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RATIONALE FOR THE THEME OF THIS TALK

4 h

As far as representation of deep moist convection is concerned,

we have only two kinds of model physics:

highly parameterized,
and

explicitly simulated.




Correspondingly,

THERE ARE TWO FAMILIES OF ATMOSPHERIC MODELS

( besides those models that explicitly simulate turbulence )

Many, including
Weisman et al. (1997)

] - :
Deep moist convection ? | d

explicitly simulated

Many, including
Williamson (1999)

Moist convection — 7

highly parameterized
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WILLIAMSON, D. J., 1999

For the upward branch of the Hadley circulations simulated by the NCAR CCM2 :

e When the resolutions are increased for both dynamics and parameterizations,

— No sign of convergence;

e When the resolution is increased only for dynamics,

— (Convergence;

However, the result is similar to that when the coarse resolution is used for both.

He then raised a serious question:

“... arethe parameterizations correctly formulated ? . . .

The parametrization should explicitly take into account

the scale of the grid on which it is based. ”

Similar questions are also raised by

Skamarock and Klemp (1993) and Buizza (2010).



THE CONVERGENCE PROBLEM

Our problem is more demanding than just a convergence;

the GCM should converge to a physically meaningful system

such as a global CRM (GCRM).
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SCHEMATIC ILLUSTRATION OF MOIST STATIC ENERGY SOURCE

UNDER TYPICAL TROPICAL CONDITIONS

apparent source of

moist static energy '

From observed
L-S heat and moisture budgets
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does NOT give the profile in the left panel.

Any space/time/ensemble average of the profiles in the right panel




THE CUMULUS PARAMETERIZATION PROBLEM

It is more than a statistical theory of cloud microphysics as we have seen.

It is not a purely physical/dynamical problem because it is needed as a

consequence of mathematical truncation.

It is not a purely mathematical problem as a higher resolution or an improved

numerical method does not automatically improve the overall results.

A complete theory of cumulus parametrization must address
all of these aspects in a consistent manner,

including the transition between the GCM-type and CRM-type profiles.




UNIFICATION OF GCM AND CRM

Two possible routes to achieve the unification:

ROUTE |
Still following
; ; the parameterization approach
GCM with a Unified Global CRM
Parameterization
ROUTE Il
While partially simulating
Multi-Scale Modeling details of cloud processes
— Global CRM

Framework




ROUTE I: UNIFICATION THROUGH A UNIFIED PARAMETERIZATION
G : the fractional area covered by all convective clouds in a grid cell.

® Most parameterization schemes assume ¢ << 1 a priori, either explicitly or implicitly.

®* Then the temperature and water vapor to be predicted are essentially those.variables

for the cloud environment.

o <<1 o ~1 c=0 0=0 ] 0=0|0=0
detrainment = :} B - = e s
v % 4
”-C udmullés:,- grid-scale
entrainment silrI;)s?dceence updraft<T 7 f ﬁ- ﬁ_ ’_
= grid cell g grid cell

® But, if cloud occupies the entire cell, there is no “environment” within the cell.

A key to open Route |l is eliminating the assumption of 6 << 1.
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CRM SIMULATIONS USED FOR ANALYSIS

To visualize the problem raised above, we have analyzed datasets simulated by a CRM

Model : 3D vorticity equation model of Jung and Arakawa (2008)

Horizontal domain size : 512 km

Horizontal grid size : 2km

Data used : last 2 hrs of two 24-hr simulations with 20-min intervals

Snapshots of vertical velocity w at 3 km height
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ANALYSIS OF GRID-SIZE DEPENDENT STATISTICS OF THE CRM DATA

The original domain is divided into sub-domains with the same size.

Size of sub-domains: (512km) /2™, n=1,2,3,4,.., 9

Examples




FRACTIONAL CLOUD COVER, O

Measured by the normalized number of grid points that satisfy w>0.5 m/s.

Ensemble average at 3 km height excluding ¢ = 0 sub-domains

1 1
(@) shear case (b) non-shear case
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Sub-domain size dp, (km) Sub-domain size dp, (km)

o<<1isagoodapproximation ONLY for large grid sizes.




THE GOAL OF THE UNIFIED CUMULUS PARAMETRIZATION

Recall that the vertical eddy transport is responsible for the difference

From observed From
L-S heat and moisture budgets local cloud microphysics

and CRM-type £ {l profiles.

Do
Pret

between the GCM-type ——

THE GOAL

To formulate the vertical eddy transport

in a way that is applicable to any value of ¢ includingo=1.
\_ J




BASIC ASSUMPTIONS AND GRID-CELL AVERAGES

(): average over the entire grid cell

~

( )c: cloud value () :environment value (not well defined when 6~1)

We take water vapor mixing ratio q as an example.
e Assume that g.and q are horizontally uniform individually.

¢ At this stage, we neglect the effect of convective-scale downdraft.

q=04q.+(1-0)g
w=ow,+(1-0c)w

wq=0w.q,+(1-0)wg

Vertical eddy transport of g: wg—wgq = L(WC _ V_V)(qc _21)
I-o




REQUIREMENT FOR CONVERGENCE

We have derived W]—v_@:L(WC —V_V)(C]c —ZI)

Eddy transport by plumes

— ——\ O [ .\« - « _x. Wec,dc determined by a cloud
wq—wq| =——" |\We —W/N\4e — 4 w .
( )P ( )( ) ey e model such as a plume model

Obviously this cannot be applied to situations with large G.

Convergence requirement : limw, =w limg,=gq
oc—1 c—l1

This indicates that (wc — v_v)(qc —é) is the order of (1- 0)2 (or higher).

The simplest choice : (Wc — v_v)(qc —g) — (1 _ G)2 W — W)(qf B 21)

Then, | wg-wq=(1-0)"(wg-wg),




INTERIM EVALUATION OF THE UNIFIED PARAMETERIZATION

Evaluation of the formal structure of the unified parameterization

We have derived W]—V_VZ]=%(WC—VV)(% —Z]) (1)

and made the choice: (wc —v_v)(qc —Z]) =(1-0)’ (wz‘ — w)(qj - q) 2)

Then @—W&zc(l—G)(Wf—W)(q;k—q) (3)

We define “weighted ensemble mean” <X> by the weighted mean of X

over all sub-domains of the same size with the weight c.

From <(1)>, <(2)> and <(3)>,




Eddy Transport of Water Vapor Estimated with a Prescribed Constant ¢

: Prescribed —— : diagnosed from the dataset
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Estimated Eddy Transport of Water Vapor

=)= o - e-a)

: diagnosed from the dataset

1073m/s 103m/s
1 1
(a) shear case (b) non-shear case
0.84 e Diagnosed with Lh.s. (model independent) 0.84 ® Calculated directly from data
O Diagnosed with r.h.s. (model dependent) O Calculated with parameterization
0.6 0.6-
0.4- 0.4
i - d
024 o—& 3 0.2
0 T T T T | T T T ’ 0 T T T T T T T T 9
512 256 128 64 32 16 8 4 2 512 256 128 64 32 16 8 4 2

Sub-domain size dj, (km) Sub-domain size d,, (km)



DETERMINATION OF G (TENTATIVE)

We have defined

y —~ determined by a cloud
* )(qzk_q) wj,qj_wc,qc etermined by a clou

(=), = (w2 = .
P 1-0 model such as a plume model

Assume that the closure of conventional parameterization gives (W] — v_vZI)

Then the l.h.s.is known so that ’
G: (wa-wa),
(wa—wq), +(wz —w)(ax - 9]
6 =0 as (wg-wgq), >0 61 as (wg-wg) - o

This approach is in parallel to the reasoning used by Emanuel (1991)

in the sense that it combines the following two information :

® Vertical profiles of cloud properties determined by a plume model

® Total vertical transport necessary for adjustment to a quasi-equilibrium



ANTICIPATED IMPACT OF THE UNIFIED PARAMETERIZATION

® |f the GCM and CRM share the same dynamics core, a relatively minor modification of
the existing parameterization schemes can drastically broaden their applicability.

® The error (measured by the difference from the CRM
solution) can be made arbitrarily small by using a
higher resolution.

® Thus multi-scale numerical methods, such as
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multiply-nested grids and adaptive mesh refinement,

| |} | »
10%km 10%km 10 km

can be used with no problem of model physics. .

Horizontal Resolution 1km

e Having a good plume model is, however, a key to the success of the unified parameterization.

When successfully implemented,

practical merits of the unified parameterization will be great.

But after all ROUTE | has its own limit as a “parameterization’”.



ROUTE II:

UNIFICATION THROUGH MULTI-SCALE MODELING FRAMEWORK (MMF)

® MMF recognizes that we currently have

only two kinds of model physics.

® Correspondingly, MMF uses two grid
systems, one for the GCM and the other
for the CRM.

® The two systems are statistically coupled.

® Efficiency is gained by sacrificing
full representations of cloud-scale

3D processes.

Prototype MMF ( "Super-Parameterization”)

Grabowski 2001, Khairoutdinov and Randall 2001

GCM grid size
-

T
/

f'/umm“//o—o-o-m-
Embedded 2D CRM

This does not converge to a GCRM
as the GCM grid size is refined.




Q3D MMF (SECOND-GENERATION MMF)

Jung and Arakawa (2010): Accepted by journalof AdvancedModeling of the Earth System (JAMES)

GCM grid size

[ 4.4 .- Ldd

Q3D Netsize

® The Q3D-CRM uses a gappy domain consisting of two perpendicular sets of channels.

® For efficiency, the width of channels is chosen to be narrow, barely enough to

cover a typical cloud size.

® Thus, a channel contains only a few grid-point arrays. (In the above example,

there are only two arrays.)



LATERAL BOUNDARY CONDITION AND CONVERGENCE
We let

e deviations from interpolated GCM values be periodic across the channel.

® the deviations vanish as the GCM grid size approaches the CRM grid size.

CONVERGENCE

PP PP PP PO PP PP PP PP PP PP PP P PP

A A At g ey’ S o et St b ity

ANV L0 A0 A A7 A4
Tl TN N

AAAA A AAAA AP P A St o Pt S

At o et i v i

{00606 6660600606066066066606606666606606060606060



Domain average of

TIME SECTIONS OF SURFACE PRECIPITATION AND SURFACE FLUXES
benchmark 3D simulation

Surface precipitation rate

Network Average of
Q3D simulation
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EXAMPLES OF TIME-AVERAGED VERTICAL RANSPORTS

Potential Temperature Water Vapor Mixing Ratio
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SUMMARY AND CONCLUSION

® GCMs and GCRMs should be unified so that we can freely choose a resolution

without changing formulation of model physics.

® \We have discussed two possible routes for unification: ROUTE | and ROUTE II.

e ROUTE lis relatively simple and does not

5 Q3D
Q
. : o MMF
requirie much more computing resources 3 -
beyond the conventional models. =3
Route Il
©
A
® Although it is much more expensive, 3 |
()
: Route |
ROUTE Il has great potential for more o - =’ oute
. . : N
accurate NWP and climate simulations o
. . . 6.
since various physical processes are > #
| ] 1 1
coupled at cloud scale. 10%km 10%km 10 km Tkm

Horizontal Resolution
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