The Future of Predictability: Can Decadal Prediction Be Informative?

Joe Tribbia

NCAR
Climate and Global Dynamics Division
ECMWF Seminar 2010
Disclaimer

• Most of what we know about decadal climate variability has been learned in the past 20-30 years
• Climate system records are not long
• Some of what we think is known is from coupled model simulations
• We should not worry about being completely wrong
OUTLINE

• Credit-> G. Branstator, J. Hurrell, G. Danabasoglu, Haiyan Tang and S. Yeager

• IPCC and scientific rationale

• What is being asked at decadal timescales
 Decadal signals in climate-why bother?

• Evidence of predictability and a scientific basis for decadal prediction

• Newer predictability estimates and the challenges ahead for decadal prediction
A climate ‘prediction’ we can do:
The Earth is Warming

Climate Research Unit
East Anglia University, UK

Figure 3-1: Smoothed reconstructions of large-scale (Northern Hemisphere mean or global mean) surface temperature variations from six different research teams are shown along with the instrumental record of global mean surface temperature. Each curve portrays a somewhat different history of temperature variations, and is subject to a somewhat different set of uncertainties that generally increase going back in time (as indicated by the gray shading). This set of reconstructions conveys a qualitatively consistent picture of temperature changes over the last 1,100 years, and especially the last 400 years.
Calibrate with 20th century and test attribution hypotheses

Parallel Climate Model Ensembles
Global Temperature Anomalies
from 1890-1919 average

°C

Large signal to noise ratio for Global Mean Temperature
Project greenhouse gases and surface temperature into 21st century

Models: Unless we control emissions things will get worse
Possible Consequences-AR4

- Arctic ice disappears
- Sea level rise 7”-23”
- Permafrost disappears
- Coral reefs die
- More extreme events- category 5 hurricanes, heat waves, droughts
- All of above uncertain and for the most part regional
Regional Temperature Change (DJFM)

Effects from human activities are superimposed on the background “noise” of natural variability.
Winter Sea Level Pressure Change

Pressure Falls

Pressure Rises

(related to)
El Niño/Southern Oscillation (ENSO)

North Atlantic Oscillation (NAO)

Dec-Mar (hPa)
Regional Climate Change

To date: only “what if” scenario–based projections

Future: shorter term climate ‘predictions’ – the only tractable way to address regional climate change?
Can we reduce uncertainty/increase reliability by decadal projection?

GHG forcing more certain

But, signal confounded by Natural Variability: El Nino, Decadal Climate Shifts, etc.

For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES emission scenarios. Even if the concentrations of all greenhouse gases and aerosols had been kept constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected.
Scientific motivation for Decadal Prediction

Examples of climate modes of variability on decadal timescales

Rainfall Anomalies (mm) 50-year Trend (mm)

Sahel: JAS

Southern Africa: FMA
Relationship to Atlantic SST

Sahel Rainfall
Interhemispheric SST Contrast

$\text{Hurrell and Folland (2002)}$

$r = 0.59$
More strong hurricanes

Drought

More rain over Sahel and western India

Warm North Atlantic linked to …

Atlantic Meridional Overturning Circulation (AMOC)

Two important components:
- Decadal-multidecadal fluctuations
- Long-term trend

North Atlantic Temperature

North Atlantic Temperature Chart
PACIFIC DECADAL VARIABILITY (PDV)

Formerly known as Pacific Decadal Oscillation (PDO)
Can we build the Scientific Basis for Decadal Prediction?

1) Existence of decadal predictability needs to be proven

2) Null hypothesis: decadal fluctuations in SST associated with the MOC or PDO arise from low-pass filtering of unpredictable atmospheric noise by the slow components of the climate system such as the oceans

• But there is some tantalizing evidence from models:
 ✓ PREDICATE → 60% of decadal variance in Europe/North Atlantic climate potentially predictable
 ✓ GFDL/NCAR → potential predictability of MOC
What will the next decade or two bring?

Temperature of North Atlantic

(a) Long term trend in Atlantic temperatures

(b) Multidecadal warmings and coolings
Schematic Decadal Prediction (absent climate drift):
Initial value, Forced & Total Predictability

"Mean” and “Spread” contributions to predictive ‘information’

Add information from initial state distribution

How long is this information retained?

Predictability question

G. Branstator
Decadal Predictability circa 2007

Perturbed ensemble members evolve coherently for two decades

GFDL CM2.1: North Atlantic MOC Predictability

Model Year

MOC Index (Sverdrups)

18 19 20 21 22 23 24 25 26 27 28 29

Control
Ens member 1
Ens member 2
Ens member 3
Ens member 4
Ens member 5

Courtesy of Tom Delworth
MOC in NCAR 20th Century Ensemble Integrations (ca 2007)

Max. NH Atlantic Overturning (3 pt. smooth)

- **PI CONTROL**
- b30.030b.ES01
- b30.030f.ES01
- b30.030g.ES01

Max. NH Atlantic Overturning (3 pt. smooth)

- b30.030d
- b30.030c
- b30.030e
AMOC variations linked to North Atlantic SST anomalies and Atlantic-wide variability (AMO/V)

- AMOC predictability means that AMO might be predictable
- Includes decadal variations in Sahel precip
- Includes Atlantic Hurricane frequency and possibly intensity
- Decadal NAO variations?
ATLANTIC MERIDIONAL OVERTURNING CIRCULATION (AMOC) IN CCSM3 PRESENT-DAY CONTROL SIMULATION (T85x1)

Reason for AMOC predictability:
AMOC periodicity
Encouraging but

To lay a scientific foundation for decadal prediction, a number of observed and modeled correlations need to be much better understood. The list on the right is a minimum requirement:

- Need to definitively tie AMO to AMOC
- Need to tie and understand how atmospheric climate links to AMO
- Must compare to trend and residual variability
- Must improve models' ability to replicate nature to a ‘trustable’ level
That was then—this is now

AMOC Maximum Transports in CCSM4 Pre-Industrial Control Simulations

CCSM4_1: 1° FV atmosphere

CCSM4_2: 2° FV atmosphere

NO STRONG SPECTRAL PEAKS in new Model!
IMPACTS OF PARAMETERIZED NORDIC SEA OVERFLOWS ON AMOC VARIABILITY

Preliminary CCSM4 present-day simulations with 2° atmosphere and 1° ocean resolution

Nonstandard version without overflow parametrisation has spectral peaks

AMOC maximum transport

<table>
<thead>
<tr>
<th>Period (years)</th>
<th>AMOC maximum transport</th>
<th>Spectral Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>50</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>99%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200+</td>
<td>200%</td>
<td>70%</td>
</tr>
</tbody>
</table>
What about Predictability without Spectral peaks e.g. thermal inertia?

Analysis of Grant Branstator

CCSM3 40-member Ensembles

- T42, 1x ocean / perturb only atmosphere
- A1B starting from year 2000 C20C
- Commitment from year 2000 C20C
- A1B (II)
- A1B (III)
- A1B (IV)
 \{ various initial states \}

CCSM3 T42, 1x control

- years 300-999

CCSM4 1°, 1x control

- years 600-1299
CCSM3 Ensemble Spread

5-7 years of thermal inertia in the upper ocean
CCSM3 Basin Relative Entropy
Disentangle forced and free predictability

\[R = \int_S P_e(s) \log \left(\frac{P_e(s)}{P_c(s)} \right) ds \]
T0-300m Intrinsic Modes
North Atlantic

CCSM3
EOF1 25%
T2=3.83y

EOF2 19%

CCSM4
EOF1 25%
T2=2.91y

EOF2 18%
T2=1.85y

North Atlantic
CCSM3 vs CCSM4 Spread
North Atlantic Modes
CCSM3 vs CCSM4

Local Predictability

Year Analog Spread Reaches 95% Saturation
Decadal Predictability

Major challenge: imperfect Ocean ICs

- Initialization before Argo floats
 - Many different global ocean reanalysis products, but significant differences exist
 - Large inherent uncertainty in salinity & driving of AMO

Atlantic Salinity Anomalies (upper 300 m)
For Decadal Prediction

Possible payoff but there are challenges for initialization & calibration ...

- **Large uncertainty in climate signals**

 Signal to noise ratio > 1 in the Eastern Pacific for Temperature
 Signal to noise ratio <1 for salinity in most regions and T in some
 What is happening now? There is not consistent picture after 2000

- **Forcing fluxes and analysis methods are largest source of uncertainty**

 Data assimilation does not always collapse the spread
 May require coupled data assimilation

- **At least 20 current analyses: maybe more?**

 Need to initialize with several products

- **What is the best method of smooth initialization**

 Need to minimize initialization shock
CMIP5 Decadal Prediction Experiments

- 10-year hindcast & prediction ensembles: initialized 1960, 1965, ..., 2005
- 30-year hindcast and prediction ensembles: initialized 1960, 1980 & 2005
- Additional predictions initialized in ‘01, ‘02, ‘03 ... ‘09
- AMIP
- Hindcasts without volcanoes
- Prediction with 2010 Pinatubo-like eruption
- Atmos. chemistry &/or aerosols &/or regional air quality
- Increase ensemble sizes from O(3) to O(10) members
- Alternative initialization strategies
- 100-yr “control” & 1% CO₂
Hindcast Simulations:

- Forced with the Coordinated Ocean-ice Reference Experiments version 2 (CORE2) data sets for 1948-2007 (Large and Yeager 2004; 2008).

- Repeat the forcing cycle a few times and use the ocean and sea-ice solutions at a given date as initial conditions for prediction experiments.

- Assess the sensitivity of model solutions (particularly AMOC) to surface salinity restoring strength and ocean-sea-ice coupling.
PDO = ‘fuzzy’ El Nino
Examine hindcast initialization
For 1976 regime shift
An interesting first result
Of course this is due to

- Single case-blind luck or ENSO
- Uncalibrated
- May be only due to climate drift
- Nevertheless – interesting because a dramatic change in PDO occurs
- I assure you I agree 100% with these caveats, BECAUSE.....
An interesting result

almost very interesting

But actually worse than ‘pitiful’ as a forecast
Because there is no operational decadal prediction in US, NSF is willing to let NCAR explore these challenges.

For experiments after 2000 we are using “WEAKLY” COUPLED EnKF DATA ASSIMILATION.

Force each ocean ensemble member with a different member from an atmospheric ensemble reanalysis:

• Run an 80-member ensemble of CAM assimilation with 6-hourly coupler output files from each member,

• Run a 46-member ensemble of POP assimilation forced with output from 46 of the CAM assimilation runs.

This technique is already operational (starting from 1 January 1998) and preliminary analyses indicates much increased ensemble spread.
Conclusions

• Great interest in decadal variations in climate for policy, society and science

• Predictability estimates in a state of flux as modeling studies give radically differing results

• How are predictability estimates contaminated by current models?

• Regions of oceanic memory in heat content- what is the time scale?

• Temper expectations and seek scientific understanding-assist SI prediction
Thank-you and Questions?
Relationship to Atlantic SST

(Dry – Wet) Sahel Summers

Correlation of
Atlantic SST
Anomalies
With Sahelian Rainfall
Anomalies

Lamb (1978);
Folland et al. (1986)
Impact of AMO on Atlantic Hurricane Activity

Red shading shows lower vertical wind shear between 200-850-hPa in the main hurricane development region (black box). Blue shading shows higher than normal vertical wind shear. The 3-celled pattern of anomalies between the eastern tropical Pacific and Africa has been in place since 1995. This pattern has resulted in more Atlantic hurricanes and fewer eastern Pacific hurricanes.

NOAA 2005 Atlantic Hurricane Outlook
The AMO Has Played an Important Role During the 20th Century in Decadal Modulation of Hurricane Activity

Regression of LF ASO vertical shear of zonal wind (m/s) on AMO index (1958-2000)

Studies, which are currently under way to study the decadal predictability of the AMO, show some promise.
The AMO is Linked to Regional Rainfall Anomalies

Regression of modeled LF JJAS Rainfall Anomaly on modeled AMO Index (1901-2000)

Modeled AMO Index

Regression of observed LF JJAS Rainfall Anomaly (CRU data) on observed AMO Index

Observed AMO Index
Decadal Prediction

But there are challenges …

- Initialization

 - Many different global reanalysis products, but significant differences exist

Ocean observing net not global or comprehensive

Tropical Upper Ocean T Anomalies (Upper 300 m)
Decadal Prediction

But there are challenges ...

- Is a decadal prediction societally useful?
 - Improved skill beyond ENSO?

Decadal Climate Predictions at the Hadley Centre

Doug Smith, James Murphy, Stephen Cusack
The AMO is thought to be driven by multidecadal variability of the Atlantic thermohaline circulation (THC) (Bjerknes 1964; Folland 1984; Delworth et al., 1993; Delworth and Mann 2000; Latif et al 2004).

Enhanced THC strength enhances the poleward transport of heat in the North Atlantic, driving the large-scale positive SST anomalies.

Changes in vertical and horizontal density gradients in the North Atlantic alter the THC (enhanced density gradients strengthen the THC).
Annual Global Mean Surface Temperature
(1860-2005)

Global Temperature (°C)

Typical Scientific Global Change Info/Fcst

Society Needs Regional Info

NCAR
Using this method we can’t reliably predict Regional Climate Change

2080-2099 (A1B) - 1980-1999

As pointed out by A. Giannini
Is there a dustbowl in our near future?

Oceanic Forcing of US Climate

Precipitation Anomaly 1932-1939

OBSERVED

GOGA MODEL

GOGA MODEL = Global Sea Surface Temperature Specified

Seager et al. (2005)
Epoch Differences: High – Low N Pac SLP Index
Precipitation (shading) and Sea Level Pressure (contours)

- 1900-1924 minus 1925-1946
- 1947-1976 minus 1925-1946
- Sign reversed

➢ The above highlights the regimes of North Pacific Interdecadal Variability in atmospheric circulation and precipitation in Pacific rim countries.

Deser et al. (2004)
Decadal Predictability Limits for CCSM3 and CCSM4

Grant Branstator
Haiyan Teng

NCAR/CGD
T0-300m Characteristic Period

CCSM3

CCSM4
Predictability from Analogs
CCSM3 Basin-average Predictability Spread from Control Analogs

North Pacific

North Atlantic

RMSD (°C)

Year

RMSD (°C)

Year

- analog
- Commit
- A1B
- A1B (II)
- A1B (III)
- A1B (IV)
CCSM3 vs CCSM4
Basin-average Predictability Spread
Predictability of Basin-wide, Ensemble Mean Anomalies
CCSM3 vs CCSM4
700 Case Average Using LIM

\[s_{t+1} = Ls_t, \quad L = \text{cov}(s_{t+1}, s_t) [\text{cov}(s_t, s_t)]^{-1} \]

![North Pacific](image1.png)

![North Atlantic](image2.png)
T0-300m Intrinsic Modes
North Pacific

CCSM3
EOF1: 2.9%
T2 = 3.69y

CCSM4
EOF1: 1.42%
T2 = 2.65y

EOF2: 1.11%
T2 = 3.19y

EOF2: 1.44%
T2 = 2.32y
CCSM3 vs CCSM4 Spread
North Pacific Modes

[Graphs showing time series of RMSD/expected RMSD for EOF modes 1, 2, and 1&2 for CCSM3 and CCSM4, with lines indicating different scenarios such as analogs, LIM, Commit, A1B, A1B (III), A1B (IV), and 95% significance level.]
Predictability of PC1 + PC2 Ensemble Means
CCSM3 vs CCSM4
700 Case Average Using LIM

North Pacific

EOF1-2

North Atlantic

Relative entropy signal

CCSM4

CCSM3

---95% sig
Predictability of the AMOC (15 EOFs)

R15 MOC Init_val

Relative entropy vs Year

- A1B
- Commit
- A1B (II)
- A1B (III)
- A1B (IV)
- 95% sig lev
Case Dependence of NPac Predictability

CCSM3 spread

CCSM4 spread

least predictable

all

most predictable
Bottom Line

1. *For T0-300 initial value predictability limit is 10-12 yrs in CCSM3 northern extratropical basins*

2. *Initial value predictability limit is even shorter in CCSM4 than CCSM3*

3. *Prominent modes do not have above average predictability in either model*

4. *Compared to CCSM3, prominent modes in CCSM4 have*
 - different structure
 - shorter intrinsic time-scales
 - less predictability
Density and section-normal velocity at 45°W

color: density (kg m⁻³)
line: velocity (cm s⁻¹)
SOME STARTING DECISIONS....

• We use 1° resolution versions of both the atmosphere and ocean models.

• We use full fields instead of the anomaly assimilation / initialization approaches, e.g., DePreSys of U.K. Met Office.

• Our first prediction experiments start from 1 January 2000.
Initialization Options for the Ocean Model

• Use 'hindcast' solutions from ocean-only or ocean-ice coupled simulations.

• Embark on our own ocean data assimilation using Data Assimilation Research Testbed (DART).

Sea ice, atmosphere, and land initial conditions ?????
Strong salinity restoring reduces model error in the subpolar seas, but it
- weakens AMOC
- significantly damps AMOC variability north of 30°N
- reduces max Atlantic northward heat transport to below 1 PW
Ensemble Filter for Large Geophysical Models

To work with POP, DART just needs:
1. A way to make model forecasts;
2. Forward operators, h, interpolation.

OBSERVATIONS

Parallel Ocean Program (POP)
Observations for 1998-1999

Temperature and salinity from World Ocean Database 2005.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOAT_SALINITY</td>
<td>68200</td>
</tr>
<tr>
<td>FLOAT_TEMPERATURE</td>
<td>395032</td>
</tr>
<tr>
<td>DRIFTER_TEMPERATURE</td>
<td>33963</td>
</tr>
<tr>
<td>MOORING_SALINITY</td>
<td>27476</td>
</tr>
<tr>
<td>MOORING_TEMPERATURE</td>
<td>623967</td>
</tr>
<tr>
<td>BOTTLE_SALINITY</td>
<td>79855</td>
</tr>
<tr>
<td>BOTTLE_TEMPERATURE</td>
<td>81488</td>
</tr>
<tr>
<td>CTD_SALINITY</td>
<td>328812</td>
</tr>
<tr>
<td>CTD_TEMPERATURE</td>
<td>368715</td>
</tr>
<tr>
<td>STD_SALINITY</td>
<td>674</td>
</tr>
<tr>
<td>STD_TEMPERATURE</td>
<td>677</td>
</tr>
<tr>
<td>XCTD_SALINITY</td>
<td>3328</td>
</tr>
<tr>
<td>XCTD_TEMPERATURE</td>
<td>5790</td>
</tr>
<tr>
<td>MBT_TEMPERATURE</td>
<td>58206</td>
</tr>
<tr>
<td>XBT_TEMPERATURE</td>
<td>1093330</td>
</tr>
<tr>
<td>APB_TEMPERATURE</td>
<td>580111</td>
</tr>
</tbody>
</table>

Assume observational error SD of 0.5°C and 0.5 psu for T and S, respectively. System is also ready to assimilate currents and sea surface height.
CCSM4 DEcadal Prediction Simulations

Year 1980 initialization from ocean-ice hindcasts
Year 2000 initialization from hindcasts and assimilation
Upper ocean (0-300 m) heat content anomaly in the North Atlantic

Area-weighted RMS 294m HC Anomaly (Atlantic 30N-60N)

- **HINDCAST**
- **DART**

- **20C**
- **P1**
- **P3**
NEXT STEPS (Continued)

Extend the weakly coupled assimilation approach to cover first the 1 January 1998 – 31 December 2009 period (and then obtain 1970, 1975, ... states).

Complete the assimilation initialized decadal prediction experiments.

Assess predictability of AMOC, upper-ocean heat content, etc. in the decadal prediction simulations.

Move towards fully coupled data assimilation.

Move towards high resolution data assimilation (0.1° in ocean and 0.25° in atmosphere).

Explore impacts of using currents and SSH in assimilation.
Open Questions and Challenges

- What are the mechanisms for decadal variability?
- To what extent is decadal variability predictable?
- What is the optimal initialization for the components?
- Does oceanic variability have atmospheric relevance?

- Length of assimilation integrations prior to the start of prediction simulations
- Coupling shock and model drift issues