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The main motivation for investing into research activities on Numerical Weather Prediction (NWP) lies in 
the expectation that improved weather forecasts lead to enhanced socio-economic benefits. As such, the 
ultimate goal of all research related to NWP is to improve the quality and utility of weather forecasts. There 
are of course many ways to achieve this goal, ranging from work on the model system per se to research 
on the provision of user-optimized forecast products. All of these activities are valuable and necessary 
contributions in their own right, and therefore none of them should be judged as more important than others. 
On the contrary, only through the complementary diversity of approaches can the overall goal be achieved.

Post-processing of Direct Model Output (DMO) from NWP models is one of the many ways to improve 
weather forecasts. The term ‘post-processing’ encompasses any means of manipulating the DMO  
to provide improved predictions. However, here we will concentrate on two specific methods:

•	 Multi-model. Combining single-model forecasts from several models into a multi-model forecast.

•	 Reforecast-calibration. Calibrating single-model forecasts with the help of specific training datasets.

Both approaches considered here have proven in the past to be successful in improving forecast quality. 
For example, the concept of multi-model forecasting has been extensively studied in the context of 
seasonal forecasting in the DEMETER and ENSEMBLES projects (see ECMWF Newsletter No. 99 & 103). 
It was concluded that overall the multi-model ensemble seems the most reliable approach for seasonal 
forecasts. However, on the medium-range timescale, it is less well established whether the multi-model 
concept is as successful as in the case of extended-range forecasting. Thus, one of the main goals  
of the THORPEX Interactive Grand Global Ensemble (TIGGE) project (see ECMWF Newsletter No. 116)  
is to investigate the applicability and potential benefits of the multi-model concept for medium-range 
weather forecasts. The method of calibrating the Ensemble Prediction System (EPS) forecasts based  
on a reforecast dataset has also been studied in the past, and its potential of improving predictions  
has been documented (see ECMWF Newsletter No. 117).

One can expect that both post-processing methods, the multi-model concept and the reforecast 
calibration, have their own strengths and weaknesses. Hence it is only natural to compare the benefits 
(and costs) of both approaches, and to investigate the mechanisms behind the potential improvements 
(the main aim of this article). However, in doing so it is not intended to make a final judgement on which 
is the better method. Instead the aim is to provide some information that helps users decide which 
approach might be the more appropriate choice for their specific circumstances.

Performance of TIGGE multi-model versus reforecast-calibrated forecasts
The TIGGE archive at ECMWF contains global ensemble predictions from ten modelling centres.  
For detailed information on the individual characteristics of the TIGGE models (e.g. resolution  
and number of ensemble members) refer to the ECMWF TIGGE website: http://tigge.ecmwf.int.

Since the predictions from the Météo-France model are limited to a lead time of 108 hours, here we consider 
only the remaining nine model contributions: Bureau of Meteorology (BOM, Australia), China Meteorological 
Administration (CMA), Meteorological Service of Canada (CMC), ECMWF, UK Met Office, National Centers 
for Environmental Prediction (NCEP, USA), Japan Meteorological Agency (JMA), Korea Meteorological 
Administration (KMA) and Centro de Previsão de Tempo e Estudos Climáticos (CPTEC, Brazil).

Benchmarking the EPS
A first impression on the level of skill of these nine single-model systems is given by comparing the 
Continuous Ranked Probability Skill Score (CRPSS) of the 850-hPa temperature over the northern 
hemisphere for forecasts of the winter season (DJF – December, January, February) of 2008/09 (Figure 1). 
The performance of these forecasts varies significantly for the different models, with the CRPSS dropping 
to zero for the worst models at a lead-time of five days and for the best models around day 15. That is, 
the time range up to which the model predictions are more useful than the reference forecast, which is in 
this case the climatological distribution, varies considerably from one model to another.
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Because not all forecasting centres integrate their models out to 15 days, the performance of the multi-
model ensemble combining all nine single-model systems can only be assessed up to the maximum 
forecast range covered by all individual models, which is nine days. The multi-model ensemble is 
constructed by giving equal weights to all contributing members, noting that through the different number 
of members in the individual model systems an implicit weighting will be applied. That is, model systems 
with a higher number of ensemble members will have a greater impact in the final multi-model prediction 
than model systems with fewer members. Except for the first two forecast days, this multi-model 
prediction (TIGGE-9) does not significantly improve over the best single model (i.e. the ECMWF EPS). 
Similar results can be observed for other variables such as the bias-corrected 2-metre temperature.

Note that all results presented in this article are based on using ERA-Interim reanalyses as verification 
dataset. Further information on the rationale of this choice can be found in Box A.

The inability of the multi-model ensemble to significantly improve over the best single-model system 
might be caused by the fact that it consists of all nine single models (i.e. it includes the models with rather 
poor performance). To eliminate these possibly detrimental contributions, a new multi-model (TIGGE-4) 
containing only the four best single-model systems with lead time up to 15 days was constructed and 
compared to the four contributing single models from the National Meteorological Services in Canada 
(CMC), UK (Met Office) and the USA (NCEP), plus ECMWF (Figure 2). In fact, this reduced version of the 
full multi-model ensemble now gives significantly improved scores over the whole forecast period and 
for both upper-air and surface variables. This result indicates that a careful selection of the contributing 
models seems to be important for medium-range multi-model predictions.
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Figure 2 Continuous Ranked Probability Skill 
Score (CRPSS) versus lead time for 850-hPa 
temperature forecasts. The TIGGE-4 multi-model 
composed of the four best single models with 
lead-time up to 15 days is shown in addition 
to the CRPSS of the four contributing single 
models. Symbols are only plotted for cases in 
which the single-model score significantly differs 
from the multi-model score on a 1% significance 
level. All scores are for forecasts starting in 
DJF 2008/09 and averaged over the northern 
hemisphere (20°–90°N).
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Figure 1 Continuous Ranked Probability Skill 
Score (CRPSS) versus lead time for 850-hPa 
temperature forecasts. The TIGGE-9 multi-
model composed of nine single models and the 
scores of all nine contributing single models 
are shown. Symbols are only plotted for 
cases in which the single-model score differs 
significantly from the multi-model score on a 1% 
significance level. The significance levels have 
been assessed using a paired block bootstrap 
algorithm following Hamill (1999). All scores are 
for forecasts starting in DJF (December, January, 
February) 2008/09 and averaged over the 
northern hemisphere (20°–90°N).
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Choice of verification dataset
A number of considerations have to be taken into 
account when choosing the verification dataset 
to assess the performance of different single 
models and multi-models. On the one hand, using 
model independent verification data, such as 
station observations, ensures a fair treatment of 
all models. On the other hand, comparisons of 
the model performance over larger areas or for 
variables not directly available in observational 
datasets require the use of analyses, which 
commonly exhibit some of the bias of the forecast 
model used. There are a number of possibilities 
for the choice of analysis product in the context of 
comparing single and multi-model predictions.

• Each model’s own analysis could be used  
as the verification dataset. However, there  
are two issues with this option: (a) the multi-
model ensemble has no own analysis, and  
(b) it would be difficult to draw conclusions  
from the resulting scores and skill scores  
when their calculation is based on different 
reference datasets.

• The average of all analyses of the participating 
models or some weighted average, also called 
multi-model analysis, could be used. Such 
an average analysis would fulfil the condition 
of being as fair as possible to all models 
participating in the comparison. On the other 
hand, averaging all analyses, including less 
accurate ones, might not necessarily lead 
to an analysis closest to reality. Additionally, 
such a multi-model analysis cannot be used 
as verification dataset in this reforecast-
comparison study because it is only available 
for the TIGGE forecast period (i.e. from 2007 
onwards). This is not sufficient because the 
calibration of ECMWF forecasts based on the 
reforecast training dataset requires a consistent 
verification dataset for the entire training and 
test period (i.e. the verification dataset has  
to be available from 1991).

A possible compromise between the requirement 
of being as fair as possible to all models involved  
and being as accurate as possible is to choose 
the ECMWF ERA-Interim reanalysis as verification 
dataset. The two main advantages of this choice 
are the acknowledged high quality of this analysis 
product and the availability of this dataset for the 
entire training and test period (1991 up to near-
real time). The obvious drawback of this option 
is that the ERA-Interim reanalyses are certainly 
not entirely independent of one of the models in 
the comparison, the ECMWF model. As such, 
one might expect that it is more difficult for non-
ECMWF models to achieve good scores when 
verified against the ERA-Interim reanalysis. 
However, it can be demonstrated that the skill 
scores of all models are affected by the choice 
of verification dataset. Using ERA-Interim as 
verification leads to diagnosing a reduced 
performance, in particular for early lead times. 
For longer lead times, the impact tends towards 
negligible differences.

It is important to note that the performance of 
all forecasts is similarly affected by the choice of 
verification dataset, i.e. there is only little impact 
on the relative performance of individual models  
with respect to each other. Although model 
systems that are quite close in their performance  
(like CMC, NCEP and Met Office) can change their 
ranking relative to each other, the choice  
of verification has no impact on the clear 
superiority of the ECMWF EPS.

For surface variables such as 2-metre temperature 
the impact of using ERA-Interim is larger, but 
can be reduced by applying a bias-correction 
procedure. Overall, we regard using ERA-Interim 
analyses as general verification dataset to be the 
best option for this study. Also by keeping in mind 
the sensitivities towards the choice of verification 
dataset one can ensure a fair interpretation of  
the results.
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Illustration of the impact of the verification 
dataset on the relative skill of the predictions. 
Negative values indicate a worse performance 
when verified against ERA-Interim reanalyses,  
a value of zero indicates no impact of the  
chosen verification dataset. Scores are 
calculated for forecast of 850-hPa temperature 
from the TIGGE multi-model and the single 
models (CMC, ECMWF, Met Office and NCEP) 
starting in DJF 2008/09 and averaged over  
the northern hemisphere (20°–90°N).
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Figure 3 Continuous Ranked Probability Skill Score (CRPSS) versus lead time for (a) 850-hPa temperature forecasts 
and (b) 2-metre temperature forecasts. The TIGGE-4 multi-model composed of the four best single models with 
lead-time up to 15 days is shown in addition to the CRPSS of the four contributing single models and the reforecast-
calibrated ECMWF EPS (ECMWF-CAL). Symbols are only plotted for cases in which the single-model score differs 
significantly from the multi-model score on a 1% significance level. All scores are for forecasts starting in DJF 2008/09 
and averaged over the northern hemisphere (20°–90°N).

Reforecast-calibration methodology
The methodology developed to produce reforecast-
calibrated ECMWF EPS forecasts (ECMWF-CAL) 
is based on combining calibration results from the 
Non-homogeneous Gaussian Regression technique 
(NGR) and pure bias-correction (BC).

The NGR technique itself has already been applied 
to ECMWF EPS forecasts (see Newsletter No. 117). 
Essentially, NGR is an extension to conventional 
linear regression by taking into account information 
contained in the existing spread-skill relationship of 
the raw forecast. Using the ensemble mean and the 
spread as predictors, it fits a Gaussian distribution 
around the bias-corrected ensemble mean. The 
spread of this Gaussian is on the one hand linearly 
adjusted according to the errors of the regression 
model using the training data, and on the other 
hand depends on the actual spread according 
to the diagnosed spread-error relationship in the 
training dataset. Thus, one important feature of this 
methodology is being able to not only correct the 
first moment of the ensemble distribution but also 
correct spread deficiencies. 

After applying the NGR calibration, the forecast 
Probability Density Function (PDF) consists of a 
continuous Gaussian distribution, not an ensemble 
of realizations. However, to be able to compare the 
performance of the calibrated probabilities, retrieved 
from a full PDF, with the probabilities simply based 
on counting individual ensemble members, a 
synthetic ensemble is created from the calibrated 
Gaussian by drawing 51 equally likely ensemble 
members from the calibrated PDF. That is, the 
synthetic ensemble is realized by sampling the

members at the 51 equally spaced quantiles of the 
regressed Cumulative Distribution Function (CDF).

Experimenting with the choice of training dataset 
and calibration method revealed that combining a 
simple bias correction using training data from the 
30 previous days (BC-30) and the NGR calibration 
based on reforecasts (NGR-RF) is superior to the 
pure NGR-RF calibration, particularly for early lead 
times. The two ensembles are not combined by 
taking all members from both ensembles to form  
a new ensemble with twice the number of 
members, but by first ordering both the bias-
corrected and NGR-calibrated ensembles and 
then averaging the corresponding members. In 
this way the final combined calibrated system still 
contains only 51 members. Some experimentation 
with different weights for the NGR-RF and BC-30 
ensembles revealed that applying equal weights  
at all lead times leads to overall best results. 

For the current version, the slightly improved 
performance might be caused by the fact that the 
BC-30 calibration contains information on the bias 
more relevant to the current weather regime than 
the overall bias diagnosed from the reforecast 
dataset. However, using a refined version of the 
NGR-RF calibration by, for example, including soil 
moisture as an additional predictor might diminish 
the positive impact the BC-30 contribution can 
have. A further advantage of adding the BC-30 
calibrated ensemble to the Gaussian NGR-RF 
ensemble is that through this procedure any non-
Gaussian characteristics of the original ensemble 
may be retained to some degree.
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Calibrating the EPS
After having established a new benchmark for the best single model, the ECMWF EPS, the next question 
is whether it might be possible to achieve similar improvements by calibrating the ECMWF EPS based on 
its reforecast dataset. Detailed information on the methodology applied to create the reforecast-calibrated 
ECMWF EPS forecasts (ECMWF-CAL) can be found in Box B. Essentially, this calibration methodology 
corrects both for errors in the mean and spread of the ensemble.

Comparing the CRPSS of the ECWMF-CAL forecasts with the TIGGE-4 multi-model scores reveals 
that indeed the calibration procedure significantly improves ECMWF’s scores (Figure 3). Overall the 
performance of the ECMWF-CAL predictions is as good as the TIGGE-4 multi-model ensemble,  
and for longer lead times it can be even better.

For 850-hPa temperature predictions (Figure 3a) the CRPSS of ECMWF-CAL lies above the multi-model 
value for early lead times, and for longer lead times the skill scores are slightly lower than for the multi-
model ensemble, though not statistically significant. Considering the slight advantage in the early lead 
times for ECMWF forecasts when using ERA-Interim as verification and the lack of statistical significance 
of the difference in the CRPSS for longer lead times, it can be concluded that for 850-hPa temperature the 
reforecast-calibrated ECMWF EPS forecasts are of comparable quality as the TIGGE-4 multi-model forecasts.

This result is confirmed when studying other variables, regions or seasons. In fact, for 2-metre 
temperature forecasts the calibration is even more effective for longer lead times (Figure 3b). This 
indicates that the systematic component of the error is more dominant for the 2-metre temperature, 
and thus the calibration procedure is able to further reduce the root-mean-square error (RMSE) of the 
ensemble mean. However, the general level of skill at those long lead times is very low. Therefore, these 
improvements – as relevant as they might look in terms of overall scores – might not add very much  
in terms of improving the usefulness of the predictions in a real forecast situation.

Comparing, for example, the ECMWF EPS with the reforecast-calibrated and TIGGE-4 multi-model 
forecasts for individual cases at single grid point locations can give an indication of how much (or 
how little) a real forecast product would change. On the one hand, one can find locations at which the 
calibrated or multi-model ensemble distributions are significantly different from the ECMWF EPS. These 
are usually locations with complex orography, where for example different grid resolutions can cause 
detectable systematic errors. In such cases the NGR calibration is able to correct both such biases 
and serious spread deficiencies. However, as mentioned above, for longer lead times the predicted 
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Figure 4 Root-mean-square error (RMSE) of the ensemble mean (solid lines) and ensemble standard deviation 
(‘spread’, dotted lines) versus lead-time for 2-metre temperature forecasts. (a) Results for the single-model forecast 
(CMC, ECMWF, Met Office and NCEP). (b) As (a) but without the CMC, Met Office and NCEP results, including  
instead the results for the reforecast-calibrated ECMWF (ECMWF-CAL) and TIGGE-4 multi-model results.  
All scores are for forecasts starting in DJF 2008/09 and averaged over the northern hemisphere (20°–90°N).
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distributions are already close to the climatological distributions. Consequently it is not clear whether the 
improvements seen in the scores can be really translated into practical benefits of better decision-making 
based on such ‘theoretically’ improved forecast products. Additionally, there are also many locations with 
less pronounced systematic errors or spread deficiencies. At such locations, the calibration obviously has 
much less impact.

Mechanisms behind improvements
To further investigate the mechanisms behind the improvements, Figure 4 focuses on the spread-error 
relation of the different ensembles. Ensemble forecasting aims to construct uncertainty information so 
that the observations can be considered as statistically indistinguishable from the ensemble members  
of the forecast. This requires the spread of the ensemble (ensemble standard deviation) to be close to the 
root mean square error (RMSE) of the ensemble mean. However, for 2-metre temperature all single-model 
systems are seriously under-dispersive as shown in Figure 4a. CMC has the lowest spread deficiency 
at the beginning of the forecast, but due to a serious mismatch in the growth of spread and error it has 
the worst spread-error relation for longer lead times. The remaining three models have a similar level 
of spread. However, the significantly lower RMSE of the ECMWF EPS implies not only a slightly better 
spread-error relation compared to the Met Office and NCEP ensembles, but it is also one of the main 
reasons for its significantly better probabilistic scores discussed earlier.

The effect of combining the single-model systems or calibrating the ECMWF EPS can be seen in 
Figure 4b. The RMSE of the multi-model ensemble is slightly reduced for early lead times, but the most 
noticeable change is the very much improved spread-error relation, particularly up to day 6. In contrast  
to that, the reforecast-calibrated ECMWF EPS has not such a perfect spread-error relation, though  
it is improved compared to the original EPS spread. The reason for this is the specific methodology  
of combining bias-corrected and NGR-calibrated forecasts (see also Box  B).

Applying the pure NGR calibration should lead to a near perfect spread-error relation, but the advantages 
of possible reductions in the systematic error provided by the 30-day bias-corrected ensemble may 
outweigh the slight disadvantage of a poorer second-moment (i.e. spread) calibration. Since the under-
dispersion is not fully corrected in the reforecast-calibrated ensemble, the main improvement of its 
probabilistic scores comes from the reduction in the RMSE, in particular for longer lead times.

We note that the theoretical disadvantage of the ECMWF-CAL methodology (i.e. the sub-optimal spread 
correction) in certain situations might even be regarded as a positive aspect. Discussions with operational 
forecasters revealed that – although theoretically correct – the extent of the full NGR spread is sometimes 
regarded as counterproductive in real forecast situations. There might be many reasons for this subjective 
opinion, such as a general reluctance to integrate uncertainty information into operational forecast practice. 
Although not part of the current investigation, we feel that these aspects are worth considering in further 
discussions with users on how to achieve our ultimate goal of providing user-optimized forecast products.
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Figure 5 Illustration of gain or loss in skill 
of 2-metre temperature forecasts versus 
lead time using the Continuous Ranked 
Probability Skill Score (CRPSS) depending 
on which model has been removed from 
the TIGGE-4 multi-model containing all four 
single models (CMC, ECMWF, Met Office and 
NCEP). The CRPSS is defined as CRPSS = 1 
– CRPS(exp)/CRPS(ref), with CRPS(ref) being 
the CRPS (Continuous Ranked Probability 
Score) of the TIGGE-4 multi-model and 
CRPS(exp) the CRPS of the reduced multi-
model respectively. Negative values indicate 
a worse performance of the reduced multi-
model (i.e. a detrimental effect of removing  
a particular single model from the multi- 
model mix). All scores are for forecasts 
starting in DJF 2008/09 and averaged  
over the northern hemisphere (20°–90°N).
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Single-model contributions to the TIGGE multi-model
The computational and organizational overhead of collecting all individual model contributions and 
combining them into a consistent multi-model ensemble grows with the number of contributing models. 
Consequently it is worth investigating the added benefit each individual model can give to the multi-
model system. For this purpose we constructed reduced multi-model versions with individual model 
components removed from the full multi-model mix and scored them against the full multi-model version 
containing all four models (Figure 5).

It is obvious that removing the ECMWF EPS from the multi-model ensemble has the biggest impact, 
whereas the other models contribute to a lesser extent to the multi-model success. It might be argued 
that one of reasons for this is that by removing the ECMWF EPS the multi-model ensemble loses 
51 members, whereas removing the other models produces a loss of only 21 or 24 members. Since 
the CRPS (Continuous Ranked Probability Score) is expected to go down with increasing number of 
ensemble members (Ferro et al., 2008), it is not straightforward to distinguish the effect of removing the 
forecast information that a single model adds to the multi-model from the effect of removing 51 instead  
of 21 or 24 members. However, there are two reasons why we believe that not explicitly accounting  
for the difference in the number of members is justified.

• The difference of number of members between the full multi-model ensemble containing 117 members 
and the most reduced multi-model ensemble containing 66 members would require only a moderate 
adjustment factor of about 1% CRPS reduction applied to the ensemble with the lower number of 
members. This is much lower than the difference indicated by a CRPSS between –0.15 and –0.05. 
Therefore, only 1% out of the 15% increase in the CRPS of the reduced multi-model ensemble is due 
to the lower number of members and the remaining 14% increase is caused by the withdrawal of the 
forecast information from that model.

• Suppose we want to compare the performance from an operational rather than theoretical point  
of view. That is we are not interested in theoretical questions such as “how would these models 
compare if they had the same number of members?”, but we want to answer questions like “how do 
the operational systems, as they are, compare?” In that case we should not adjust the scores to reflect  
a potential performance of a model with infinite number of members. Following these considerations, 
in none of the comparisons of this study are the scores adjusted according to their different numbers 
of ensemble members.

Apart from the question about which of the single models contributes most to the multi-model success, 
a further question in the context of the TIGGE project is whether the multi-model concept could lead 
to reduced costs but still keeping the same quality of forecasts. Assuming, for the sake of argument, 
that ECMWF could no longer afford to provide its EPS forecasts, could a multi-model consisting of the 
remaining high-quality ensembles be as good as the ECMWF EPS on its own? Indeed, a TIGGE multi-
model ensemble without ECMWF contribution is of comparable quality as the ECMWF EPS alone, i.e. 
combining the second-, third- and fourth-best global ensembles leads to forecasts which are as good  
as the best global ensemble (Figure 6). However, this is only true for the ECMWF EPS when it has not 
been reforecast-calibrated.
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Figure 6 Continuous Ranked Probability 
Skill Score (CRPSS) versus lead time for 
2-metre temperature forecasts. Results 
are shown for the TIGGE-4 multi-model 
containing CMC, ECMWF, Met Office, and 
NCEP forecasts, the TIGGE-4 multi-model 
without ECMWF forecasts (i.e. containing 
only CMC, Met Office, and NCEP forecasts), 
the simple bias-corrected ECMWF 
forecasts, and the re-forecast calibrated 
ECMWF forecasts (labelled ECMWF-
CAL). Symbols are omitted for cases in 
which the score does not significantly 
differ from the TIGGE-4 multi-model score 
on a 1% significance level. All scores are 
for forecasts starting in DJF 2008/09 and 
averaged over the northern hemisphere 
(20°–90°N).
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Running the complete ECMWF EPS, including its reforecasts, leads to a performance which cannot be 
achieved by any current multi-model version not containing ECMWF forecast information. These results are 
generally confirmed when considering other variables such as upper-air temperature or wind components, 
though small differences in the relative performance, also depending on the region, can be observed.

Overall costs and benefits
Coming back to the main aim of this article (i.e. comparing the costs and benefits of the multi-model and 
reforecast-calibration approaches) it is clear that the performance of the reforecast-calibrated ECMWF 
EPS forecasts is as good as the TIGGE multi-model system, if not better. When considering which post-
processing approach leads to better forecast products or can give more useful information in a practical 
decision-making process, it has to be noted that the calibration procedure is particularly helpful at 
locations with clearly detectable systematic errors (e.g. areas with complex orography or coastal grid 
points). In such areas the calibration procedure can correct, for example, for unresolved scales and  
thus essentially performs a sort of downscaling of the forecasts. This ability is particularly important  
for all applications needing forecasts at specific locations like, for example, forecasting the wind power 
production at specific wind farms. The multi-model approach, on the contrary, might be advantageous  
in situations where it is able to suggest alternative solutions not predicted by the single model of choice.

Further investigations on the mechanisms behind the improvements achieved by the post-processing 
methods led to the conclusion that both approaches tend to correct similar deficiencies. That is, 
systematic error and spread deficiencies are improved to a similar extent by both approaches. 
Experiments assessing the contribution of the individual components of the multi-model system 
demonstrated that the ECMWF EPS is the single most important source of information for the  
success of the multi-model ensemble.

For a final assessment which of the two post-processing methods would be the most appropriate choice 
for a modelling centre, one also has to consider the technical overhead of producing multi-model or 
reforecast-calibrated single-model forecasts in an operational context. If, for example, a modelling centre 
has easy and reliable access to all components of the multi-model system, and if its users or operational 
forecasters ask for multiple solutions suggested by individual models, then the multi-model concept 
might be the method of choice. However, for a forecasting centre reluctant to take on the potential 
risks and technical overhead inherent in the increased complexity of a multi-model system, using the 
reforecast-calibrated ECMWF EPS forecasts rather than a logistically highly complex multi-model system 
seems to be a more appropriate choice.

Considering the performance improvements made possible by the availability of the ECMWF reforecast 
dataset, other modelling centres might start providing reforecasts for their model systems in the not too 
distant future. In that case it would be interesting to study the relative benefits achievable for reforecast-
calibrated multi-model or single-model systems. Furthermore, we suggest exploring the relative merits 
of multi-model versus reforecast-calibrated predictions for other user-relevant variables like precipitation 
and wind speed, in particular in the context of extreme events.
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