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o Introduction to the AMOC and its importance
for climate

o Variability of the AMOC: Observations and
Mechanisms

o AMOC response to radiative forcing

o Rapid change of the AMOC

o Climate impacts of AMOC variability and
change

o Summary

o Outstanding research issues



Contrasting properties of the
Atmosphere and Ocean
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Density:

At SLP ocean is ~ 1000x more dense than the atmosphere

Heat capacity:

Specific heat capacity is ~1200x atmosphere
2.5m of ocean has same heat capacity as whole atmosphere

Velocities: Advective mid-latitude internal
Rossby waves
Atmos. |~10 m/s ~10 m/s
Ocean |~1-10 cm/s ~1cm/s

Ocean moves and adjusts ~1000x more slowly than
the atmosphere — a source of memory (& hence
predictability) in the climate system
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Driven by:

-~ Windstress, 1

curl of windstress (Vxr) is a key forcing of
vorticity in the ocean

= > horizontal “gyre circulation”

- “buoyancy” fluxes

heat and fresh water fluxes modify ocean
temperature and salinity and hence density

=> resulting pressure gradients drive
“thermohaline” or overturning circulation
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Atlantic Ocean circulation O mcrni.

Overturning Circulation Horizontal Gyre Circulation

2000 -

4000

60N " 30N
Latitude

Mass circulation in Sverdrups

1 Sverdrup = 10% m3/s

NB: Gyre and overturning circulations are not independent

HadCM3
climate
model

(~1° ocean
resolution)
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The Thermohaline Circulation

Frashen

(Courtesy: D.J. Webb)
Thermohaline Conveyor Belt Mk Il

. THC involves a deep overturning circulation driven by contrasts in
density, and hence pressure, between different regions

. THC is responsible for a large fraction of the ~O(1PW) northward
heat transport of the Atlantic Ocean
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o Forcing by buoyancy
fluxes generates only a 1 1
very weak & shallow ]
circulation
oT 0°T
~— =K
o 0z° | 1

» Need downward mixing of
heat to get a stronger 1 l
deep circulation

o Mixing generated by flow
over topography, tides,

N_én\tlﬁng%lrﬂé\é‘ee%dies in Southern Ocean also play a key role




Formation of deep waters O s
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o Sinking of dense waters fundamental to MOC. Deep ocean tends to
fill up with the densest waters formed at the surface

o Dense water formation is associated with regions of deep
convection (>1km) and/or shallow marginal seas - very few such
regions worldwide

o Water must become more dense by:
- Cooling
- Increasing salinity
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The North Atlantic “ Transformation @zaﬁmﬂc@ng@_for
. . tmospheric Science
Pipeline”

McCartney et al, 1996
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Overflows

o Shallow marginal seas
favour production of dense
waters

o Waters then overflow sills,
mixing with ambient waters
as they descend

Cooling or evaporation

1
ocf\\ R



Climatic importance of MOC: @ National Centre for
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Poleward Heat Transport o
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. Forcing of the climate system by solar insolation generates equator-pole
temperature gradient.

. Heat transport by the atmosphere and ocean reduces this gradient

T 1 T T
g —

— ®T [ERBE}
- = = AT [MTEF)
Total: ~5PW et -
Ocean: ~ 1.5-2PW 2,k
(Trenberth & Caron 2001) -

Fia. 2. The equired total beat transpoat from the TOWA radiation
RT is given along with the estimates of the total atmospheric transpoct
AT from MNCEF and ECMMWE reanalyses {(PW )



Oceanic Heat Transport

National Centre for
Atmospheric Science

MNATURAL ENVIRONMENT RESEARCH COUNCIL

o Atlantic Ocean
transports heat
northwards in both
hemispheres

o Peak Atlantic Heat
transport: ~ 1PW

o Heat released to
atmosphere helps
maintain mean clime

Heat Transport (PW)

Heat Transport (PW)
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F1G. 5. Implied zonal annual mean ocean heat transports based upon the surface fluxes for Feb
1985—Apr 1989 for the total, Atlantic, Indian, and Pacific basins for NCEP and ECMWF atmo-
spheric fields (PW). The 1 std err bars are indicated by the dashed curves.



Variability of the MOC O immsrmi,

o Direct obs of the MOC very sparse in space & time, until recently

UK/US RAPID array
» gives unprecedented
. time series since

s 2004

Pl (but only at 26N)

| *"“Mid-Atiantic

NI "Ridge moorings :
Schematic by L.Bell & N. White / CSIRO
1 P —— ' 30
FIGURE 4 | Time series of
Other : | [/ [ S-daily MOC strength at 26°N in
estimates __ 204 I . W 2o the 1/12° OCCAM model,
z ] AT |( | | { - 19882006 (black line”,
Of M OC 8 1 r l' I‘l. J | IW 4 AI ’“ r alongside published estimates of
I il - ' - the MOC in 1992, 1998 and
Varlablllty = 10 l ‘ ' \ i 10 2004, with published error
from | I bars,'* and RAPID array
mo d el S estimates twice daily from 2
April 2004 to 1 October 2007
1:}1953.1@'. © 1ge3 j908 2003 EUOED {red line,).

Cunningham & Marsh 2010
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i i /1 - g Cunningham & Marsh 2010
i * ’d it~ ¢ . .
'ﬂh ,“]ﬁ,fw | Nu I - Variability on a wide
MmN . range of timescales
| l ' : . Red spectra
et 0 . High frequency
variability (<1 year)
W eERE 50idays probably of little
- ____Power spectrum of THC index importance for climate
s/ HadCM3 model o ]
- / . Climate models typically
5 O | / show enhanced decadal
| I fo variability, but dominant
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Dong & Sutton, 2005



Variability of the AMOC: estimates
based on data assimilation
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Holger Pohimann, Met Office Hadley Centre

AMOC at 45°N
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Indirect observational evidence of @ National Contre for
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decadal variability in the AMOC "
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Indirect observational evidence of @ National Centre for
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decadal variability in the AMOC -
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Spectra of paleoclimatic records from Puerto Rico corals (left) and
Cariaco Basin (right). Both show distinct multidecadal variability.
Kilbourne et al, 2008; Slide courtesy of Tom Delworth



the AMOC: atmospheric forcing

Mechanisms of decadal variability in
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Mechanisms of decadal variability in the AMOC.: National Centre for
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feedbacks = 00000 Y ccnieemonnet sesemon coom

o Quasi-stochastic forcing by the atmosphere (buoyancy fluxes
and wind stress) an important driver of MOC variability

o Simplest case gives red noise MOC spectrum

o But oceanic response is complex:

- adjustment through wave and advective processes may give rise to
feedbacks and preferred timescales of response
(e.g. Delworth & Greatbach, 2000; Dong & Sutton, 2005)

o Coupled ocean-atmosphere feedbacks may also play a role (e.g.
Timmerman et al, 98; Vellinga and Wu, 2004)

NB: The relevant processes
are imperfectly captured in
current climate models, and are
sensitive to resolution - must
treat results with due caution.

power

0 20 40 60 80 100 120
Period (year)
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Atlantic meridional overturning at 40N
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Dan Hodson



AMOC response to radiative forcing
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o Natural (e.g. volcanic) and anthropogenic (e.g. GHG, aerosols)
forcings can modify buoyancy fluxes, and influence AMOC

Response to GHG forcing: slow down due to warming and freshening

Source: IPCC
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AMOC response to radiative forcing @ Atmospheric Science

Aerosol only forcing

All forcmgs \ 1

e e e e e o e

10 m3 s'1 (Sverdrups)

Greenhouse gas only forcing

Delworth and Dlxon 2006 A

Simulated North Atlantic AMOC Index



Potential for Rapid change of the MOC Atmospherie Science
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Dansgaard-Oeschger Cycles
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Current interglacial

period much more Oxygen
stable isotope
record from
Greenland Ice
Core

0
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. Records from Greenland show high frequency spikes in glacial periods

. Amplitudes imply a warming of the air temperature of 6-7 degrees C, half the
glacial-interglacial range.

. Rapid (~decades) onset (warming), more gradual cooling

. Rapid change of the MOC a leading theory to explain D-O events
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Multiple equilibria & rapid change O menzi.

Evidence that the MOC has multiple stable states

Stationary states of the MOC (from a simple model):

A . .
Small increase in freshwater
Overturning : forcing can trigger ab_rupt
strength | —— shutdown of overturning
» Freshwater forcing
3 stationary states (2
stable) Animation from:
stronger overturning http://www.ncdc.noaa.gov/paleo/abrupt/story2.html

<



AMOC hysteresis in a coupled @Kﬁrﬂ%:;L‘éﬁztéﬁiz?,';e
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Ed Hawkins, R. Smith, J. Gregory, L. Allison, T. Woollings
NCAS-Climate & University of Reading
J. Rodriguez, R. Wood

Met Office Hadley Centre FAMOUS — a low res version of HadCM3:
Atmos: 5.0° x 7.5°, 11 levels
Ocean: 2.5° x 3.75°, 20 levels

| |}
208 0 20N 40N 60N 80W = BOW  40W  20W 0  20E  40E

Atlantic overturning streamfunction \winter mixed-layer depths
Smith et al. (2009)



Experimental design @ Atmospheric Science

The following runs were performed with FAMOUS:
= CONTROL —4000 year run with no hosing

= HOSING — add freshwater to North Atlantic between 20°-50°N

» TRANSIENT RAMP UP — increase hosing from 0Sv to 1Sv over 2000 years
» TRANSIENT RAMP DOWN - reduce hosing from 1Sv to 0Sv over 2000 yrs
= CONSTANT HOSING — spun off at various points to check equilibrium state

Important design aspects:
= COMPENSATION —=in all runs the total freshwater flux is zero

» Hosing compensated by a small evaporative flux over the rest of the ocean
surface (= 0.3 psu/year for 1Sv hosing)
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Transient experiments @ NotionalConne il

MNATURAL ENVIRONMENT RESEARCH COUNCIL

RAMP-UP

]

® 16 RAMP-DOWN

M

ATLANTIC MOC AT 26'N
® ©

2 N B
|
|

B o _ , i

-04 03 -02 01 0 01 02 03 04 05 06 07 08 09 1
HOSING [Sv]




National Centre for
Atmospheric Science
MNATURAL ENVIRONMENT RESEARCH COUNCIL

24 T T T T T T T T
HOSING STRENGTH
221 © 0.10Sv -
@ 0.12Sv
20 .
RAMP-UP O 0.15Sv
18l @ 0.18Sv
_ O 0.20 Sv
& 16l RAMP-DOWN vl @ 022Sv
= v O 025Sv
L 14 V! @ 0.30 Sv
= by O 0.40 Sv
=T i
o 12 v @ 0.50 Sv
o ' .
= 10} ' ” ]
O \ |
E 8| ' | ]
1
S o ; _
< 1
4L |
2F S |
O~
of % 2 Y i

04 -03-02-01 0 01 02 03 04 05 06 07 08 09 1
HOSING [Sv]

Relevance to current climate change?
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Climate impacts of AMOC variability
and change



Climate Impacts of AMOC variability () et
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o Northward energy transport

HadCM3: Max AMOC and northward heat

transport (30s-70N); decadal correlation: 0.85
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time
Atmospheric energy anl ;'I |
transport is anti- M7
correlated on o | J
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Shaffrey and Sutton, 2006 = = = @ =
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Regression on North Atlantic OHT index
Tsurface (K'PW_l)



Climate Impacts of AMOC variability @ Atmospheric Science

MNATURAL ENVIRONMENT RESEARCH COUNCIL

o Surface temperature

90N

Observed DJF SST anomalies
(1931-60)-(1961-90)

60N+
30N
EQ A _ i
sos{

605

005 b . ——— -"‘". B J. Impact of THC shutdown
| Vellinga and Wood, 2002
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Climate Impacts of AMOC variability @ Atmospheric Science

=

1920-39 observed trend in winter
- (Nov-Apr) (Johannessen et al,
Bl 2004)
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Climate Impacts of AMOC variability
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o Other N. Atlantic Impacts

Major Hurricanes

Vertical Shear & Hurricane numbers
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Knight et al, 2006



Climate Impacts of AMOC variability @ Atrospheric Science
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o Other climate impacts:

- N. American precipitation / drought (Enfield et al, 2001; Sutton
& Hodson, 2005)

- Wider tropical precipitation: Sahel, S. & E. Asian monsoons
(Zhang & Delworth)

- ENSO variability (Dong & Sutton, 2007; Timmerman et al,
2007)

o Beyond climate:

- Sea level
- Ecosystems
— Greenland Ice Sheet?



Atmospheric Impact of Atlantic Multidecadal Oscillation (AMO)

(or Atlantic Multidecadal Variability, AMV)
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The AMO (area averaged detrended SST anomalies over the North Atlantic) can lead to:

 Multidecadal variations in Sahel and India summer rainfall, and vertical shear over the Atlantic
Hurricane MDR (Zhang and Delworth 2006)

¢ Northern Hemispheric mean surface temperature fluctuations (Zhang et al. 2007)

e Multidecadal variations in the Northern Pacific (Zhang and Delworth 2007)

Slide courtesy Rong Zhang @




Role for AMOC in recent N. Atlantic change?
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Evidence of predictability suggests important

role for oceanic memory in rapid warming
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« AMOC exhibits variability on timescales from days to
decades; red spectrum, possibly with decadal or longer
timescale peaks

o Decadal/longer timescale variability of greatest
importance for climate (including predictability).

« Mechanisms of natural variability involve quasi-
stochastic forcing by the atmosphere + oceanic and/or
coupled feedbacks. Large model uncertainty.

« AMOC is sensitive to natural & anthropogenic radiative
forcing. Potential to trigger rapid change? Large model
uncertainty.

« Evidence for important climate impacts globally



Outstanding research issues O menzi.
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o Mechanisms:

- Large model uncertainty concerning natural variability of the AMOC and
the response to radiative forcings. Sensitivity to resolution (e.g.
boundary currents; overflows) one important dimension.

— which are the dominant feedbacks and their associated timescales? Is
AMOC variability quasi-periodic?

- What is the role of exchanges with the Arctic?
-~ What is the role of the Southern Ocean?

o Climate impacts:

- multiple coupled mechanisms, poorly understood

~ attribution: separating AMOC influence from others
o Observations and synthesis:

- Improving analyses
- Relating observations at different latitudes
. Dradirtahilityvs
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