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* Predictability
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NCEP'S NEW COUPLED REANALYSIS TURNS THREE
DECADES OF WEATHER INTO A CLIMATE DATABASE



For a new Climate Forecast System (CFS) implementation

Two essential components:

A new Reanalysis of the atmosphere, ocean, seaice and land over
the 31-year period (1979-2009) is required to provide consisteny
initial conditions for: |

A complete Reforecast of the new CFS over the 28-year period
(1982-2009), in order to provide stable calibration and skill
estimates of the new system, for operational seasonal
prediction at NCEP




For a new CFS implementation (contd)

1. Analysis Systems :

2. Atmospheric Model :

3. Ocean Model :

Operational GDAS:
Atmospheric (GADAS)-GSI
Ocean-ice (GODAS) and
Land (GLDAS)

Operational GFS
New Noah Land Model
New MOM4 Ocean Model

New Sea Ice Model
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An upgrade to the coupled atmosphere-ocean-seaice-land
NCEP Climate Forecast System (CFS) is being planned for Dec 2010.

This upgrade involves changes to all components of the CFS, namely:

Improvements to the data assimilation of the atmosphere with thexnew
NCEP Gridded Statistical Interpolation Scheme (GSI) and major
Improvements to the physics and dynamics of operational NCEP Global
Forecast System (GFS)

Improvements to the data assimilation of the ocean and seaice with the
NCEP Global Ocean Data Assimilation System, (GODAS) and a new
GFDL MOM4 Ocean Model

Improvements to the data assimilation of the land with the NCEP Global
Land Data Assimilation System, (GLDAS) and a new NCEP Noah Land
model




For a new CFS implementation (contd)

1. An atmosphere at high horizontal resolution (spectral
T382, ~38 km) and high vertical resolution (64 sigma-
pressure hybrid levels)

2. An interactive ocean with 40 levels in the vertical, to a
depth of 4737 m, and horizontal resolution of 0.25
degree at the tropics, tapering to a global resolution of
0.5 degree northwards and southwards of 10N and 10S
respectively

3. An interactive 3 layer sea-ice model

4. An interactive land model with 4 soil levels
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There are three main differences with the earlier two NCEP

Global Reanalysis efforts:

Much higher horizontal and vertical resolution (T382L64) of the atmosphere
(earlier efforts were made with T62L.28 resolution)

The guess forecast was generated from a coupled atmosphere — ocean —
seaice - land system

Radiance measurements from the historical satellites were assimilated in this
Reanalysis

To conduct a Reanalysis with the atmosphere, ocean, seaice and land coupled
to each other was a novelty, and will hopefully address important issues,
such as the correlations between sea surface temperatures and

precipitation in the global tropics, etc.




“ONE DAY OF BEANALYSIS
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5-day T126L.64 coupled forecast ( GFS + MOM4 + Noah )
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The linear trends are 0.66, 1.02 and 0.94K per 31 years for R1, CFSR
and GHCN_CAMS respectively. (Keep in mind that straight lines
may not be perfectly portraying climate change trends).

Courtesy: Huug van den Dool




5-day T126L64 forecast anomaly correlations

G0 - SH Yearly Averaged Anomaly Correlation NH Yearly Averaged Anomaly Correlation
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SST-Precipitation Relationship in CFSR

Precipitation-SST lag correlation in tropical Western Pacific

Lag Correlation of Prec. and SST over Western Pacific (winter)

Correlation Coefficient
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Response of Prec. To SST increase : warming too quick in R1 and R2
simultaneous positive correlation in R1 and R2

Courtesy: Jiande Wang



Monthly mean Sea ice extent (10 km?)
for the Arctic (top) and Antarctic (bottom) from CFSR (6-hr forecasts).

5- -year running mean is added to detect long term trends
Arctic Sea—ice extent
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The fit of 6 hour forecasts of instantaneous surface pressure

against irregularly distributed observations (yearly averages)
Fit—to—obs 6—hr Surface Pressure Forecasts
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The Diurnal Cycle of SST in CFSR

The diurnal cycle of SST in the TAO data (black line) and CFSR (blue line) in
the Equatorial Pacific for DJF (top three panels) and JJA (bottom three panels). .
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Monthly mean hourly surface pressure with the daily mean
subtracted for the month of March 1998

Monthly—mean surface pressure [mb] Mar1298
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Courtesy: Huug van den Dool



The amplitude of the diurnal cycle

(1st harmonic) in precipitation (mm/day)
Gang and Slingo, 2001 Y&
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CFSR distribution is quite good, but amplitude is smaller
than ‘Slingo’ (estimated from 3 hourly data)




The phase of the diurnal cycle

(1st harmonic) in precipitation (hour — local time)
ang and Slingo, 2001 CFSR

(c) Estimated precipitation: DJF Phase D JF CFSR
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CFSR distribution of phase is quite good, just less detail
than ‘Slingo’ (estlmated from 3 hourly data)




Hindcast Configuration for next CFS

9-month hindcasts will be initiated from every 5" day and will be run from all 4 cycles of that
day, beginning from Jan 1 of each year, over a 28 year period from 1982-2009 This is required to
calibrate the operational CPC longer-term seasonal predictions (ENSO, etc)

There will also be a single 1 season (123-day) hindcast run, initiated from every 0 UTC cycle
between these five days, over the 12 year period from 1999-2010. This is required to calibrate
the operational CPC first season predictions for hydrological forecasts (precip, evaporation,
runoff, streamflow, etc)

In addition, there will be three 45-day (1-month) hindcast runs from every 6, 12 and 18 UTC
cycles, over the 12-year period from 1999-2010. This is required for the operational CPC week3-
week6 predictions of tropical circulations (MJO, PNA, etc)

Jan 1 Jan 2 Jan 3 Jan 4 Jan 5 Jan 6
0 6 3 061218 0 6 3 0 6 3 0 6 3 0 6 3
> 9 month run » 1 season run — 45 day run

Courtesy: Suru Saha




Operational Configuration for next CFS

There will be 4 control runs per day from the 0, 6, 12 and 18 UTC cycles of the CFS
real-time data assimilation system, out to 9 months.

In addition to the control run of 9 months at the 0 UTC cycle, there will be 3
additional runs, out to one season. These 3 runs per cycle will be initialized as in
current operations.

In addition to the control run of 9 months at the 6, 12 and 18 UTC cycles, there will be
3 additional runs, out to 45 days. These 3 runs per cycle will be initialized as in
current operations.

There will be a total of 16 CFS runs every day, of which 4 runs will go out to 9
months, 3 runs will go out to 1 season and 9 runs will go out to 45 days.

QUTC 6 UTC 12 UTC 18 UTC ,
\\\ W W N
> 9 month run (4) » 1 season run (3) —— 45 day run (9)

Courtesy: Suru Saha




~CFSR Website : http://cfs.ncep.noaa.gov/cfsr.

Emalil : cfs@noaa.gov
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Comparison of Seasonal Prediction
CFSv1 (ops) and CFSv2 (next upgrade)




9-MONTH HINDCASTS
27 years: 1982-2008; 10 initial months.
—> Results shown for all 10 months, but maps only for 2 months
May ICs
CFSv1 : 15 members (Apr 9 - May 3)

CFSv2: 6x4=24 members (Apr 11, Apr 16, Apr 21, Apr 26, May 1
and May 6; 4 cycles each)

Sample size: 648 for CFSv2; 406 forCFSv1.
Nov ICs
CFSv1 : 15 members (Oct 9 — Nov 3)

CFSv2: 7x4=28 members (Oct 8, Oct 13, Oct 18, Oct 23, Oct 28, Nov
2 and Nov 7; 4 cycles each)

Sample size: 756 for CFSv2; 406 for CFSv1.




Definitions and Data
AC of ensemble average monthly means
GHCN-CAMS (validation for Tmp2m)
CMAP (validation for Prate)
Olv2 (validation for SST)
1982-2008 (27 years)
All starting months (minus Sep and Oct)
Common 2.5 degree grid
v1 (15 members), v2 (24/28 members)

Variables/areas studied: US T, US P, global and Nino34
SST, global and Nino34 Prate.

Two climos used for all variables within tropics
30S-30N: 1982-1998 and 1999-2008
Elsewhere: 1982-2008




THE BOTTOM LINE FOR CPC
Anomaly Correlation: All Leads (1-8), All Months (10)

Green is good Red is not good
Model UST USP Nino34 Nino34 Global
SST Prate SST
(50N-50S5)
CFSv2 16.3 9.5 77.2 54.5 42.2
CFSvl 9.5 10.3 71.8 52.8 37.7
CFSvlv2 15.4 12.2 78.3 57.0 45.4
CFSvlv2- -0.9 +2.7 +1.1 +2.5 +3.2
CFSv2
%tage
cl?an% 1 (-5.8%) | (+22%) | (+1.4%) | (+4.4%) (+7%)
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Anomaly Correlation for other Regions
(collaboration with EUROSIP and India)

Green is good

All Leads (1-8), All Months (10)
Red is not good

Model UST Europe | IndiaT USP Europe | IndiaP
T P

CFSv2 16.3 16.4 48.1 9.5 6.0 18.9

CFSvl 9.5 9.6 2.4 10.3 4.5 18.0
CFSvlv2 15.4 15.5 30.7 12.2 6.2 22.8
CFSvlv2- -0.9 -0.9 -18.1 +2.7 +0.2 (+3.9)

CFSv2

%tage 0] 0] 0, 0] 0] 0

change (-5.8%0) | (-5.8%) | (-59%) | (+22%) | (+3.2%) | (+17.1%

)
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Switch gears to 45 day forecasts from
CFSR



Daily CFS Scores
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Anomaly Correlation vs Lead Time (multiples of 6 hours)
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February 2010
500—hPa Height and Anomaly

500

Caily Indices 500-hPa Height {dm) & Anomalies [

(Feb 1—15, 2010)
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The observed climatological annual cycle of the
500mb geopotential height at a grid point close
to Washington, DC, is shown as a smooth red
curve based on four harmonics. The 24-yr mean
values as calculated directly from the data are
shown by the blue curves. Unit is m.
(Johansson, Thiaw and Saha 2007)
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Fig. 1 Wavenumber-frequency spectra of 10S-10N average of raw daily—mean
anomalies of precipitation. (a) CMORPH, (b) R1, (c) R2, and (d) CFSR. The
unit is 0.0001 mm2days=. Contours are shaded starting at 6 with an interval of 3.

Courtesy: Jiande Wang et al
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Fig. 2. Time evolution of 10S-10N average intraseasonal precipitation for
01Nov2007-01mar2008.
The anomalies are shaded starting at -6, -4, -2, -1, 1 2 4 and 6 mm/day.

Courtesy: Jiande Wang et al
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Fig. 3 Correlation of intraseasonal precipitation with CMORPH. (a) R1, (b) R2,
and (c) CFSR. Contours are shaded starting at 0.3 with 0.1 interval.

Courtesy: Jiande Wang et al
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Fig. 4. (a) Standard deviation of intraseasonal rainfall anomalies from CMORPH. (b) differences
in standard deviation of intraseasonal rainfall anomalies between R1 and CMORPH. (c) As in (b)
except for R2. (d) As in (b) except for CFSR. Contours are shaded at an interval of 2 mm/day in
(@) and 1 mm/day in (b), (c) and (d) with values between -1 and 1 plotted as white.

Courtesy: Jiande Wang et al
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MME (CFS and CCSM)
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Fig.2 Anomaly Correlation of forecast for T2M (left) and PRATE (right) as a
function of lead time (in months) for North America and South America. Black
lines denote AC for CCSM and red lines for CFSv1 forecasts.

Evaluation of CCSM and operational CFS for monthly forecasts of

precipitation and temperature over the Americas*
Malaquias Pefia, Huug van den Dool, Emily Becker, and Ben Kirtman
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MME and extremes prediction
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t2m Jan ICs: avg AC leads 1-4, Americas
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t2m Jul ICs: avg AC leads 1-4, Americas
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Is everything perfect with
CFSR?? NO!



— Ocean+Land — QOcean — Land

(o) P

1980 1985 1990 1995 2000 2005

Oct 1998 (AMSU)




Use 2 climatology's for the SST and PRATE
bias correction in CFSv2

1. For all hindcasts from Jan 1982 to Dec1998, use 1982-
1998 climo (17 years)

2. For all hindcasts from Jan 1999 to Dec 2008, use
1999-2008 climo (10 years)




About Predictabllity

Some points | would like to raise:

An acceptable definition of predictability, and procedures to
calculate it. Also a list of test/requirements for a dynamical

model to pass, before predictability estimates are to be taken
seriously.

2) Prediction skill and Predictability, in tier-1 system, in T, P and
In the erstwhile lower boundary conditions of tier-2 systems,
such as SST and soil moisture (w) will be shown now.




o —> Predictability (theoretical/intrinsic) Is a
ceiling for prediction skill

e = Insystems like 1-tier CFS: there 1s only
predictability of the 1t kind.

So: We are left with study of hindcasts and
estimates of predictability of the first kind
(including SST,w).
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ensemble skill NH Land Monthly Temperature Prediction
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Lead (in months}
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Lead (in months}

ensemble skill NH Land Monthly Precipitation Prediction
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Lead (in months)

ensemble skill Nino34 Monthly SST Prediction
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Lead (in months)

ensemble Potential Predictability Nino34 Monthly SST
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Lead (in monthsa}

ensemble skill NH Land Monthly Soillw Prediction
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Huug van den Dool, CPC

"Experimentation with Methods for
the Multi-Model Ensemble
Approach for Seasonal
Prediction”

IRI, March, 27, 2008



M. Pena Mendez and H. van den Dool, 2008:
Consolidation of Multi-Method Forecasts at CPC.
JCLIM 2008.

Unger, D., H. van den Dool, E. O’Lenic and D.
Collins, 20009:
Ensemble Regression.

(1) CTB, (2) why do we need ‘consolidation’?



Table 2 Summary of consolidation techniques and corresponding weights

Acronym Method Weight
MMA Multi-Model ensemble Average
COR Cormelation
LR Unconstrained Regression
EID Ridging
RIZ Double pass Ridging
RIM Ridging with MMA constraint
EI'W Ridging with weighted mean
constraint




Table 2 Summary of consolidation techniques and corresponding weights
Acronym Method Weight
MMA Multi-Model ensemble Average a=K"1, where o = ioy, o, ..., og), K = number of participating models and 1 is a column vector af
size K and all elements equal to [
-
T i
COR Corre lati 157" b PRI - S L . . .
prEiaton o, =——3 = where f =% —, [, isthe training timeseries forecast of i-th model, &, is
o e fid., = 3y
. "'v,!‘_ ; |- . i I i
L. - W
the covariance function betwesn model /| and cbservations, and a; is the variance of model i,
LR Unconstrained Regression a=A"D wher A=2Z"Z, b=2"0and Z=({,), r=1 N, i=l K
RID Ridging T N ko _
a={A+iA"b, Aissuchthat % & is small and a, = -0, i=1 K
=
RIZ Double pass Ridging First pass is regular BRI, then set to zero any a; = ( i=1,._ K, then carry out a second RID
RIM Ridging with MMA constraint e a0
a=(A+ih" h+=1 |
K (Delsole 2007)
EIW Ridging with weighted mean _ _ con 11 )
. a={A+0 " b+ia™) where o
constraint

| i . .
I. are the COR moms=ion cosfficients
III 1 T.. | -
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Meaning of 3CVR E

* \WWhen doing Cross Validation: Leave 3 years
out (3 as a minimum)

* R: Leave 3 years out, namely the test year plus
two others chosen at Random, see example

o E: Use ‘External’ observed climatology, not an
observed climatology that changes In response

—toleaving outaparticularsetof 3 years.—

76




Probability Anomaly Correlation

. Meanmg of good-old anomaly correlatlon

e Minimize the MSE (since Gauss) "
 Now on to minimizing the Probability Score
« This leads to the Probability Anomaly Score.
« Damping, inflation, (re)calibration etc




THANK YOU
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