigation has shown that there are some caveats attached to the use of small 
ensembles. The filtering technique employed to extract the statistically significant signal from the 
ensemble variances drastically reduces the effective spatial resolution of the ensemble with respect to 
the nominal one (for vorticity at model level 64, effective truncation wavenumber is around T80, 
versus the T399 nominal resolution). Furthermore, this aggressive filtering inevitably affects the 
spectrum of the signal we would like to retain. These much coarser filtered ensemble variances may 
still have enough detail to be able to resolve the large scale uncertainties in the extra-tropical flow. On 
the other hand, when we are faced with more localised anomalies such as those associated with a 
tropical disturbance, it can be argued that a filtered 10-member ensemble is only partially able to 
resolve the error features of interest and the advantage of a larger ensemble is more noticeable. From a 
more quantitative perspective, the plot in figure 1 would seem to imply that some saturation of the 
useful signal that can be extracted from the ensemble starts to appear with a 40-member ensemble, in 
terms of global amplitude.  On the other hand, the discussion in section 2 on the effective spatial 
resolution of the ensemble points to further possible gains with larger ensemble sizes, in terms of local 
error characterization. Assimilation experiments with a 20-member EDA seem to confirm the benefit 
on forecast skill scores of using a larger ensemble to characterize background errors. Another possible 
approach to deal with error structures of different scales, and in particular to extract localised patterns 
of useful signal may be to develop a spatial filter that depends on the geographical position. This could 
be achieved with a filter in grid-point or wavelet space for instance. 

If the benefit of using a larger ensemble is apparent in the estimation of background-error variances, a 
fortiori this must be the case for the much larger-dimensional problem of finding robust estimates of 
background-error correlations. Our expectations are that in this second case the role of the filtering 
procedure will become even more crucial. In this context a promising path of research would envisage 
the use of the wavelet formulation of the background error matrix (Fisher, 2003).  

The second part of the study has addressed the filter ability to deal with the day-to-day variations in 
the EDA variances. It was shown that the basic filter configuration could not do a good job at handling 
relatively small changes in the EDA variances’ power spectra, resulting in significantly different 
truncation wavenumbers in consecutive analysis cycle. A possible solution was identified in the use of 
the median truncation values from their monthly climatological distribution. This was implemented in 
the ECMWF EDA system and it was shown to have a largely positive impact on forecast skill scores.  
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