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1. Introduction 
Clouds are important for weather forecasting and climate prediction, not only for their direct role in 
the hydrological cycle, but for their interaction with radiation and the dynamics of the atmosphere. In 
order to improve our representation of clouds in atmospheric general circulation models (GCMs), we 
require observations that can describe the cloud field to validate and constrain the model 
parametrization schemes. Fortunately, the quantity, quality and variety of observations of cloud has 
increased over recent years due primarily to new passive (radiometers) and active (radar, lidar) 
instruments both from long-term ground based monitoring sites (Ackerman and Stokes, 2003; 
Illingworth et al., 2007) and on-board satellites (e.g. Stephens et al., 2002). With a model simulation 
and a set of cloud observations we can diagnose systematic errors in the cloud field. This may suggest 
that improvements in the model cloud parametrization scheme are required, but cloud is the result of 
many processes acting together and the error may actually be due to deficiencies in the representation 
of the radiation, convection, turbulence, cloud physics or the dynamics, all of which interact with each 
other (Figure 1). The process of model improvement is therefore not straightforward and can be 
complicated by uncertainties in the observations, differences in observed and model quantities, and 
compensating errors in the model. The aim of this paper is to highlight some of the main issues when 
diagnosing model systematic errors for clouds and precipitation in Numerical Weather Prediction 
(NWP) and climate models, with a focus on methodologies for diagnosing errors, comparing model 
cloud variables with remote sensing observations, and understanding and validating the representation 
of physical processes in the model. It is by no means a comprehensive description of the field, but will 
hopefully provide a few insights into the process of model parametrization improvement. 

 
Figure 1: Schematic of the process of diagnosing cloud-related model systematic errors and 
improving model parametrization schemes. (from A. Tompkins). 
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2. Methodology for diagnosing model errors and improving 
parametrizations 

 

Atmospheric general circulation models (GCMs) are used across a range of resolutions for Numerical 
Weather Prediction (NWP), monthly and seasonal forecasting, decadal and long-term climate 
prediction. One aspect relevant to the evaluation of all global modelling systems is the assessment of 
systematic errors in the “climate” of the model with the observations that are available (observational 
issues are discussed in the next section). Model climate evaluation in a long (year or multi-year) 
model integration can provide information on the main problem areas. However, as mentioned earlier, 
there is the possibility for feedbacks between different model errors, so an apparently poor 
representation of clouds may not be a problem with the cloud scheme, but be due to problems in the 
dynamical forcing or complex interactions between other processes in the model. For NWP, in 
addition to assessing the climate of the model it is possible to routinely compare models with 
observations in the data assimilation and short-range forecast environment, which allows the 
separation of model errors directly associated with physical processes from the overall drift and 
feedbacks of longer climate integrations (Rodwell and Palmer, 2007; Williams and Brooks, 2008). 
However, even when a general problem has been identified, it can be difficult to attribute the error to 
a specific deficiency and it is necessary to focus even more closely on particular physical processes in 
the model. 

Jakob (2003) describes a strategy for the evaluation of cloud parametrizations in GCMs, which 
consists of identifying major problem areas through simulations of the model climate, focussing in on 
specific meteorological regimes that are likely to be contributing to the problem, identifying 
representative case studies, and investigating the problem in detail in these case studies to improve the 
parametrization. The whole process is then repeated with the improved parametrization (Figure 2). 
The focus on regimes provides the compromise between individual case studies (which may not be 
representative or conclusive), and general statistics, which may obscure the link to particular physical 
processes. Different approaches are required to isolate different types of cloud regimes. For certain 
regimes that dominate a particular geographic area, such as the maritime stratocumulus decks in the 
eastern oceanic basins or the trade-cumulus regions, it is relatively straight-forward to limit the 
diagnostics to these areas with certain criteria to distinguish the cloud type (e.g. high cloud fractions 
with tops below a certain height). Ahlgrimm et al. (2010) provides an example of an evaluation of the 
stratocumulus regime. For other transitory cloud systems it is necessary to devise more complex 
compositing techniques so that key dynamical and hence cloud structures remain intact. For example 
Klein and Jakob (1999) describe a technique to composite extra-tropical cyclones to assess cloud 
errors in relation to the cyclone centre. Other examples of compositing by dynamical regime include 
Webb et al. (2001), and Tselioudis and Jakob (2002). 

Determining the regime where the systematic error is dominant brings us one step closer to solving 
the problem, but it often does not provide enough information to isolate the source of error. Choosing 
or designing a particular case study that is representative of the regime and highlights the specific 
problem can then be used to focus on the relevant physical processes through comparison with more 
detailed models and sensitivity studies. 
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The Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) (Browning 
et al., 1993; Moncrieff et al., 1997; Randall et al., 2003) has provided a framework for cloud 
parametrization development and co-ordination of case studies to investigate particular model 
problems for different cloud types using Cloud System Resolving Models (CSRMs) and Single 
Column Models (SCMs – a single column model of a GCM). The GCSS paradigm is to use 
observations to evaluate parametrizations of subgrid-scale processes in CSRMs, to evaluate CSRM 
results against observational datasets, then to use the validated CSRMs to simulate cloud systems 
forced by large-scale observations, and finally to evaluate and improve SCMs by comparing to the 
observations and CSRM diagnostics. In principle, the improvements in the SCM can then feed 
directly into the full GCM, although feedbacks in the global system and compensating errors can 
make the implementation of these physically-based improvements more difficult. An example of the 
GCSS process for the simulation of a tropical squall line is provided by Redelsperger et al. (2000) and 
Bechtold et al. (2000). CSRMs are validated directly with observations. A reference CSRM then 
provides a baseline for the assessment of a number of SCMs with sensitivity results providing 
information for the further development of GCM convection schemes.  

 

 
Figure 2: Schematic of the process of diagnosing cloud-related model systematic errors and 
improving model parametrization schemes with steps:  
 (1) identify major problem areas,   
 (2) identify major problem regimes,   
 (3) identify typical cases,  
 (4) identify detailed problems  
 (5) improve parametrization.  
(From C. Jakob) 

3. Comparing model and observations: Uncertainties and limitations 
The question “What is a cloud ?” may at first glance have an obvious answer, but how do we define 
cloud boundaries, at what point do falling ice particles become precipitation rather than cloud, how do 
we class sub-visible cirrus, how do we compare a model representation of a cloud in a partially cloudy 
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1°x1° grid box with 1 km resolution remote sensing observations…..? A prerequisite for a model-
observation comparison is an appropriate transform, either from model to observation space, or from 
observation to model space, in order to compare “like-with-like”. These transforms need to take 
account of not only the different parameters observed and prognosed by the model, but also the 
different spatial scales in the model and observations, and the uncertainties and error characteristics of 
the observations. If these differences are not understood or dealt with appropriately, then the model 
evaluation can lead to misleading results. Here I focus on three aspects relevant to comparing models 
and observations, using an example of ECMWF model cloud and precipitation field evaluation with 
vertical profile observations from the 94GHz radar on-board the CloudSat satellite (Stephens et al., 
2002). Although the example is specific to one observation type, the issues are generic and relevant 
for a wide range of observations. 

3.1. Comparing model and observed parameters  

One problem arises from the different quantities that are provided by the model and observed by the 
instrument. This particularly applies to remote sensing observations such as radiances, radar 
reflectivity or lidar backscatter, to be compared with model parameters such as ice/liquid water 
contents and cloud fraction. In order to transform to a common physical quantity, one option is to use 
a forward operator to process model output in terms of the observed parameters. For example, using a 
radar reflectivity forward model (e.g. Haynes et al. 2007) to calculate the attenuated radar reflectivity 
for the 94GHz CloudSat radar from the model stratiform and convective cloud and precipitation fields 
(an example is shown in Figure 3). In this case there is additional information required (which may be 
predicted or diagnosed in the model) such as hydrometeor particle size distributions and particle 
characteristics. There is, however, some ambiguity whether the source of reflectivity differences is 

 
Figure 3: Example cross-section of 94GHz attenuated radar reflectivity from CloudSat (upper 
panel) and from a radar forward operator applied to the ECMWF IFS model cloud and 
precipitation fields (lower panel) along the satellite track through a southern hemisphere mid-
latitude front. 
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from the amount of condensate prognosed by the model or from the microphysical assumptions that 
are used for the forward model. It is therefore also of interest to follow the reverse transform where 
this is feasible, for example using derived observation products (such as the CloudSat Level-2 
products providing cloud mask and estimates of cloud phase and water contents). Delanoë and Hogan 
(2010) describe a method of deriving ice water content from the radar, lidar and radiometer onboard 
the A-Train satellites, combining data from different instruments to compare directly with the 
ice/snow prognostic fields in the model. The synergy of different instruments providing additional 
constraints is an important part of this methodology. There are still a number of assumptions that need 
to be made in estimating the model quantity from the observations, but approaching the validation 
problem from different angles with different sets of assumptions reduces the chance of mis-
interpreting any results and provides increased confidence in the model evaluation. 

3.2. Appropriate spatial and temporal matching  

There is often a spatial and temporal mismatch between models and observations. The model 
quantities will be representative of the resolution of the model although sub-grid information such as 
cloud fraction may be available, whereas the observations may be point locations or small footprint 
satellite tracks. Again, returning to the CloudSat example, for a fair comparison it is necessary to 
extract the model data along the satellite track at the appropriate time (the model data in Figure 3 is 
matched with the CloudSat track and observation time) and then address the mismatch in spatial 
scales in the model (e.g. 50 km) and observations (~1 km). Sub-grid variability may be predicted by a 
model, for example in terms of a cloud fraction and an assumption of the vertical overlap of cloud. In 
which case there are two approaches to overcome the spatial mismatch problem; (1) average 
observations to a model representative spatial scale (e.g. the grid scale), and (2) statistically represent 
model sub-gridscale variability to compare directly with the observations. These two options are 
shown schematically in Figure 4. In option (2) above, the sub-grid scale distribution of cloud elements 
and vertical overlap is represented by a cloud generator (e.g. Räisänen et al. 2004). For the CloudSat 
example, the sub-grid cloud generator approach has the advantage that it is able to better represent the 
impact of attenuation in the model calculated vertical profiles of radar reflectivity. Representativity 
errors relating to statistical sampling and the fact that CloudSat samples a narrow (1D) track 
compared to the model 2D grid boxes are other issues that are not explored further here. 
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Figure 4: Schematic of two approaches to addressing the spatial mismatch between the 
high resolution CloudSat observations and lower resolution model; (a) using a cloud 
generator on the model cloud fraction field to produce sub-columns representing the high 
resolution of the observations, (b) averaging the high resolution observations to the lower 
resolution model grid. 
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3.3. Observation error characteristics and limitations  

All observations have associated error characteristics and limitations in what they can observe. 
Different observational instruments will detect different characteristics of clouds and understanding 
these limitations is an important part of the process of model evaluation. For example, Li et al. (2008) 
and Waliser et al. (2009) compare global liquid and ice water paths, respectively, from a number of 
different satellite products with widely varying estimates. Some of the differences will be due to 
deficiencies in algorithms, but a substantial part will be due to the characteristics of the different 
instruments, either passive or active, observing different components of the cloud and precipitation 
field. This is the motivation for using a forward operator on the model data to compare against the 
observations, using all the relevant data available from the model to capture the limitations of the 
observations and thus perform a fairer comparison. However, for the alternative approach of deriving 
model variables from the observations, there is benefit in combining observational information from a 
variety of different sources to provide a more complete picture of the cloud field. 

The example of the CloudSat radar and CALIPSO lidar can be used to illustrate the above. The 
CALIPSO lidar is most sensitive to small particles (backscatter is proportional to particle diameter 
squared, D2), so the lidar is dominated by a return from cloud droplets and small ice particles, making 
it particularly useful for observing water clouds and thin cirrus. However, the backscatter signal is 
quickly attenuated by small water droplets and often only sees the top of water cloud, obscuring 
precipitation and cloud layers lower in the atmosphere. In contrast the CloudSat radar is more 
sensitive to large particles (reflectivity α D6 ) and therefore is dominated by precipitation as well as 
cloud containing larger particles. However, the radar can miss cloud with small particles such as thin 
cirrus and many liquid water clouds. In the forward modelling approach, the radar or lidar forward 
operator has assumptions built in to emulate the observation limitations (i.e. radar sensitive to larger 
particles, attenuation, sensitivity threshold). However, it is apparent that the radar and lidar data 
sources are to a large extent complementary in what they observe, so a combined product has the 
potential to give a more complete picture of the occurrence of hydrometeors as well as water contents 
and other properties of cloud and precipitation (e.g. CloudSat GEOPROF-LIDAR product or the 
combined radar/lidar product developed at the University of Reading - Delanoë and Hogan, 2010).  

3.4. Summary 

The main points from the above discussion can be summarised by the following: 

• Limitations and uncertainty: 

o All cloud observations have limitations; they provide a partial picture. We need to 
know the error characteristics of the observations (which are not always known!). 

• Synergy of instruments:  

o Different observation sources have different strengths and weaknesses. We need to 
make the most of complementary information from different instruments. 

• Comparing like-with-like: 

o Model and observed quantities need to be compared in “model-space”, or 
“observation-space”, taking account of spatial and temporal differences.  
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• Diagnosing model problems from different angles 

o Using different approaches and different instruments to help to diagnose model 
systematic errors can provide increased confidence in the robustness of results. 

4. Some Concluding Remarks 
This short paper has briefly explored a few of the questions arising when diagnosing model systematic 
error, with a focus on cloud and precipitation parametrization. It is by no means a comprehensive 
discussion, but touches on some of the issues a model developer is faced when evaluating an 
atmospheric model. Validating the model climate, determining systematic errors for 
composite/regimes and exploring individual case studies are all necessary steps, with the problems of 
different parameters, different spatial scales and limitations/error characteristics of the observations. It 
is crucial to obtain a fair comparison between model and observations in order to identify real model 
performance and deficiencies, rather than artefacts of the representativity problem. The evaluation 
process is not always straight forward and there is inevitably some uncertainty in the robustness of the 
model-observation comparisons. This is why it is important to approach the model evaluation from 
multiple angles, explore the sensitivity to uncertainties in the assumptions, understand the 
characteristics and limitations of both observation and model and focus on improving the 
representation of physical processes.  

Model developments in GCMs over the next few years will lead to increasingly complex 
representations of cloud and precipitation with the possibility of additional predicted variables 
representing different hydrometeor categories, aerosol and information on sub-grid variability. This 
will provide further challenges for model evaluation in order to constrain the additional degrees of 
freedom introduced into the model, but observational data and innovative evaluation techniques will 
always remain a central activity in the process of model parametrization improvement and continued 
reduction of model systematic errors.  
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