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ABSTRACT

This paper reviews a hierarchy of reduced models that assess the accuracy of numerical techniques as well as
diagnose systematic errors of model dynamical cores. In the context of numerical weather prediction and climate
research, dynamical and numerical aspects are often assessed using shallow-water models and idealised model
“climate” simulations. Physical parametrizations and dynamics-physics interactions and their verification are
commonly tested with models, ranging from single-column models (SCMs) to limited-area, large-eddy (LES)
simulations. It is shown that reduced-size planet simulations, aquaplanets, and direct numerical simulations (DNS)
of laboratory experiments complement such a hierarchy of reduced models, in particular for an assessment of the
model behaviour in the horizontal resolution range ∆x = O(0.1−20) km. The strategy of reductionism is shown
to expose systematic errors of model dynamical cores, while testing their accuracy in canonical flow situations.
Moreover, by isolating particular flow phenomena, tools are provided to improve the general understanding of
global-scale climate models with growing complexity.

1 Introduction

The dynamical core is an important element of every atmosphere or ocean model. Historically, in
the context of numerical weather prediction and climate research, the dynamical core is the (dry) part
of the model without any diabatic forcings (i.e. physics). However, with resolutions ranging from
∆x = O(0.1− 20) km many processes that were traditionally computed in the “physics” (e.g. gravity
wave drag, convection, moist processes, boundary layer turbulence), are partially or fully resolved and it
becomes increasingly ambiguous if a parametrized (subgrid-scale) term should be computed at all, with
subsequent implications for the dynamics-physics interface of the model. Hence, now and in the future
it is not straight forward to assess the veracity of global-scale simulations with the full complexity of all
modelled processes, as model design as well as physical parametrizations fundamentally change across
the full range of resolutions that are becoming computationally affordable.

A practical strategy is therefore to use reduced models for diagnostic purposes. Here it is assumed that
the essential flow characteristics remain unchanged when the domain, the forcings or the equations are
changed. Although a complete physical similarity is precluded, an approximate dynamic similarity can
be of practical importance; see section 10 in Buckingham (1914) and Wedi and Smolarkiewicz (2009a).

The shallow-water model represents an early example of such a reduced model. Taylor (1936) was the
first to point out that the global atmosphere may be viewed as an infinite set of shallow-water layers,
each representing a single mode of the full system. This aspect has been extensively used to test the nu-
merical accuracy of different dynamical cores (Williamson et al., 1992), but also to analyse the dynamic
behaviour of weather and climate (Matsuno, 1966; Lorenz, 1972; Hoskins, 1973). An example for both
aspects will be given in section 2.1.

An alternative diagnostic strategy can be exploited for the 3D global atmosphere, where the planetary
radius is suitably reduced to capture nonhydrostatic phenomena without incurring the computational
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cost of actual simulations of weather and climate at nonhydrostatic resolution ∆x ≤ O(2) km. (Smo-
larkiewicz et al., 1999; Wedi and Smolarkiewicz, 2009a). In other words, the size of the computational
domain is reduced without changing the depth or the vertical structure of the atmosphere. Here the un-
derlying assumption is that the essential flow characteristics remain unchanged when the separation of
horizontal and vertical scales is reduced (Kuang et al., 2005). The examples in section 2.2 illustrate the
utility of the testing strategy with distinct-scale problems of atmospheric dynamics relevant to weather
and climate. In particular, Held-Suarez (dry) “climate” simulations (Held and Suarez, 1994) can be
used in the reduced-radius framework to evaluate the influence of the dynamical core formulation on an
idealised climate state on a sphere, while the relative importance of individual terms in the equations is
shifted with decreasing radii and/or increased rotation rate.

The next level of complexity in the hierarchy of models are aquaplanet simulations. In these global sim-
ulations with an underlying flat sea surface the model is forced by a family of latitudinal/longitudinal
sea-surface temperature (SST) distributions and prescribed external forcings. In this case the models
consist of the dynamical core and the physical parametrizations of radiation, boundary layer turbulence,
convection and clouds. The Aquaplanet Intercomparison project (APE) (Neale and Hoskins, 2000)
documents the intercomparison of various models for given SST distributions in a forthcoming AT-
LAS (http://www.met.reading.ac.uk/ mike/APE/atlas.html). In section 2.3 some examples are shown for
ECMWF’s integrated forecasting system (IFS) model, which participated in APE.

Laboratory experiments that isolate particular flow structures have long been regarded as complementary
tools for studying the behaviour of large scale geophysical fluids, such as the Earth’s atmosphere. With
increased computer power available, a direct numerical simulation (DNS) of a laboratory experiment
provides perhaps the most stringent test for any dynamical core. DNS means here integrating the Navier-
Stokes equations without any parametrizations resolving the fluid motion up to the Kolmogorov length
scale η = (ν3/ε)1/4, where ν is the kinematic viscosity and ε denotes the kinetic energy dissipation rate.
In this case grid sizes are ∆x = O(η); see Moin and Mahesh (1998) for a review of DNS. In section
2.4 the laboratory experiment of Plumb and McEwan (1978), a canonical example of the influence
of smaller-scale fluctuations on the large-scale flow, and the DNS thereof (Wedi and Smolarkiewicz,
2006) serve as an example. However, even large-eddy simulations (LES) of the global atmosphere are
still out of reach. Instead, “virtual” laboratory experiments and large-eddy simulations (LES) thereof
are emerging, in an attempt to explain the essence of particular flow phenomena that are a distinct
multi-scale feature of the global atmosphere (Wedi and Smolarkiewicz, 2009b). The understanding of
multi-scale phenomena — such as the Madden-Julian oscillation (MJO) — appear to be an important
aspect for the design of future global numerical weather prediction (NWP) and climate models.

2 A hierarchy of reduced models

2.1 The shallow water model

As pointed out in the introduction, the early works of Taylor (1936) justify the use of a single layer
equation set as a reduced model on the sphere. Therefore, it also often represents the first step in the
development of a new dynamical core. The nonlinear shallow water equations on the sphere may be
written as

∂ζ

∂ t
+∇ · (ζ + f )vh =−K∇

4
ζ (1)

∂δ

∂ t
−k ·∇× (ζ + f )vh +∇

2(gH +0.5vh ·vh) =−K∇
4
δ

dh
dt

+hδ = 0
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where ζ ≡ k ·(∇×vh) denotes relative vorticity and δ ≡∇ ·vh is the horizontal divergence with horizon-
tal velocity vector vh; h denotes the shallow water depth, H = h + hs is the shallow water height above
the orography hs, and f and g symbolise the ‘Coriolis parameter’ and gravity (both vertically oriented);
see Williamson et al. (1992) for alternative forms of the equations and in particular explicit forms of
the spherical horizontal gradient operator ∇ and the Laplacian ∇2. The equations in (1) are in particular
useful in the context of spectral models such as IFS, where the Laplacian is readily available. In IFS, the
total derivative d/dt is evaluated along a semi-Lagrangian trajectory (Ritchie, 1988; Temperton et al.,
2001). The ∇4 diffusion terms that are used in the discretised version of IFS (and likewise in the oper-
ational forecast model) have been added for completeness, to obtain results as close as possible to the
operational NWP model.

The first example — test case 1 in Williamson et al. (1992) — illustrates its use for diagnosing the
accuracy of advection of the discretised equations by simulating the advection of a cosine-bell-shaped
hill over the pole. Diagnostic error measures plotted as a function of time or as a function of resolution
for example for the depth h are defined as

I1(h) :=
I[|h(λ ,θ)−hT (λ ,θ)|]

I[|hT (λ ,θ)|]
(2)

I2(h) :=

√
I[(h(λ ,θ)−hT (λ ,θ))2]√

I[hT (λ ,θ)2]

I∞(h) :=
maxλ ,θ |h(λ ,θ)−hT (λ ,θ)|

maxλ ,θ |hT (λ ,θ)|
,

where I denotes the discrete approximation to the global integral I(h) = 1
4π

∫ 2π

0
∫ π/2
−π/2 h(λ ,θ)cosθdθdλ

and (λ ,θ) are longitude and latitude, respectively. The value hT denotes the true solution, which in this
particular test case is given as the initial condition after 12 days of integration or one full rotation of the
hill around the sphere. A recent example of the error measures in (2) for this test case can be found in
Thomas and Loft (2002). Figure 1 shows the result of the shallow water version of IFS after one rotation
of the hill over both poles. The magnitude of the deviation (panel c), obtained with the resolution and
settings of ERA40 (Uppala et al., 2005), gives a magnitude of the I∞ error that is approximately one
order of magnitude larger than the values obtained with the spectral element model in Thomas and Loft
(2002).

The second example illustrates the dynamic behaviour of weather and climate by means of the shallow-
water model, showing the influence of the lunar gravitational potential on the stability of the Rossby-
Haurwitz wave. Rossby-Haurwitz waves as depicted in Panel a of Fig. 2 are steadily propagating solu-
tions of the fully nonlinear nondivergent barotropic vorticity equation on the sphere (Haurwitz, 1940).
For the shallow-water equations on the sphere, an analytically prescribed Rossby-Haurwitz wave ini-
tial condition is expected to evolve similarly steady as with the barotropic vorticity equation (Thuburn
and Li, 2000). However, Rossby-Haurwitz waves with wavenumbers ≥ 4 have been found to be unsta-
ble to small perturbations, suggesting a limit to the predictability of weather (Lorenz, 1972; Hoskins,
1973; Thuburn and Li, 2000). While in Thuburn and Li (2000) the emphasis is on numerically gen-
erated perturbations, here we review the influence of small but persistent extra-terrestrial forces, such
as the gravitational pull of the moon. The gravitational acceleration provided by the moon adds rhs
forcing terms in the momentum equation of the form −∇Ωtidal , with the lunar potential Ωtidal defined
by geometrical/astronomical considerations, cf. Chapman and Lindzen (1970), p.121-123 for details.

The result of the IFS simulations after 200 days of simulation without (panel a) and with the influence
of the lunar gravitational potential are shown in Fig. 2. The Rossby-Haurwitz wave with wavenumber
4 is extremely stable for the IFS spectral shallow water model, whereas the lunar gravitational potential
destabilises the flow after about 100 days with a resulting substantial cross polar flow, variations of
high and low pressure systems and their corresponding jets, cf. panel b in Fig. 2. Interestingly, even
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Figure 1: Panel a shows the initial geopotential of a cosine-bell-shaped hill (test case 1 in
Williamson et al. (1992)) with a 1000 m centre height of the hill hs. Panel b shows the result
of the IFS simulation after 12 days or one full rotation in north-south direction over both poles
(α = 90 degrees), and panel c shows the difference in geopotential height.
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Figure 2: Geopotential and wind vectors are shown of a propagating Rossby-Haurwitz wave as
viewed from the North Pole from simulations of the IFS shallow-water model without (panel a) and
with (panel b) the influence of the gravitational pull of the moon.
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the Rossby-Haurwitz wave with wavenumber 3 is destabilised in this manner (not shown), suggesting a
decisive influence of the lunar potential on the long-range behaviour of large-scale atmospheric waves.
So does the lunar gravitational pull matter for medium-range weather forecasts of the atmosphere ?
It appears not. Figure 3 shows the spatial standard deviation of the forecast difference, cf. Jung and
Vitart (2005) for details, of the 200hPa geopotential height surface for two sets of 31 forecasts using the
full ECMWF IFS model with TL255 resolution and 91 vertical levels, with and without lunar forcing,
respectively. The figure indicates that there is no advantage adding the lunar forcing over a random
single point perturbation. Nevertheless, on this basis it would be interesting to examine the value of
adding the gravitational potential of the moon to seasonal forecasts in the future.
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Figure 3: Spatial standard deviation (std) of the forecast difference of the 200hPa geopotential
height surface between two sets of 31 forecasts without and with the lunar forcing included. As a
reference the std of the forecast difference with a set of forecasts using random single point pertur-
bations, and the std of using/not using a coupled ocean model (Jung and Vitart, 2005).

The example of the influence of the lunar potential provides a methodology to diagnose the influence
of small perturbations on the short- and medium-range forecast. Moreover, it suggests that perturba-
tions of similar magnitude in the momentum equations — e.g. the vertical acceleration of the Coriolis
force as introduced by relaxing the shallow atmosphere approximation — are also likely to be of minor
importance to the medium-range forecast performance.

2.2 Idealised reduced-radius simulations on the sphere

With the emergence of non-hydrostatic global dynamical cores it is desirable to directly compare quan-
titatively and qualitatively with LES benchmarks of limited-area models and Cartesian-domain analytic
solutions published in the literature. In the framework proposed in Wedi and Smolarkiewicz (2009a) the
planetary radius is suitably reduced to capture nonhydrostatic phenomena without incurring the compu-
tational cost of actual simulations of weather and climate at nonhydrostatic resolution ∆x ≤ O(2) km.
The usefulness of this testing strategy is illustrated in Wedi and Smolarkiewicz (2009a) and Wedi et al.
(2009) with a series of canonical flow problems ranging from horizontally and vertically propagating
spherical acoustic-waves, “local-scale” orographically forced gravity waves in the presence of shear and
critical levels, to “global-scale” planetary Rossby waves in Held-Suarez simulations (Held and Suarez,
1994). The test cases were conducted for two very different global dynamical cores, where the results
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of the nonhydrostatic global IFS were compared with numerical solutions of the multi-scale anelastic
research code EULAG (Prusa et al., 2008). Despite their distinctively different development paths and
theoretical/numerical features, both models are equivalently setup on the sphere.

The Held-Suarez setup consists of dynamical core simulations, where the effect of the physics is emu-
lated by adding the frictional term−kvv on the rhs of the momentum equation and adding−kT (T −Teq)
in the thermodynamic equation, where kv,kT denote frictional/heating coefficients and Teq defines a zon-
ally symmetric temperature distribution in terms of a meridional and a vertical temperature gradient, see
Wedi and Smolarkiewicz (2009a) for details. Notably, if the Rossby number Ro = U/ f L — with U
denoting a characteristic zonal velocity, L ∼ a denoting a characteristic length scale (here taken as the
planetary radius a), and f is the Coriolis parameter — is kept constant, a reduction of the planetary ra-
dius a implies an increase in the rotation rate and, thus, a corresponding increase in the frictional/heating
time factors that define the coefficients kv,kT . The latter may be used to change the relative influence
of individual terms in the equations and thus for example further explore the impact of the deep vs.
shallow atmosphere approximation on the zonally averaged “climate” state, cf. Fig.18 in Wedi and
Smolarkiewicz (2009a).

However, apart from comparisons of the zonal mean state of Held-Suarez simulations, there is substan-
tial extratropical variability, two subtropical jets, and a simplified tropical regime — enforced by the
prescribed meridional and vertical temperature gradients. The Held-Suarez setup thus may be used to
explore aspects of the tropical-extratropical interaction in a simplified global atmospheric model with-
out any elaborate physical parametrizations or moist processes involved. For example, panel a in Fig. 4
shows for EULAG the temporal anomaly of velocity potential at 600 hPa, often interpreted as the equiv-
alent barotropic level, in a Hovmöller representation (meridionally averaged between ±10 degrees).
Panel b shows the corresponding temporal anomaly of velocity potential at 200 hPa, a tracer often used
to identify intraseasonal oscillations such as the MJO. Panels c-d in Fig. 4 show the equivalent results
for the IFS model. There are several (albeit very different between the two models) episodic temporal
flow anomalies of divergent flow in 200 hPa (negative velocity potential in black contours) that match
in time and location with convergent flow anomalies below in 600 hPa (positive velocity potential in
white contours). A wavenumber frequency analysis of velocity potential for both models (not shown)
exhibits dominant periods between 29 and 66 days for eastward wavenumber one. An analysis of the
power spectra of re-analysis data from ERA40 zonal mean zonal wind1 at 200hPa or at 500hPa also
shows a statistically robust deviation from an artificially created red noise spectrum in the range 20-
60 days (Wedi, 2004). Figure 5 shows a Hovmöller diagram of velocity potential anomalies retrieved
from the ERA40 reanalysis at 600 hPa and at 200 hPa, respectively. A strong MJO event starting ap-
proximately on the 1st May 2002 can be identified as a slowly eastward propagating positive velocity
potential anomaly in 600 hPa (white contours), and corresponding negative velocity potential (black
contours) at 200 hPa, both similar in appearance to some of the episodic events occurring in the ide-
alised Held-Suarez simulations. Preliminary results, which utilise the reduced-size planet framework
to vary the Rossby number Ro, reveal that the amplitude and occurrence of the episodically occurring
velocity potential anomalies are decreased with increasing Rossby number. A possible explanation of
the quasi-barotropic behaviour of the large-scale anomalous tropical disturbances in the Held-Suarez
simulations and their sensitivity to the Rossby number is discussed further in Wedi and Smolarkiewicz
(2009b).

2.3 APE aquaplanet simulations

The next level of complexity in the hierarchy of models are aquaplanet simulations, which use the
models’ physical parametrizations of radiation, boundary layer turbulence, convection and clouds but
simplify the full complexity of global simulations of weather and climate by removing the topography

1averaged between ±10 degrees latitude over 35 years
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a b

c d

Figure 4: Hovmöller diagram of the temporal anomaly of velocity potential at 600 hPa height (panel
a) and the corresponding diagram at 200 hPa height (panel b) for the EULAG Held-Suarez simula-
tion. Panels c - d are the equivalent figures for the IFS simulation. The data is meridionally averaged
between ±10 degrees, and for the EULAG model has been converted from its z-coordinate using the
standard scale height 7 km.

a b

Figure 5: Hovmöller diagram of the temporal anomaly of velocity potential at 600 hPa height (panel
a) and the corresponding diagram at 200 hPa height (panel b) for the ERA40 re-analysis data.
The data is meridionally averaged between ±10 degrees. There is a strong MJO event starting
approximately on 1st May 2002. The sketches below identify the continents.

198 Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7 - 10 September 2009



WEDI N.P.: DIAGNOSTICS OF MODEL NUMERICAL CORES . . .

and continents. Instead, the model is forced by a prescribed SST distribution. Examples of zonally
symmetric SST distributions (Neale and Hoskins, 2000) taken from the APE-Atlas are shown in Fig. 6.
In these cases, the meridional gradients of the SSTs effectively initiate and enforce the ensuing global
circulation.

Figure 6: Examples of the zonally symmetric SST distributions of the APE intercomparison project,
taken from the APE-Atlas (http://www.met.reading.ac.uk/ mike/APE/atlas.html).

When changes are made to the physical parametrizations, the aquaplanet setup can be useful to identify
their impact on circulation changes more easily. For example, a prominent change of the convection
parametrization occurred between the IFS model cycles CY29R2 and CY32R3, leading to a much im-
proved representation of linear equatorial waves (Bechtold et al., 2008) and their respective signature on
tropical precipitation as shown for IFS aquaplanet simulations with varying SST distributions in Fig. 7.

Moreover, the APE intercomparison revealed a large variety of organised convection and precipitation
patterns between the different participating models (not shown). As the formation of organised convec-
tion is sensitive to the explicit or implicit viscosity in under-resolved simulations and in particular the
anisotropy of viscosity (ie. horizontal vs. vertical) (Piotrowski et al., 2009), CONTROL SST aquaplanet
simulations emerge as an excellent diagnostic tool to examine the influence of different formulations of
global dynamical cores — and their implicit or explicit numerical diffusion — on the organisation of
convection, an important aspect of future weather and climate predictions.

2.4 DNS or LES of laboratory experiments

DNSs or LESs of laboratory experiments represent a stringent challenge for model numerical cores.
While a realistic simulation of a laboratory experiment does not necessarily guarantee that the same nu-
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a

PEAKED CONTROL QOBS FLAT

b

Figure 7: Wavenumber frequency diagrams of log(power) of the symmetric modes of equatorial
precipitation for the APE SST distributions PEAKED, CONTROL, QOBS and FLAT. Results are
shown for the aquaplanet IFS simulations using cycle CY32R3 and CY29R2, respectively. The plots
are taken from the APE-Atlas (http://www.met.reading.ac.uk/ mike/APE/atlas.html).

merics perform well at global scales on the sphere, convergence in the the limit of gridsizes ∆x = O(η)
builds confidence in the overall numerical procedure. Moreover, with increasing resolution of weather
and climate simulations it is relevant how the numerics of a model deals with the influence of small-scale
fluctuations on the larger scale flow, when such mechanism is only partially or not at all parametrized.
In particular, “virtual” laboratory setups provide another diagnostic tool to study the dynamics of se-
lected flow phenomena, while examining the role of implicit or explicit dissipation. This has been
demonstrated in the DNS of the laboratory experiment of Plumb and McEwan (Plumb and McEwan,
1978; Wedi and Smolarkiewicz, 2006), which represents a dynamical analogue to the quasi-biennial
oscillation (QBO), the dominant variability in the equatorial stratosphere. The basic mechanism in the
numerical simulations and the laboratory experiment is the sequence of gravity wave excitation by sim-
ple fluctuations of the upper or lower boundary, subsequent wave-wave mean flow interactions, critical
layer formation followed by wave breaking and the emergence of a long-time zonal mean zonal flow os-
cillation, entirely driven by the wave momentum flux changes. All of these gravity wave processes and
subsequent zonal mean flow changes are found in the atmosphere and hence the accuracy of different
numerical choices for the simulation of wave-driven flow phenomena is relevant to weather and climate
predictions.

For example, a comparison of the zonal mean zonal flow reversal in numerical simulations of the QBO
analogue with a flux-form Eulerian and a semi-Lagrangian advection algorithm (Wedi, 2006) showed
the onset of critical layers in different spatial positions for the latter, creating different bifurcation points
for the flow development. Since in general flux-form schemes have higher-order truncation errors pro-
portional to the differentials of fluxes of the primitive variables rather than to the differentials of the
variables themselves (as characteristic of advective form schemes), the authors in Smolarkiewicz and
Margolin (1997) concluded that the overall accuracy of the approximation increases when the fluxes of
the variables exhibit a greater degree of homogeneity than the variables themselves. This may be the
case in the QBO analogue simulations with fairly steady wave momentum fluxes below the critical layer.
It is not clear, however, if in general higher resolution simulations are characterised by less homogeneity
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of the prognostic variables compared to their associated fluxes.

It appears that with increased resolution — and lacking suitable parametrizations — the role of higher-
order truncation errors of the numerical core itself gains importance, in particular also for the organi-
sation of convection, as implied by the implicit LES (ILES) simulations in Piotrowski et al. (2009) and
Wedi and Smolarkiewicz (2009b). For example, in the latter reference, large-scale anomalous solitary
structures emerge in the simulations on an equatorial beta-plane when a translating and pulsating lateral
forcing is applied at the meridional boundaries. When the boundary meander is stopped at t∗ = 762,
the solitary structures exhibit an extraordinary persistence (Wedi and Smolarkiewicz, 2009b). Panel a in
Fig. 8 shows the result of a flux-form Eulerian simulation that has been restarted at t∗ = 762 using the
same flux-form Eulerian scheme, whereas panel b shows the result of the simulation restarted using a
semi-Lagrangian scheme. Visibly the persistence and the solitary anomaly in velocity potential is lost,
if the simulation is continued with the semi-Lagrangian scheme. The results imply a decisive influence
of the numerical model core on the formation and the persistence of temporal flow anomalies, which
is consistent with the large discrepancies found in the previously described APE intercomparison for
temporal anomalies of precipitation (David Williamson, personal communication).
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Figure 8: Hovmöller diagrams of the temporal anomaly of velocity potential (× 10−5 m2s−1) for the
simulation of a stably stratified flow with uniform bottom heating and boundary layer friction at the
bottom and the lateral walls of an equatorial beta plane. Panel a shows the simulation result with
a flux-form Eulerian scheme, where the lateral boundary oscillation has been stopped at t∗ = 762
and the model restarted. Panel b shows the simulation result when the model is continued using a
semi-Lagrangian scheme. Note that the data displayed in panel a and b is identical upto t∗ = 762.
The Hovmöller data has been averaged over the near equatorial region ±0.844LD from the mid-
channel and lowpass filtered, to attenuate all frequencies larger and equal to the beat frequency of
the boundary oscillation. Both time and the zonal length are nondimensionalised using the internal
Rossby radius of deformation LD; see Wedi and Smolarkiewicz (2009b) for details.

3 Conclusion

The diagnostic concept of reductionism has been introduced with a hierarchy of examples with grad-
ually increasing complexity — ranging from a shallow water model, reduced-size planet, Held-Suarez
and aquaplanet simulations, to DNS and LES of real or “virtual” laboratory experiments. The test-
ing strategy has been shown to be useful for evaluating numerical or systematic errors for canonical
flow situations. However, even more so the hierarchy of diagnostic tools provided (especially when
applied within the same numerical modelling framework) aims to narrow the widening gap between the
theoretical understanding of the Earth’s climate system and the growing complexity of comprehensive
global-scale climate simulations (Held, 2005).
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