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ABSTRACT

Here, some insight is given into the strategies and recent work of the Diagnostics Group at ECMWF. Diagnostics
within the context of operational NWP must be targeted primarily at understanding forecast error. Hence the
function of the Diagnostics Group lies somewhere between forecast verification and model development. Three
examples that highlight both strategy and work are presented here. The first example is the use of the ‘initial
tendencies’ approach that could enable model developers toharness the power of data assimilation to identify
errors and test solutions. The second example highlights the the need to quantify forecast error as a function of
spatial scale with, in particular, more attention given to smaller scales than currently done. The final example
emphasises and addresses the need to better monitor and diagnose the prediction of weather parameters such as
precipitation.

1 Introduction

Figure1 shows the spatial anomaly correlation coefficient (ACC) forNorthern Hemispheric 500 hPa
geopotential height (Z500) over the period 1980–mid 2009. The blue circles show monthly-means of
daily values at a forecast lead-time of 1-day (D+1). There issome variability in these values but close
inspection indicates that it is associated with the annual cycle rather than more random fluctuations.
Indeed, the 12-month running-mean values (red) display a fairly smooth upward trend. This implies
that the remaining error is getting smaller although the keyissue is not the absolute size of the error but
rather its magnitude relative to its uncertainty. For example, coincident with the improving trends has
been an astronomic (literally) increase in observation data. Since 1996 there was a 100-fold increase in
the volume of satellite data assimilated at ECMWF. Has this led to a better estimation of the ‘truth’ and
thus a more precise estimation of forecast error?

The green squares show monthly-mean ACC at D+5. There is morevariability in scores than at D+1 and
this has a strong ‘random’ component as well as an annual cycle. The 12-month running-mean values
(pink) still show an upward trend but it is less smooth than atD+1. Although the ultimate achievable
level of skill at D+5, in the presence of chaos, is unlikely tobe 100%, it would appear that larger future
reductions in error are possible at D+5 than at D+1. Hence ouruncertainty in the truth is less of an issue
at longer lead-times. However, sampling uncertainty associated with the flow-dependence of potential
skill, the growth of interactions between the resolved flow and parametrized diabatic processes, and
general chaos are more important at D+5. Again, therefore, the issue of optimising ‘signal-to-noise’ is
relevant.

Two important questions arise from this discussion

• Is there an optimal lead-time for the diagnosis of model error?

• Can sensitivity to sampling uncertainty be minimised?

The key deterministic forecast target at ECMWF is a one day gain per decade in the lead-time at which
the ACC of extratropical Z500 falls to 60%. It is interestingto see what spatial scales are associated with
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Figure 1: Northern Hemisphere monthly-mean spatial anomaly correlation coefficients(×100) and
12-month running means of 500 hPa geopotential heights at lead-times of 1 and 5 days.

error in Z500. The power spectra in Fig.2 show annual-mean temporal variance of D+1 Z500 error as
a function of total wavenumber. The maximisation of error atwavenumbers 5–15 reflects the dominant
spatial scales of Z500. In the past, much diagnostic work hasalso focused on these large-scales. With
ECMWF’s deterministic forecast resolution recently beingraised to TL1279, it is clear that

• More verification and diagnosis of error at smaller scales isrequired.

This could involve explicit separation of scales in a variable as in Fig.2 or it could involve the use of
parameters (such as precipitation for example) that naturally have smaller spatial scales.

Figure3 shows how Northern Hemisphere winter ‘blocking’ frequencychanged for two recent updates
to the forecast model. Results are based on model integrations initiated on 1 November for the years
1963–2002 and run at resolution TL159, with prescribed sea-surface temperature, over the subsequent
December–February season. Fig.3(a) shows that updates incorporated into model cycle 33R1 increased
Euro-Atlantic and Pacific blocking frequency so that it is generally within the bounds of observed uncer-
tainty, as deduced from ERA-40 re-analyses (grey shading).This was a welcome result since blocking
has traditionally been a difficult flow-type to represent in models.

Quantities such as blocking frequency and many others including energy flow diagrams, tropical wavenumber-
frequency diagrams, extratropical synoptic activity, themagnitude and timescale of ENSO or the Madden-
Julian Oscillation represent useful metrics with which to compare models or model cycles but they do
not indicate why one model is better than another or, indeed,why a subsequent model cycle (35R3)
apparently became worse in terms of blocking frequency (c.f. Fig. 3b). While the Diagnostics Group at
ECMWF does calculate metrics such as blocking frequency, itis clear that

• Further diagnostics are required that delve deeper, and permit a fuller understanding of the root-
causes of forecast error.

Much of the strategy of the Diagnostics Group at ECMWF is developed around the questions and state-
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Figure 2: Temporal variance of D+1 error in 500 hPa geopotential heights as a function of total
wavenumber. Modified from plot of Adrian Simmons.

ments itemised above. It will be clear from the above introduction that Diagnosis, in the context of
operational NWP, lies between forecast verification and forecast system development. The dividing
lines between these tasks can be blurred and here I will strayinto both areas in order to highlight the
continuity (or ‘seamlessness’) of work that is required to achieve more accurate forecasts.

2 The ‘Diagnostics Explorer’

The Diagnostics Group at ECMWF has developed a web-based ‘Diagnostics Explorer’ to help re-
searchers identify and investigate forecast errors. The aim is to present, as seamlessly as possible,
diagnostics of the entire data assimilation and weather forecasting system, and metrics of the model
climate. Other sections within ECMWF produce diagnostics related to their specific field of interest but
the diagnostics in the Explorer are unique in giving the over-view of the entire system. The contents
of the Diagnostics Explorer are listed in Table1 and documented further inRodwell and Jung(2008a).
Figure3 is based on plots available on the Diagnostics Explorer. In the subsequent sections, present or
future content of the Explorer are discussed.

3 Forecast error

Figure 4 shows 500 hPa temperature errors averaged over all operational 0 UTC forecasts made at
ECMWF for the season December–February 2008/9. The four plots (a–d) show these mean errors for
the forecast lead-times of 1, 2, 5, and 10 days, respectively.

At Day 1 (Fig.4a), there is a uniform and statistically significant warm error over much of the tropics.
(5% significance is indicated by the use of the bold colours, insignificance by the use of the pale colours
in the ‘dual colour pallet’). Generally there is also a cool error over the northern mid-latitudes. By Day
2 (Fig. 4b), the mean errors have got stronger (note the change in shading interval) although there is
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Figure 3: Frequency of Northern Hemisphere blocking duringDecember–February 1963–2002
based on analyses and climate simulations with model cyclesas indicated. Analysis are from ERA40
for the period 1963-2002 and operational analyses thereafter). The grey shading indicates the 95%
confidence interval about the observed-mean frequency.

no visible increase in the area that is statistically significant. Through Days 5 and 10 (Fig.4c,d), the
maximum values of mean errors continue to grow but the uniform pattern of tropical error seen at day 1
is replaced by a more complex pattern with a decreasing area over-which the mean error is statistically
significant.

An interpretation of these results is that by days 5 and 10, interactions, teleconnections and loss of pre-
dictability have confused a simple investigation of the root causes for the mean forecast error. Statistical
significance actually increases as the lead-timedecreases. Taken to the ultimate extreme, one might ex-
pect that the optimal lead-time to use when searching for physical parametrization deficiencies (relevant
to NWP) would be at timestep 1 of the forecast. (see e.g.,Klinker and Sardeshmukh, 1992). In fact,
timestep 1 introduces other problems associated with sampling the diurnal cycle so here the focus will
be on the first few timesteps (Rodwell and Palmer, 2007). Since the ‘first few timesteps’ occur within
the data assimilation window, it is appropriate to next discuss data assimilation.
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IFS Component Diagnostics

Data Assimilation

Observation space – observation usage

• Many data sources including radiosonde and satellite
• Data count, first-guess departures (mean, rms), bias corrections

Model space – analysis increments

• Prognostic and other parameters
• Mean, standard deviation, rms
• 21 pressure levels and zonal means

Weather Forecast

Forecast error

• Prognostic and other parameters
• Mean, standard deviation, rms
• 21 pressure levels and zonal means

Scale-dependent error and activity

• Several parameters, levels and regions
• All spatial scales and selected spatial scales

Climate of atmospheric
model and coupled model

Seasonal-means of error

• Several diagnostics including geopotential height, winds, velocity
potential, Hadley and Walker circulations, ocean waves

Seasonal-means of variability

• Blocking
• ENSO teleconnections
• Empirical Orthogonal Functions
• Planetary and synoptic activity
• Power spectra
• Tropical waves (including Madden-Julian Oscillation)

http://intra.ecmwf.int/plots/d/inspect/dir diagnostics/Diagnostics/

Table 1: Products within the on-line ‘Diagnostics Explorer’: A 5D view of the IFS. All diagnostics
are produced for operational forecasts (seasonal means) and experimental cycles (‘E-suites’). Some
diagnostics are produced for research experiments. ‘Initial Tendency’ diagnostics will be added. The
aim is a seamless and efficient diagnosis of the entire forecasting and data assimilation system for
the purpose of monitoring progress and informing development decisions. Other ECMWF Sections
produce more detailed diagnostics for their particular IFScomponent.

4 Data assimilation: Observations and analysis increments

In the data assimilation process, the aim is to produce an ‘analysis’ that is as close to the observations
as possible but also being (approximately) a valid model state. This analysis is then used as the initial
conditions for a weather forecast. The data assimilation starts with a ‘first guess’ forecast initiated from
a previous analysis. The ‘analysis increments’ are what is added to this first guess in the process of
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Figure 4: Mean forecast error for temperature at 500 hPa averaged over all forecasts initiated at
0 UTC and verifying within the season December–February 2008/9. The panels show the mean
forecast error for a selection of forecast lead-times. (a) At a lead-time of one day (D+1). (b) D+2.
(c) D+5. (d) D+10. Bold colours indicate that the mean forecast error is statistically significantly
different from zero at a significance level of 5%. Contours are used to extend the colour shading
scheme where necessary. The contour interval is the same as the shading interval.

arriving at the analysis. If the model used to make this first guess forecast has a bias (but that the
observations are initially assumed to be unbiased; see later), then the analysis increments (averaged over
sufficient data assimilation cycles) will be in the sense of correcting this model bias. Fig.5a shows
the operational analysis increments for 500 hPa temperature for the same December–February 2008/9
season as used for the forecast error results (Fig.4). In the tropics, where the Day 1 forecast error
indicated an erroneous warming by the model (Fig.4a), the analysis increment shows a compensating
cooling increment. Similar correspondence is apparent in the extratropical regions too.

Such temperature increments will only occur if there are ‘supporting’ observations. These observations
do not need to be direct observations of temperature since any observable quantity that can also be
derived from the model state has the potential to influence the analysis. For example, one could consider
as such a quantity the brightness temperature as observed bythe ‘AIRS’ infrared satellite channel 215.
This brightness temperature represents a weighted mean of temperatures between about 700 hPa and
300 hPa; with the weight maximising at around 500 hPa. Using these weights, it is possible to derive
the brightness temperature from the model state and thus make a comparison between the observed
value and that predicted in the first guess forecast. In essence, the data assimilation process iteratively
modifies the model state in order to minimise the observationminus first guess difference for all such
derived (and underived) quantities (subject to other constraints). Fig.5b shows the mean observation-
minus-first-guess for this brightness temperature. The pattern agreement between the analysis-minus-
first-guess (Fig.5a) and the observation-minus-first-guess (Fig.5b) indicates that AIRS channel 215 is
one source of observations that support the increments.

The average volume of AIRS channel 215 observations assimilated during a data assimilation cycle

82 ECMWF Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7−10 September 2009



RODWELL AND JUNG: DIAGNOSTICS AT ECMWF

(a) Analysis Increment Unit = 0.01K

-45 -15 -9 -3 3 9 15 51 -45 -15 -9 -3 3 9 15 51

(b) AIRS Obs-First Guess Unit = 0.01K

-86 -10 -6 -2 2 6 10 86

(c) AIRS Bias Correction Unit = 0.01K

-12 0 2 4 6 8 10 12

(d) AIRS Obs Count Unit = 0.1 /2 deg box/cycle

0 2 4 6 8 10 12 14

Figure 5: (a) Mean analysis increment of temperature at 500 hPa. (b) Mean ”first guess departure”
(observation minus first guess forecast) for the ”AIRS” satellite channel 215. The weighting function
for this channel maximises at about 500 hPa. (c) The mean biascorrection applied to the AIRS
observations. (d) The mean number of AIRS observations per 2o grid-box per assimilation cycle. The
plotted means are based on all 0 and 12 UTC data assimilation cycles within the season December–
February 2008/9. The bold and pale colours in (a) have the same interpretation as in Fig.4.

is indicated in Fig.5(d). Note the lack of data usage over land areas and reduced usage over the
cloud-affected Indonesian warm-pool region. Other observations fill these gaps. For example ‘AM-
SUA’ microwave channel 5 and radiosondes also provide information on 500 hPa temperatures and are
not affected by clouds.

Figure5(c) shows the bias correction applied to this AIRS data by thedata assimilation system. The
correction is deduced through a large-spatial-scale ‘fitting’ of the observations to the first guess forecast
and is known as variational bias correction, ‘VarBC’. It is possible that VarBC could mis-attribute some
systematic model error to observation bias. However, this is difficult in practice since some data (AM-
SUA microwave channel 14, radiosonde and ‘radio occultation’ data) are considered accurate enough
to not need bias correction and, in addition, the∼6 million observations assimilated during each cycle
of the data assimilation system are thought to provide∼20 independent vertical modes of information.
While it is vital to diagnose observation usage, Fig.5(b) demonstrates that VarBC does not remove all
systematic differences between the first guess and the observations – and the remaining differences are
more likely to be attributable to model error.

Hence it can be argued that model error is optimally diagnosed within the data assimilation system
and that data assimilation should be used as a tool within model physics development. This proposed
strategy is consistent with the fact that data assimilationis itself beginning to explicitly represent model
error (see, e.g.,Trémolet, 2007, on developments in ‘weak constraint 4D variational data assimilation’).
It is clear that there are synergies here that could be harnessed to advance the performance of forecasting
systems.

ECMWF Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7−10 September 2009 83



RODWELL AND JUNG: DIAGNOSTICS AT ECMWF

(a) Total

1000

800

600

400

200

CI = 0.2K/day (b) Convective CI = 0.6K/day (c) Dynamical CI = 0.6K/day

(d) Radiative

80ON 40ON 0O 40OS 80OS
1000

800

600

400

200

CI = 0.6K/day (e) L.S. Precip

80ON 40ON 0O 40OS 80OS

CI = 0.6K/day (f) VDIF & GWD

80ON 40ON 0O 40OS 80OS

CI = 0.6K/day

Figure 6: Temporal and zonal-mean initial temperature tendencies for processes as indicated. Av-
erage is over December 2008, 4 forecasts per day, with tendencies accumulated between T+1 and
T+7 hr. Based on model cycle is 33R1 run at TL159 L91. Values are accumulated on model levels.
The y-axis shows approximate pressure in hPa. Bold and pale colours have the same interpretation
as in Fig.4.

5 Initial tendencies

It has been argued that analysis increments are indicative of model error but how can this error be at-
tributed to a particular process within the model? Here someresults are presented that are based on 4D
variational data assimilation experiments using a 6-hr assimilation window for the month of December
2008. From the resulting analyses, short forecasts have been initiated. Figure6 shows zonal-mean tem-
perature tendencies integrated over leadtimes 1–7 hr and over the four consecutive forecasts made each
day and then averaged over the month of December. Figure6 (b–f) show these ‘initial tendencies’ for in-
dividual physical process (and the dynamics). The balance between individual processes highlights, for
example, how the radiation, Fig.6(d), (and its impact on the vertical diffusion of surface sensible heat
fluxes, Fig.6(f)) destabilises the vertical profile, while the convection, Fig.6(b), acts to restore equilib-
rium. The balance between all processes is not complete, however, since Fig.6(a) indicates a residual,
net (total) tendency with, for example, a warming in the tropical mid troposphere and a warming/cooling
dipole above. There is also an interesting cooling on the extratropical upper troposphere.

Figure 7(a) shows the zonal mean analysis increment of temperature based on the corresponding set
of the 6-hr window data assimilations. Notice how similar this is to (minus) the total initial tendency,
Fig. 6(a). If the upper-tropospheric dipole does represent modelerror, then the individual process ten-
dencies suggest that it is likely to be associated with convection, dynamics and/or radiation since these
are the processes that have strong magnitude at this ellevation. Consistent with this reasoning, Fig.7(b)
shows how the analysis increment is changed with the inclusion of the new ‘McICA’ radiation scheme
(which incorporates a Monte Carlo approach to cloud overlap). The change acts to reduce mean incre-
ments (c.f. Fig. 6a and b) and also reduces the root-mean-square of incrementsin the mid and upper
troposphere, Fig.6(c).

Initial tendencies have been applied in a number of other contexts including the assessment of climate
models (Rodwell and Palmer, 2007), the impacts of model aerosol changes (Rodwell and Jung, 2008b),
the over-active Asian Monsoon in the ECMWF forecast model (Rodwell and Jung, 2008a) and, more
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Figure 7: Temporal and zonal-mean analysis increments of temperature. Average is over December
2008, 4 data assimilation cycles per day. (a) Total increment for model cycle is 33R1. (b) Change in
mean increment when the McICA radiation scheme is introduced. (c) Change in RMS of increments
when the McICA radiation scheme is introduced. Data assimilation (outer-loop) uses resolution
TL159 L91. Values are accumulated on model levels. The y-axis shows approximate pressure in
hPa. Bold and pale colours have the same interpretation as inFig. 4.

recently, the physics of the Madden-Julian Oscillation.

6 Scale dependent error

Figure 8(a) shows (solid) mean-square-error in Z500 for the northern mid-latitudes (35–65oN) for
March–May 2008 (blue) and 2009 (red). It is clear that 2008 was better predicted than 2009 at all
lead-times. Moreover (as indicated by the 5% significance circles), the difference was sufficiently large
that it could not be accounted for simply by uncertainties insampling (from the same distribution). This
suggests that there was either a degradation in the forecastsystem or that the circulation in 2009 was
different (sampled from a different distribution). If the circulation was different, it could have been
inherently harder to predict (perhaps with more synoptic activity) or it could have involved flow-types
that the forecast system has particular problems with. Clearly this degradation in error could have rep-
resented a serious issue for ECMWF.

The dotted and dashed curves in Fig.8(a) show ‘activity’ in the forecast and analysis, respectively. The
activity is quantified as (twice) the mean-squared anomaly from climatology. It can be seen that 2009
was actually less active than 2008. As an aside note that, at the limit of no predictability, the error curve
should match the activity curves; hence there is substantial skill remaining in the forecasts even at D+10.

It is possible to linearly decompose mean-squared error (oractivity) into different spatial scales (based
on total wavenumber for the case of the globe, or zonal wavenumber for the case of latitudinal bands).
Figure8(b) shows the contribution to the total error and activity for the zonal wavenumber bands 0–
3 (thick; representing planetary waves) and 4–14 (thin; representing synoptic scales). It can be seen
that 2009 did have more synoptic activity than 2008 and this probably explains the increased synoptic
error in 2009 (as indicated by the solid thin curves). However, the striking observation is that there was
much less planetary-scale activity in 2009 and yet planetary-scale error was significantly larger. It is this
planetary-scale contribution that is statistically significant and that dominates the total changes seen in
Fig. 8(a).

Fig. 8(c) shows the same errors and activity based on the ERA-Interim reanalyses. Since ERA-Interim
uses a fixed (older) forecast cycle (31R2) and fixed model resolution (TL255), it is evident that this issue
with the planetary waves is not the result of recent system updates.

The ECMWF forecast system would appear, therefore, to have difficulties with the planetary wave
pattern experienced in 2009. Figure9(a) and (b) show March–May Z500 anomalies for 2008 and 2009,
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Figure 8: Mean-squared error (solid), analysis ‘activity’(dashed) and forecast ‘activity’ (dotted)
in northern mid-latitude (35–65oN) Z500 for March–May, 2008 (blue) and 2009 (red). ‘Activity’ is
defined in the text. (a) Zonal wavenumbers 0–63 from operational analyses and forecasts. (b) Zonal
wavenumbers 0–3 (thick) and 4–14 (thin) from operational analyses and forecasts. (c) as (b) but
using re-analyses and re-forecasts made within the ERA-Interim re-analyses project. Dots highlight
the year that is statistically significantly best at the 5% level. All data are normalised by the largest
value represented.
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Figure 9: March–May mean 500 hPa geopotential height anomaly relative to ‘ERA-40’ 1962–2001
climatology. (a) 2008. (b) 2009. The contour interval is 20m.

respectively. It can be seen that large-scale circulation anomalies were different for the two years with
a ‘filled-in’ Aleutian Low and a strengthened North AtlanticOscillation in 2009. Further diagnostic
work is required to understand why the forecast system has difficulties with this large-scale anomaly
circulation pattern.

7 SEEPS: A new score for the verification and diagnosis of precipitation

Contours in Fig.10 show (a) observed (i.e. analysed) and (b) D+4 forecast Z500 verifying at 12 UTC
on 23 August 2008. The correspondence is indicative of the improvements in large-scale skill over
recent years. However, it is clear that Z500 is not sufficientto characterise the entire flow. Precipitation
(shaded), for example, is rather poorly predicted over Europe in this example. This emphasises the need
to monitor other aspects of the forecast; for example aspects of direct relevance to the user community
and aspects representative of diabatic processes. Since precipitation is user-relevant and a consequence
of diabatic processes, it would appear to be a natural choice. Recent work in the Diagnostics Group
(Rodwell et al., 2010) has focused on developing a new approach to the verificationof precipitation that
should be particularly useful for monitoring progress and for guiding development decisions, as well as
for the initial diagnosis of forecast error. The approach, or score, is called here ‘Stable Equitable Error
in Probability Space’ (SEEPS). It is a three-category errorscore that incorporates four key principles:

1. Error measured in ‘probability space’ (Ward and Folland, 1991). The climatological cumulative
distribution function (see later) is used to transform errors into probability space. This allows the
difficult distribution of precipitation to be accommodatedin a natural way and reduces sampling
uncertainty associated with extreme (possibly erroneous)data.

2. Equitability (Gandin and Murphy, 1992). By applying the equitability constraints, a forecast sys-
tem with skill will have a better expected score than a randomor constant forecast system. In
addition, scores from different climate regions can be readily combined.

3. Refinement (Murphy and Winkler, 1987). A constraint is devised to encourage a forecast system
to predict all possible outcomes; thereby promoting a better distribution of forecast categories.
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Figure 10: 500 hPa geopotential height field (Z500, contoured with interval 50m) and 24-hour ac-
cumulated precipitation (shaded, mm). (a) ‘Observations’: analysed Z500 and short-range (D+0–
D+1) forecast precipitation centred at time 12 UTC on 23 August 2008. (b) Forecast: D+4 forecast
Z500 and D+312–D+41

2 forecast precipitation verifying at the same time.

4. Reduction of sensitivity to sampling uncertainty, for sufficiently skillful systems, by ensuring that
all perfect forecasts are accorded zero error.

Figure11shows the cumulative distribution function (cdf) based on aclimatology of station observation
data for Balmoral, Belgium in October. It can be seen that theclimatological probability of dry weather
at this location and in this month isp1 = 0.45. In SEEPS, the three categories (‘dry’, ‘light precipitation’
and ‘heavy precipitation’) are defined by the climatological probabilities p1, p2, p3. Experimentation
suggests thatp2/p3 = 2 is a good way to define ‘light’ and ‘heavy’ precipitation. For Balmoral in Octo-
ber, this gives a probability for light precipitation ofp2 = 2

3(1− p1) = 0.37. The precipitation amount
corresponding to the probabilityp1 + p2 = 0.45+ 0.37 = 0.82 is 5mm. Hence heavy precipitation is
defined as (24 hour) accumulations greater than 5mm. Since the values ofp1, p2, p3 are dependent on
location and month of the year, the definitions of ‘light’ and‘heavy’ precipitation also vary. In this way,
the SEEPS score adapts to the local climate and assesses the salient aspects of local weather.

The SEEPS error matrix,{sv f}, is given in Table2, wheref is the forecast category andv is the verifying
observation category. The sample-mean SEEPS score,S̃, is then calculated using

S̃= ∑
v, f

p̃v fsv f , (1)
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Figure 11: Cumulative distribution of 24-hour precipitation (12–12UTC) for Balmoral, Belgium in
October based on 1980–2008 observations. The extreme rightof the graph corresponds to the 95th

percentile of the distribution. Dotted lines indicate the sub-division of the wet days in the ratio 2:1.

Obs
Prob p1 p2 p3

Cat
v

1 2 3

FC f
1 0

1
1− p1

1
p3

+
1

1− p1

2
1
p1

0
1
p3

3
1
p1

+
1

1− p3

1
1− p3

0

Table 2: Error matrix for SEEPS error score. f is the forecastcategory and v is the verifying
observation category. p1, p2 and p3 are the climatological probabilities of ‘dry’ conditions,‘light
precipitation’ and ‘heavy precipitation’, respectively.

where{p̃v f} is the sample joint distribution.

The Gerrity sequence of skill scores (Gerrity, 1992) is derived by taking the mean ofn−1 2-category
skill scores that are asymptotically equivalent (i.e. for large sample size) to the ‘Peirce Skill Score’
(Peirce, 1884). In a similar way, the SEEPS error score can also be written as the mean of two 2-category
error scores of the form shown in Table3 (wherepandq are the climatological probabilities of categories
1 and 2, respectively. The first 2-category score in the mean uses category 1 as dry weather(p= p1) and
category 2 as ‘light’or ‘heavy’ precipitation(q = p2 + p3). The second 2-category score uses category
1 as dry weatheror ‘light’ precipitation (p = p1 + p2) and category 2 as ‘heavy’ precipitation(q = p3).
Interesting, the 2-category score defined by the error matrix in Table3 is also asymptotically equivalent
to (1-) the Peirce Skill Score. The only difference between SEEPS and (1-) the Gerrity Skill Score is
that SEEPS is less sensitive to sampling uncertainty for sufficiently skillful forecast systems. However,
this difference is important because it enables sample-mean SEEPS scores to reflect more precisely the
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Obs
Prob p q

Cat
v

1 2

FC f
1 0

1
q

2
1
p

0

Table 3: Error matrix for a 2-category score from which SEEPScan be constructed. f is the forecast
category and v is the verifying observation category. p, q are the climatological probabilities of
categories 1 and 2, respectively.

true skill of the forecast system.

Other desirable attributes, common to both SEEPS and the 3-category Gerrity score, are penalties for
‘hedging’ (whereby forecasts for 1 category are altered to another category with no physical insight) and
the promotion of refinement and discrimination.

7.1 Precipitation errors identified by SEEPS

SEEPS can be used as a first step in the diagnosis of forecast error. Fig. 12(a) shows observed 24-
hour accumulated precipitation (in mm) on 16 December 2008,and Fig.12(b) shows the corresponding
D+4 forecast precipitation. (D+4 is chosen because of ECMWF’s mandate to improve medium-range
forecasts). Notice that large parts of northern Europe werepredicted to have drizzle but were actually
‘dry’ (pink). Since this region is generally wet in December(Fig. 12c) and an incorrect forecast for a
likely category is strongly penalised by SEEPS, the differences in precipitation categories (c.f. Fig. 12d
and e) lead to relatively large SEEPS scores (Fig.12f). This partly explains why the mean European
score for this forecast was one of the worst in 2008. Verification at the dry/wet boundary has important
physical significance because of the existence of positive feedbacks with latent heating. From the users’
perspective, of course, drizzle is also of great relevance.Hence it is desirable that SEEPS can highlight
this error.

Clearly, SEEPS can also identify other forecast errors suchas a failure to predict heavy large-scale
precipitation and the incorrect positioning of convectivecells.

Note that the scores in Fig.12(f) are plotted with variable sizes to indicate their relative weight within
an area-mean score – deduced to take account of the heterogeneous observation density.

7.2 Extratropical-mean SEEPS scores

Area-mean scores have been produced, taking the station network density into account, for the period
1995-2008. Plots for the Extratropics (north of 30oN and south of 30oS), based on∼2000 station
observations per day, are shown in Fig.13. Figure13(a) shows the annual mean scores based on the
12UTC operational forecasts as a function of leadtime. The colours indicate the years. There is a general
progression to lower errors over these 14 years. The black curve shows the most recent year (2008).

The 70% confidence intervals plotted in Fig.13(a) show the degree of uncertainty in the annual means.
They are deduced from the daily scores taking autocorrelation into account following the methodology
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Figure 12: (a) Observed precipitation accumulated over 24 hours 2008/12/15 12UTC to 2008/12/16
12UTC. (b) Forecast precipitation accumulated over leadtimes 72 to 96 hours and valid for the same
period as the observations. (c) Probability of a ‘dry’ day inDecember, based on the 1980–2008
climatology. (d) Observed precipitation category. (e) Forecast precipitation category. (f) SEEPS.
Units in (a) and (b) are mm. Squares in (f) are plotted with areas proportional to the weight given
to each station in the area-mean score.

of von Storch and Zwiers(2001). If one mean lies within the confidence interval of another,then there is
no significant difference. If confidence intervals just touch, then mean scores are significantly different
at the 14% level, assuming equal variances. It can be seen that it is generally not possible in yeary to
demonstrate that forecasts are better than in the previous yeary−1: it takes a few years for improvements
to become unequivocal.

It can be seen that by D+10, the SEEPS score is tending towards1. This is one of the desirable features
associated with equitability: by construction, expected SEEPS scores for all stations and all months of
the year lie between 0 and 1 and this makes the aggregation of all the stations within an area a meaningful
and useful concept (despite sub-regions having very different climates).

Fig.13(b) shows (light green) daily SEEPS scores at D+4 for the sameoperational forecasts. The general
improvement over the years is clearly apparent when a 365-day running mean is applied (black). The 31-
day running mean (dark green) highlights a seasonal cycle inSEEPS scores. This feature is common to
many precipitation scores and reflects the fact that large-scale precipitation is generally easier to predict
than convective precipitation.

Fig. 13(c) shows the annual-mean of the leadtime at which the SEEPS score for each daily forecast first
reaches a value of 0.6. The value of 0.6 was chosen because it corresponds approximately to the present
annual-mean score at D+4. The red curve relates to the operational forecast data shown in Fig.13(a)
and (b). The gains in leadtime amount to∼2 days over the 14-year period. The graph is annotated to
show when the model’s resolution was changed during this period and also to show when one key model
cycle (25R4) was introduced. This model cycle had many updates that could have directly affected
the forecast of precipitation. However, there were 40 packages of updates applied to the operational

ECMWF Seminar on Diagnosis of Forecasting and Data Assimilation Systems, 7−10 September 2009 91



RODWELL AND JUNG: DIAGNOSTICS AT ECMWF

1 2 3 4 5 6 7 8 9 10
Leadtime (Days)

0.4

0.6

0.8

1.0

S
E

E
P

S

1996 1998 2000 2002 2004 2006 2008 70% Conf.

(a) ExTrop SEEPS Annual Average

1996 1998 2000 2002 2004 2006 2008               
Date

0.4

0.6

0.8

1.0

S
E

E
P

S
 a

t 
D

+4

(b) ExTrop SEEPS at D+4

Daily
1 Month Running Mean
1 Year Running Mean

               
Year

3

4

L
ea

d
ti

m
e 

(d
ay

s)

1996 1998 2000 2002 2004 2006 2008

(c) ExTrop Leadtime(SEEPS = 0.6)

T213

T255

T319

T511

25R4

T799

31R2

Operational forecast

ERA Interim re−forecast

Figure 13: Extratropical-mean SEEPS results. (a) Annual-mean of daily operational scores as a
function of lead-time. 70% confidence intervals for these annual means are indicated. (b) Time-
series of operational scores at D+4 with running means as indicated. (c) Annual-mean lead-time
at which the score rises to 0.6 based on the operational forecasts and on the forecasts made during
the production of the ERA-Interim re-analysis, as indicated. The extratropical average is over the
combined region north of 30oN and south of 30oS, taking account of observation density.
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data assimilation and forecasting system over this period and many of these will have contributed to the
improvement.

The blue curve in Fig.13(c) shows comparable results for re-forecasts made within the ERA-Interim
re-analysis project. ERA-Interim is based on a single modelcycle (31R2) and a single model resolution
(T255). The date that this cycle was first used in the operational forecast system (12 December 2006)
is also indicated on the graph. The differences between the red and blue curves at this date highlight
the impact of resolution. The flatness of the ERA-Interim SEEPS curve is striking. It indicates that the
increase in available sources and volume of data used to initialise the forecast (a 100× increase over
this period) has had almost no lasting impact on the prediction of precipitation. Instead, the lasting
improvements in the extratropical operational scores mustbe due to improvements to model physics,
increases in model resolution, and to the way the data assimilation system has improved to better use
the available observations. New data sources will target more directly the hydrological cycle so the
conclusions from the 1995–2008 period may not hold in future.

8 Discussion

In order for Diagnostics to continue to promote forecast system development, it must adapt to the new
reality; of ever more skilful large-scale medium-range prediction, higher model resolution and an in-
creased emphasis on weather parameters and severe weather.

The issue of uncertainty in diagnosis is increasingly important. Examples of how two different sources
of uncertainty can be reduced have been discussed.

• By diagnosing error earlier-on in the forecast, before interactions between the physical processes
and the resolved flow have had time complicate the picture.

• By designing scores that are less sensitive to sampling uncertainties.

It is also important to benefit from the synergies that derivefrom a more seamless diagnosis of the
forecast system. In this context, the benefits of diagnosingmodel error at short lead-times (using ‘initial
tendencies’) will be enhanced when model error is explicitly represented in data assimilation.

Recent efforts have focused on the development of an equitable precipitation score that can be used to
monitor and guide system development and also be used as a tool in the diagnosis of forecast error.
The scope for opening-up new avenues of diagnostic researchwith this score is becoming apparent.
For example, systematic precipitation score differences are emphasising the need to predict particular
synoptic situations better – such as depressions over the Mediterannean.
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