

Non-hydrostatic modelling with ICON

Almut Gassmann

Max Planck Institute for Meteorology Hamburg, Germany

ICON: tool for NWP and climate applications Wishes for the project some years ago:

- non-hydrostatic atmospheric model
- dynamics in grid point space
- triangular grid based on the tesselation of an icosahedron
- local zooming with static grid refinement
- transport scheme: conservative, positive definit, efficient
- dynamics conserves mass, energy, potential vorticity
- physics parameterizations from COSMO, ECHAM
- coupling to ocean model, atmospheric chemistry, hydrology, and land model
- common software framework supports different models (ocean, atmosphere; grids)
- modulartity, portability
- scalability and efficiency on multicore architectures

from: http://infoskript.de/uploads/pics/Wollmilchsau.jpg

Overview for patchwork talk

- 1. Non-hydrostatic equation set
- 2. C-grid discretisation on triangles and hexagons/pentagons
- 3. Special topics concering discretisations
 - a) SICK (Hollingsworth et al., 1983)
 - b) terrain-following coordinates
 - c) advection schemes
- 4. Physics parameterization packages
- 5. Grid refinement
- 6. Efficiency, scalability
- 7. Outlook

Non-hydrostatic atmospheric model model core formulation

+ Transport equations for specific moisture quantities.

Hamiltonian description

discretisation of Poisson backets
symplectic time integration

$$\frac{\partial \mathcal{F}}{\partial t} = \{\mathcal{F}, \mathcal{H}\}$$

Almut Gassmann (MPI-M), Hans Herzog (formerly DWD)

Triangular and hexagonal C-grids

Checkerboard problem Shallow water model

Fulfillment of the constraint: No, triangular C-grid Yes, hexagonal C-grid with a special tangential wind reconstruction.

Triangular C-grid Divergence field for linear geostrophic adjustment problem with poorly resolved Rossby deformation radius.

$$\tilde{v}_1^1 + \tilde{v}_2^2 + \tilde{v}_3^3 = 0. \quad D_{l,u}^t = \pm \frac{4}{3d} (v_1 + v_2 + v_3), \qquad \qquad \sum_{u \in h} D_u^t = \sum_{l \in h} D_l^t.$$

 $\partial \alpha$

 ∂x_1

$$\tilde{u}_1^1 + \tilde{u}_2^2 + \tilde{u}_3^3 = 0$$
 $\zeta_{l,u}^t = \pm \frac{4}{3d}(u_1 + u_2 + u_3).$

$$\sum_{u \in h} \zeta_u^t = \sum_{l \in h} \zeta_l^t,$$

Max-Planck-Institut Almut Gassmann (MPI-

 $+ \frac{\partial \alpha}{\partial x_2} + \frac{\partial \alpha}{\partial x_3} = 0.$

Hexagonal C-grid

Hydrostatic dycore

An internal symmetric computational instability

A. HOLLINGSWORTH¹, P. KÅLLBERG¹, V. RENNER² and D. M. BURRIDGE¹ ¹ European Centre for Medium Range Weather Forecasts, Reading. ² Deutscher Wetterdienst, Offenbach am Main, Federal Republic of Germany.

spatial resolution ~ 120km, hexagonal C-grid model (triangular C-grid model has similar problems)

Max-Planck-Institut für Meteorologie

Almut Gassmann (MPI-M), Günther Zängl (DWD)

Correction for SICK

K: spec. kinetic energy

spatial resolution ~ 120km, hexagonal C-grid model (triangular C-grid model has similar solution)

Max-Planck-Institut für Meteorologie

Omega (Pa/s)

850hPa

Baroclinic

wave test

(hydrostatic

dycore)

Vorticity (1/s) 850hPa

Almut Gassmann (MPI-M), Günther Zängl (DWD)

surface pressure at day 9

ICONAM

non-hydrostatic dycore with SICK First cyclone has not

the deepest pressure!?!

1000 1010 1020

960 970 980 990

3rd c2

R2B06L26

90N

60N 30N

0

30S

Non-hydrostatic dycore L-grid staggering + terrain-following coordinates

- *interface* levels height-centered between *main* levels
- horizontal pressure gradient:
 - Covariant velocity equations
 - Do not remove background reference profile
 - Care with lower boundary

$$\frac{\partial u_{orth}}{\partial t} = \frac{\partial u_{cov}}{\partial t} - \frac{\partial z}{\partial x} \frac{\partial w}{\partial t}$$

- *main* levels height-centered between *interface* levels
- horizontal pressure gradient:
 - search for neighboring point in the same height
 - reconstruct Exner function using a Taylor expansion until the second order

Almut Gassmann (MPI-M), Günther Zängl (DWD)

Acid test for terrain-following coordinates: Resting atmosphere over a high mountain

Vertical slice model

Spurious vertical velocities remain in the range of mm/s.

Errors do not spoil higher levels.

 $N^2 = 10^{-4}/s^2$

35 vertical layers, dt=6sec

For a < 14 km, the model becomes unstable. \rightarrow SLEVE coordinate \rightarrow Filtering of orography

Almut Gassmann (MPI-M)

Max-Planck-Institut für Meteorologie

Tracer advection scheme according to Miura (2007)

Daniel Reinert (DWD)

Deformational flow test case

- based on Nair, D. and P. H. Lauritzen (2010): A class of Deformational Flow Test-Cases for the Advection Problems on the Sphere, JCP
- Time-varying, analytical flow field $\vec{V}(\lambda, \phi, t) = \vec{v}(\lambda, \phi) \Psi(t)$
- Tracer undergoes severe deformation during the simulation
- Flow reverses its course at half time and the tracer field returns to the initial position and shape $\Psi(t) = \cos(\pi t/T)$
- Test suite consists of 4 cases of initial conditions, three for non-divergent and one for divergent flows.
 IСОНDC

Temperature advection and baroclinic wave

collaboration with Bill Skamarock (NCAR)

run of 300 days for R2B04 σ mean climate of the last 100 days in

Triangular C-grid

R2B04L35

-90

20

(a) u-wind (ms⁻¹)

0 30N 60N

(e) eddy kinetic energy (m²s⁻²) R2B04L35

Max-Planck-Institut für Meteorologie

Maria-Pilar Ripodas (DWD)

Hydrostatic dycore + physics ackages parameterizations

Currently available packages from ECHAM physics

- large scale condensation
- •cumulus convection
- turbulence (vertical mixing)
- •radiation (not used in this exp.)

For **aqua-planet simulations** we need additionally features for radiation:

- the diurnal cycle
- ozone climatology

Tracer transport in both models:

ECHAM: Lin and Rood (1996) fluxform semi-Lagrangian algorithm (finite volume) with piecewise parabolic reconstruction **ICON**

-- Miura scheme with linear reconstruction (that means second order)

- -- Limiter in the vertical: semimonotonous slope limiter
- -- Limiter in the horizontal: monotonous flux limiter

Large scale precipitation [6 hours]

Hui Wan, Marco Giorgetta (MPI-M)

Non-hydrostatic dycore + physics parameterizations

Physics	Author(s)	Current status
Prognostic Microphysics Including prognostic rain and snow	Doms et al. (2004), Seifert and Crewell (2008)	Tested
Saturation adjustment assumption of constant density	Blahak, Seifert	Tested
Convection	Tiedtke-Bechtold	Tested
RRTM-Radiation	Taken from ECHAM	Tested
Cloud cover	Köhler	Technical and physical testing
Turbulent transfer and diffusion Including prognostic TKE	Raschendorfer	Under implementation

Kristina Fröhlich, Thorsten Reinhardt, Martin Köhler (DWD)

Non-hydrostatic dycore + physics parameterizations

Precipitation (color) and surface pressure (contour)

ICONAM+

Baroclinic wave experiment without turbulence parameterization

Kristina Fröhlich, Thorsten Reinhardt, Martin Köhler (DWD)

Grid refinement

Two-way nesting -- algorithm:

one time step in parent domain (black)
interpolation of lateral boundary fields/tendencies
two time steps in refined domain (red)
feedback from the fine domain to the parent domain, overwrite the parent values

One-way nesting -- algorithm:

feedback is turned offDavies nudging is performed near the nest boundaries

Max-Planck-Institut für Meteorologie

Günther Zängl (DWD)

Efficiency and scalability

Max-Planck-Institut für Meteorologie Rainer Johanni (external), Leonidas Linardakis (MPI-M), Günther Zängl (DWD)

Outlook

Further steps for ICON

- consolidation of the code (include remaining physics)
- improvement of efficiency, data structure, IO
- data assimilation + ICON
- preoperational runs next year at DWD
- finalizing ICON grid ocean model at MPI-M
- coupled ocean/atmosphere runs by the end of next year

