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The fundamental purpose of 4D-Var (as implemented by ECMWF in 1997) is to correct a short-range 
forecast based on observations available since the last assimilation time. In this system, the correction 
is calculated in a four-dimensional domain: the three spatial dimensions and the time dimension. The 
atmospheric state over this domain is entirely determined by the state at the beginning of the assimilation 
window through the use of the forecast model. So, although 4D-Var finds the solution over a four-
dimensional domain, it does so by adjusting the three-dimensional initial condition of the forecast (known 
as the control variable). This is equivalent to making the assumption that the forecast model is perfect over 
the length of the assimilation window. The model is said to be imposed as a strong constraint in the 4D-Var 
optimization problem.

Since 4D-Var became operational in 1997, many aspects of the data assimilation system have improved, 
and the amplitudes of many types of errors have reduced. The assumption that the model is perfect, or that 
model error is small enough relative to other errors in the system to be ignored, has become questionable. 
This is compounded by the fact that longer assimilation windows are desirable. Over long ranges, model 
error becomes larger and should be accounted for in the data assimilation process.

Relaxation of the perfect model assumption requires a modification of the 4D-Var algorithm. The resulting 
method is known as weak constraint 4D-Var. The remainder of this article will describe how weak constraint 
4D-Var has been implemented in cycle 35r3 (8 September 2009) of ECMWF’s Integrated Forecasting 
System (IFS). Also, directions for future research will be outlined.

Accounting for an imperfect model
The data assimilation process is a statistical problem where the best estimate of the state of the 
atmosphere is sought, given knowledge about the state and the error characteristics of the various sources 
of information. In weak constraint 4D-Var, the model is considered in the same way as the other sources of 
information, including taking into account that there is a degree of uncertainty about the information from 
the model.

There are several practical approaches to account for model imperfection in 4D-Var and to estimate model 
error (Trémolet, 2006). The first approach that has been implemented at ECMWF comprises adding a 
forcing term to the model which in principle would compensate for model error within each time step. The 
4D-Var control variable is then augmented by these forcing terms and a term is added to the cost function 
to penalize model error according to its statistical characteristics. 4D-Var then determines what the optimal 
forcing terms should be, given the prescribed model error statistics and all other available information.

The forcing term at each time-step has in principle the same number of components as the model state. 
Thus the size of the control variable is multiplied by the number of time steps compared to the strong 
constraint 4D-Var control variable. This is unaffordable from a computing point of view but, even more 
importantly, there is not enough information available to determine so many parameters or to estimate  
their error characteristics, such as space and time correlations or flow dependence. Some simplifications 
are necessary to solve the weak constraint 4D-Var problem.

In our initial implementation of weak constraint 4D-Var, the main simplification is to assume that model error 
is constant in time over the length of one assimilation ‘window’ (currently 12 hours at ECMWF). With this 
assumption, the size of the control variable is doubled with respect to strong constraint 4D-Var, which is 
manageable on today’s supercomputers. The model error covariance matrix becomes a three-dimensional 
matrix of the same dimension as the background error covariance matrix.

Model error statistics
Covariance statistics for both background and model errors are generated from large sets of samples. 
In both cases, since we do not know the true state of the atmosphere, we cannot explicitly generate the 
required samples of errors, and must instead turn to proxy quantities whose error statistics are similar to 
those of the actual errors. In the case of background errors, the proxy errors are generated as differences 
between forecasts from an ensemble of data assimilations. However, it is far from clear how to generate 
proxies for model error. In the current implementation of weak constraint 4D-Var, we use samples of 
differences between model tendencies from an ensemble of forecasts. The idea is that if each state from 
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an ensemble is a possible representation of the actual atmospheric state, then the differences between the 
various tendencies generated by the model for different ensemble members give an indication of the likely 
size of the model uncertainty (see Trémolet, 2007 for more details).

The model error covariance matrix uses a spectral representation, as previously used for the background 
error. Since the covariances are computed from instantaneous quantities, rather than from short-forecast 
integrations, the correlation length scales for all variables are shorter in both the horizontal and the vertical. 
In this implementation, the covariances in one variable (temperature, say) are assumed to be uncorrelated 
with errors in other variables (e.g. vorticity). In reality, the errors affecting the model variables are not 
independent. So far attempts at accounting for multivariate relationships in model error have not been 
successful but this is an area for further research in the future.

More generally, very little is known about model error or its statistics. Whereas the estimation and modelling 
of the background error statistics has been an active area of research for many years, very little research 
has taken place to estimate or represent model error statistics in data assimilation. Moreover, the model 
error covariance matrix is an order of magnitude more complex than the background error covariance 
matrix due to the additional time dimension it involves.

Despite the relative lack of research into model error, a few approaches can already be identified. For 
example, ECMWF’s Ensemble Prediction System (EPS) includes stochastic terms to represent model 
error. Such terms are mostly designed to make the ensemble prediction spread match the forecast error 
at medium range. Data assimilation is primarily a short-range problem. Nevertheless, valuable information 
and experience could be extracted from developments with the EPS. A practical step towards using 
the schemes developed in the EPS could be achieved by recognising that the method used by the 
stochastic backscatter scheme to convert the white noise output of the random number generator into a 
representation of spatially and temporally correlated model error, can be considered as defining the square-
root of the model error covariance matrix. Use of this approach would allow a representation of model error 
in 4D-Var that is consistent with the approach adopted in the EPS.

In practice, observations are the only independent source of information available to estimate the actual 
model error. Ideally, estimations of model error statistics should use this information. Two directions of 
research can already be considered.

• Explore observation space consistency diagnostics, such as the ones proposed by Desroziers et al. 
(2005). Since strong constraint 4D-Var does not account for model error, any imperfect model should 
introduce inconsistencies with respect to the assumptions being made. The difficulty is then to extract 
useful model error information out of the internal signs of inconsistency.

• Extend work carried out in the context of lagged Kalman smoothers. It has been shown in that context 
that the difference in fit to the observations for analysis windows of different lengths can be attributed  
to model error. Again, the difficulty is to extract useful model error information from this signal.

Model error statistics are important for all data assimilation methods, including ensemble Kalman filters 
(where it is currently treated in a very crude way). Yet, model error is one of the least understood quantities 
in data assimilation. This is surprising, given the importance of the model in the process. Better estimation 
of model error statistics will be a major topic of research in data assimilation in the coming years.

Systematic model error
In the first implementation of weak constraint 4D-Var, model error is assumed to be independent from one 
assimilation cycle to the next. Although there are systematic errors that vary on longer timescales (seasonal 
for example), this is a safe approach that prevents positive feedback effects between model error on one 
hand and initial condition or observation bias correction on the other hand.

Experimentation is currently underway to account for model error on the longer timescales, such as 
temperature biases in the stratosphere in polar regions which typically vary on a seasonal timescale. This 
type of error is the largest in amplitude and can seriously affect the assimilation of high peaking channels for 
many satellite radiance observations. Since these biases vary on timescales that are slower than the length 
of the assimilation cycle, it is important to retain information from one cycle to the next. This is achieved by 
re-writing the model error penalty term in the 4D-Var cost function as a term that penalizes the variation in 
model error from one cycle to the next rather than the total model error. With this setup, however, there is 
no constraint to prevent model error from growing progressively over a large number of assimilation cycles. 
This could potentially have a major impact on the assimilation system.
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Impact of the weak constraint 4D-Var
Weak constraint 4D-Var corrects model errors by adding a forcing term to each of the model’s prognostic 
equations, in order to make the model consistent with the available observations. As it is known that 
errors in the ECMWF system are on average larger in the stratosphere than at lower levels, we have  
taken a cautious approach and initially restricted the model error term to apply only above 10 hPa  
(with a transition zone down to 40 hPa).

Figure 1 shows the monthly-mean model error forcing for temperature for July 2008. This indicates that  
to match the observations in the stratosphere and mesosphere there is the need for a systematic warming 
at polar latitudes and near the top of the model, with cooling at mid-latitudes in the upper stratosphere 
and mesosphere. Figure 2 shows the associated mean temperature analysis increments for strong and 
weak constraint 4D-Var. Note that the mean analysis increment is significantly reduced in weak constraint 
4D-Var, which has correctly identified that the need for systematic corrections is due to errors in the 
model. Although the difference is relatively modest, Figure 2 also shows that oscillations in the increments 
over the North Pole have been removed and that they are reduced in amplitude over the South Pole. 
These oscillations are believed to be caused by model errors and their reduction should facilitate 
assimilation of satellite observations sensitive to temperature at these levels. All the results presented  
here were obtained with IFS cycle 35r2 at the resolution of T255 with 91 levels.

Figure 3a shows the average analysis and first-guess departures for radiances from AMSU-A channel  
13 and the mean temperature analysis increment using weak constraint 4D-Var. Also shown is the model 
error forcing at the model level where this data is the most sensitive. The corresponding information when 
the model error is cycled and allowed to grow over time is shown in Figure 3b. In this case, the average 
observation first-guess departure is centred around the zero line which is not so when there is no cycling 
(red curves). This shows that the short-term forecast is improved by the model error cycling and model 
error information is retained and useful from one cycle to the next. The seasonal variation in observation 
bias correction (black curves) is also slightly reduced which goes in the right direction since this variation 
is due to seasonal variations in the model and not in the observations. The mean analysis increment 
(green curves) is also closer to the zero line where it should be in an unbiased system. (Note that it is not 
fully centred around the zero line. Most likely this is due to the fact that AMSU-A channel 14, which also 
has some sensitivity at that level, is not bias corrected.)
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Figure 1 Monthly-mean temperature model 
error forcing (K/12h) in the stratosphere 
estimated by weak constraint 4D-Var  
for July 2008 (IFS Cy35r2, T255).
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Figure 2 Monthly-mean temperature analysis increments (K) for July 2008 in (a) strong constraint 4D-Var 
and (b) weak constraint 4D-Var with model error applied in the stratosphere.
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Figure 3 (a) Average analysis and first-guess departure of radiances from AMSU-A channel 13 for July 2008 for 
the northern hemisphere using weak constraint 4D-Var. Also shown is the mean temperature analysis increment 
and model error forcing at model level 14 where this channel is the most sensitive. (b) As (a) but the model error 
is cycled. See text for more details.
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These results give an example of the complex interactions between the model error, the initial condition 
increment and the observation bias correction in 4D-Var. Overall, model error as estimated in these 
experiments varies on a slow timescale (the order of a few months on Figure 3) and should probably  
also vary on shorter timescales. However, interactions with the other parts of the control variable must  
be examined carefully.

4D-Var uses the covariance matrices of background, observation and model errors to partition the 
analysis error between the various terms of the cost function. Incorrect specification of any one of  
these covariance matrices can result in one source of error being misinterpreted as another type of  
error (e.g. observation error may be misinterpreted as model error). This highlights the necessity for  
a proper estimation of all the covariance matrices. The large number of available degrees of freedom  
in the model error makes it particularly important to correctly specify the model error covariances so  
as to avoid absorbing all the information contained in the observations into the wrong component.

Towards a longer assimilation window
Fisher et al. (2005) have shown that weak constraint 4D-Var with a long assimilation window is equivalent 
to a full rank Kalman smoother. This can be seen as theoretical justification for a move towards longer 
assimilation windows in 4D-Var. On a more pragmatic level, it seems obvious that a simultaneous analysis 
of all relevant observations ought to lead to a better analysis than an artificial splitting of observations  
into batches of length 12 hours, to be analysed independently. The practical implementation of this  
idea, however, requires that 4D-Var take into account the variation of model error within the assimilation 
window. For analysis windows longer than 12 hours, it is no longer sufficient to assume that model error 
remains constant throughout the window.

Because of the limitations imposed by the incremental 4D-Var algorithm, a long analysis window cannot 
be achieved with a formulation involving a model error forcing term. (The different-resolution models used 
in the inner and outer loops of 4D-Var react very differently to the forcing, and diverge significantly over 
the analysis window, preventing the convergence of the incremental algorithm.) Consequently, the weak 
constraint 4D-Var cost function has to be formulated directly as a function of the four-dimensional state 
over the length of the assimilation window. (In practice, for computational reasons, and because of the 
limited amount of available information, the state variable at regular sub-intervals over the assimilation 
window would be used.) For each time when the state variable is available, a model error term in the  
cost function is applied to minimize the gap between the state obtained by integrating the model from  
the previous time when the control variable is defined to the current time. We illustrate this schematically  
in Figure 4.

This approach has the significant advantage that the state at the start of each sub-interval is known  
at the start of each iteration of the minimisation. Evaluation of the cost function requires integrations  
of the model and its adjoint to be performed for each sub-interval, and these model integrations can  
be performed in parallel. This brings an additional dimension for parallelism in 4D-Var. However, the 
optimization problem that results from this formulation of 4D-Var has different properties than the  
(by now well-understood) strong constraint 4D-Var problem. Research into minimisation algorithms  
and preconditioning methods will be required to develop efficient minimisation strategies.
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Figure 4 Long window 4D-Var. The schematic diagram shows a single analysis window. The green line 
represents a model integration started from the background state, which serves as the first guess for the 
analysis. The control variable for the analysis consists of the departures from the first guess at the start  
of a set of sub-intervals. Weak constraint 4D-Var adjusts these departures to simultaneously minimise  
the discrepancy between the analysis and the observations and background state, while also minimising  
the jumps between the sub-intervals.
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Further developments
The continued reduction in sources of analysis error since the introduction of 4D-Var means that it is no 
longer possible to ignore the model itself as a source of error. Accounting for this source of error requires 
the explicit inclusion of a model error term in the 4D-Var cost function, and a representation of the 
covariance matrix of model error.

Gathering information about the statistics of model error is difficult, and will be the topic of much future 
research. Our initial attempts have concentrated on approximating the model error covariance matrix by  
a covariance matrix of model tendencies. This is unlikely to be an accurate approximation. Nevertheless,  
it has proved sufficient to allow some significant model errors in the stratosphere to be accounted for  
in the analysis. Weak constraint 4D-Var was introduced into the ECMWF operational system with the 
implementation of IFS cycle 35r3 on 8 September 2009.

Improvements to the representation of systematic model error are planned through a modification of the 
model error penalty term that will allow information about model error to be retained from one analysis 
cycle to the next.

Although systematic model error is probably the largest component of model error, it will be necessary  
to account also for the time-varying component. It is likely that this component will have significantly 
different spatial structure than systematic error, requiring careful construction of the associated error 
covariance matrix. It is also highly likely that model error is correlated in time, and it will be necessary  
to take this correlation into account.

We believe that longer assimilation windows have the potential to significantly improve the quality of the 
4D-Var analyses. However, to achieve longer windows, we require good statistical models of model error. 
Longer windows also require changes to the methods used to minimise the cost function. This presents  
a challenge, requiring the development of new approaches to minimisation and preconditioning. However, 
it also presents an opportunity to significantly improve the parallel efficiency and scalability of 4D-Var, by 
allowing parallel model integrations during the evaluations of the cost function. This increase in scalability 
will be important if 4D-Var is to remain practical on future computer architectures.
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