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B has a profound impact on the analysis in VAR:

• Correlations in B performs information smoothing and 
spreading from the observation points
• B propagates information to other variables and 
imposes balance. 

Practical difficulties:
• xt is unknown. Differences between forecasts are commonly used to 
mimic forecast errors in order to compute climatological covariances
• Because of its size, B can be neither estimated at full rank nor stored 
explicitly => covariances have to be modelled

Vertical Cross section
of T increment for 1 

obs exp.

z

x

Introduction: B and BLUE

( ) dxxx TTbaa 1−
+=−= RHBHBHδ

In statistical linear estimation theory, the analysis increment δxa write:

Where B = E((xb-xt)(xb-xt)T) and R = E(εo εoT) are the background and the 
observation error covariance matrices, d = y – H[xb] the innovation, and 
H is the linearized version of the observation operator H
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To compute δxa , the method of Control Variable Transforms (CVT) is 
widely used. This requires to write the cost function in an incremental 
formulation (Courtier 1997), and to replace the increment δx by a control 
variable χ in order to simplify the background term:

The challenge is to capture in B1/2 the known important features of B

χδ 2/1B=x

Introduction: B modelling unsing CVT

K is called the balance operator

BS
1/2 is a block diagonal matrix called the spatial transform

Following Derber and Bouttier (1999): 

xx S δχδ 2/12/1 BKB ==
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K aims in taking increments of the model’s variable and to output new 
less correlated parameters on the same grid using balance constraints. 

Basic hypothesis for K:
• The control variables χ are thought to be relatively uncorrelated and 
can be different than increment variables δx

• Errors in geostrophically balanced parameters (associated with 
Rossby modes) are decoupled from errors in unbalanced parameters 
(associated with inertio-gravity modes)

χχδ ~2/1 KKB == ux

Introduction: Balance operators

No hydrometeors are considered yet in operational configurations
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ECMWF/Météo-France parameter transform (similar to what is used at 
NCEP and JMA) : Fields in spectral representation (allows scale-dependency)

M, N, P are regression 
operators that adjust 
couplings with scales

Introduction: Balance operators χχδ ~2/1 KKB == ux
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Met-Office formulation (Similar to what is used for WRF, MM5 and at CMC) : 
Fields in grid-point representation 

• parameters are stream 
function δψ, velocity potential 
δχ, unbalanced pressure δPu
and relative humidity δμ
• analytical operators instead of 
statistical regressions

H is an analytical NLBE operator giving the pressure field in geostrophic 
balance with δζ , this balanced pressure being regressed to δη via M

Derber and Bouttier (1999)
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extension for δq operationally 
used at MF at regional and 
convective scale (Berre(2000))
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Introduction: Spatial transforms

χδδχ ~2/112/12/1 −−−− === SS xx BKBB

The spatial transforms aim in:
• projecting each parameter onto uncorrelated spatial modes
• dividing by the square root of the variance of each mode

spectral σb

GP σb
Horizontal cov. 
deduced from 
calibration proc.

⇒The resulting correlations are 
homogeneous, isotropic and non-separable

In the Met-Office-like formulations vertical correlations depends 
on horizontal position instead of scale

Vertical cov. Deduced from 
EOFs

ECMWF’s like formulation is based on the diagonal spectral hypothesis:

( ) ( )TTT
S SVSWEDB 2/12/12/12/1 −−−−− =
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• capitalized on an explicit microphysical scheme to document 
covariances and balances between traditional control variables in 
areas that are under-represented in samples of forecast differences 
used for climatological covariances computation

• quantify what should be taken into account in B matrix modeling
for VAR in those areas, in terms of balances and flow-dependecy

• give and insight of spatialization lengths to be applied to filter out 
sampling noise in ensemble-based DA methods such as EnKF in those 
areas

• build set of B matrices that could be further used in the heterogeneous 
background error covariances formulation

Diagnostics of covariances in clouds and precipitation

3D Error covariances:

In Montmerle and Berre (2010) Bs are computed separately for rainy 
and non-rainy areas using geographical masks in an ensemble 
assimilation based on a Cloud Resolving Models (CRM), in order to:
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Also:
• ~2 times shorter horizontal correlation 
lengths for q and T in precipitation
• greater σb for δζ and δη in precipitation, 
because of the more intense dynamics

Diagnostics of covariances in clouds and precipitation

The coupling with moisture in convective clouds allows in particular σb(q) to be 
mostly explained by δηu in precipitating areas at mesoscale, and to be almost 
univariate and linked to the mass field in clear air

Rainy

Non-rainy

Cor(q,q): larger mid-
tropospheric mixing in 

precipitations

Montmerle and Berre (2010)

Rainy Non-rainy

Oper

Cov(q,div): A positive 
increment of δq will 
enhance convergence 
below 800 hPa, and 
divergence above in 
precipitating areas

( ) uuSu qPTSRQHq ~~,~~~ δδδηδζδδ +++=
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Diagnostics of covariances in clouds and precipitation

Same approach has been 
recently applied for fog:

σb(T)
Maximum 

reflecting T 
inversion 
above fog

Oper
Fog

No Fog

Vertical 
correlations 

for T
(zoom in the 
first 500m)

Vertical 
stability of fog

200m

B. Ménétrier

Fraction of explained q variance ratios
Very strong coupling between q and T in fog 

due to saturation

FOG NO FOG
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Diagnostics of covariances in clouds and precipitation

Full error covariances for hydrometeors:

Montmerle and Berre (2010) approach has been also recently 
extended by Michel et al. (2010) for qc and qr using forecast outputs 
from an EnKF based on WRF, and by extending Berre (2000) 
multivariate formulations for those variables.

Vertical auto-correlations
Vertical mixing of clouds in 
convection

Rain falling bellow the 
freezing level, some rain in 

convective towers

qc qr

Michel, Auligné and Montmerle (2010)
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This study highlights the strong coupling of humidity, cloud and rain content 
with divergence (and also the shorter lengthscales in precipitating areas). 

Diagnostics of covariances in clouds and precipitation

Explained variance ratios

Strong couplings with ηu (but also 
to q, since a large ratio of q

variance is also explained by ηu)

cloud rain

Cross-covariances

Cov(qc,div) shares the same 
structures than cov (q,div), but 
translated vertically

Cov(qr,div) is more complex and 
displays structures that depend 
on LFC and freezing level hight

cov(qc,div) cov(qc,div)



15

Diagnostics of covariances in clouds and precipitation

In clouds and precipitation and for traditional CV, these results suggest 
that:
• overall, very different statistics between rainy and non-rainy areas were 
obtained. Operational formulations of B may thus be far from optimal in 
clouds and precipitation
• background error covariances are characterized by balances that are 
coherent with the model’s physic (e.g explicit convection)
• coupling between humidity and divergence is predominant
• horizontal correlation lengths are shorter in precipitation
• vertical correlations reflect the cloud vertical extension due to convection

For liquid cloud and rain, even if hydrometeor errors are probably non-
Gaussian distributed, their statistics show :

• reasonable and physically meaningful auto-covariances and statistical 
couplings with other variables (especially with divergence)

• even shorter horizontal correlation lengths
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The structures linked to clouds and precipitations that we want to analyze 
are thus likely to be differently balanced,  strongly anisotropic and 
flow dependent.

Different degrees of weather-dependency in the CVT can be 
achieved using: 

• 4DVar instead of 3DVar: allows to propagate B to the appropriate 
times of the observations. However, it is reset to its static value at each 
assimilation cycle.

• Non linear balance constraints

• Ensemble flow-dependent B 

• Heterogeneous covariances 

How to get cloud and precipitation-dependent statistics?
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How to get cloud and precipitation-dependent statistics?
Non linear balance relationships

The use of a geostrophic Non-Linear Balance Equation (NLBE) (Barker et al. 
2004, Fisher, 2003) allows to add some flow-dependency by taking into account 
cyclostrophic terms that are important in regions of strong curvature (cyclones...)

At regional scale, Carron and Fillon (2010) have shown that the gap with the 
geostropic balance increases with precipitation intensities

⇒ Use of scale-dependent regression coefficients allows however to relax this 
balance for clouds and precipitation that are rather small scales

Use of Quasi-Geostrophic Omega balance
A similar approach allows to add an analytically balanced divergence δηb according 
to the QG omega and continuity equations

⇒ Using a CRM, Pagé et al. (2007) propose to revisit this formulation with the 
introduction of diabatic forcing of balanced vertical motion. No inclusion of 
these additional terms in CVT formulation have been tried yet.

( )Ω++= TMH bu δδζδηηδζδδη ,~~
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Ensemble-based flow-dependent B:

• Include partially (hybrid DA) or totally a flow-dependent B matrix, 
computed from daily runs of an ensemble assimilation, into 3 or 4D-Var, 
without significant change of the existing setup of operational VAR system

εa

εb = Mεa (+ εm)

Flow dependent B

Implicit (but effective) 
background perturbations 

Houtekamer et al 1996; Fisher 2003 ; Ehrendorfer 2007 ; Berre et al 2006
En4DVar (Liu et al, 2008)

Explicit observation perturbations

How to get cloud and precipitation-dependent statistics?
Ensemble-based flow-dependent B
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Main issue: although very attractive (weather dependent covariances, sharper 
correlations), this method is computationally very expensive (especially for 
CRMs!).

A solution is to consider an ensemble with few members and use optimized 
filtering techniques to reduce sampling error in B. Main approaches:

How to get cloud and precipitation-dependent statistics?
Ensemble-based flow-dependent B

• CVT in ensemble sub-space (En3DVar, En4DVar (Lorenc (2003), Liu (2008), 
Buehner (2008)) using localizations with Schur operators to reduce the 
analysis noise (Buehner and Charron, 2007)

Other spatialization methods could be used for that purpose: Diffusion 
operators (Weaver and Courtier, 2001) or recursive filters (Purser et al, 2003)

• Spectrally filtered σb (Raynaud et al, 2009) and wavelet correlations
(Fisher (2003), Pannekoucke et al. (2007)). At Météo-France, the global 
Arpege 4DVar uses operationally these « σb’s of the day » for all CV 
deduced from 6 perturbed global members with 4DVar (Berre, 2009)
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Filtered σb for ζ at 500hPa
Psurf

Ensemble spread: large σb associated with a storm over France

How to get cloud and precipitation-dependent statistics?
Ensemble-based flow-dependent B

Example of filterred standard deviation « of the day »:
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Wavelet filtering of flow-dependent correlations

Synoptic situation 

(geopotential near 500 hPa)

Anisotropic wavelet based 
correlation functions

(Lindskog et al 2007, Deckmyn et al 2005)

⇒ Correlation lengths are sharper in regions of strong dynamical gradients

How to get cloud and precipitation-dependent statistics?
Ensemble-based flow-dependent B
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Adapting ideas of Courtier (1998) and Buehner (2008), to use more suitable 
background error statistics in precipitating and non-precipitating areas in CVT:

α and  β based on grid point masks
Bp and Bnp being precipitating and 
non-precipitating background error 
covariances respectively.

Vertical Cross section of q increments
4 obs exp: Innovations of – 30% RH

At 800 and 500 hPa

“Rain” “No Rain”

Montmerle and Berre (2010)

δx = α1/2Bnp
1/2χ1+ β1/2Bp

1/2χ2

How to get cloud and precipitation-dependent statistics?
Heterogeneous B

⇒ Allows to consider simultaneously 
very different covariances that are 
representative of different weather 
regimes

⇒ Could be used in an ensemble 
flow-dependent B 



24

Outlines

1. Introduction

2. Diagnosis of covariances in clouds and precipitation

3. How to get cloud and precipitation-dependent statistics?

4. Conclusions and Possible strategies



25

Possible strategies for B matrix modelling in clouds 
and precipitation

Balance operators:

• Use more adequate balance relationships involving dynamical fields and a 
humidity-linked variable, based on analytical diabatic formulations (Pagé 2007) 
and/or statistical regressions (Berre 2000). More realistic hydrometeors will be 
produced after spin-up.

• If hydrometeors are considered in the CV, multivariate formalism may be needed

Spatial transforms

• Flow dependence can be achieved by using ensemble assimilation related 
methods. Sample noise is the big issue, but can be addressed efficiently using 
filtering techniques

• Heterogeneous covariances can inherit from these developments, simply by 
adding masks in the forecast differences step

⇒ One big issue may be to incorporate spatial localization deduced from 
observations and/or background directly in balance operators



Thank you for 
your attention…



Bannister (2008)

/AROME

NLBE/
QG omega

NLBE/
QG omega

NLBE/QG omega

NLBE
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Diagnostics of covariances in clouds and precipitation

1D Error covariances:

• Some work has been done to define vertical background error covariance 
matrices for qc and qr to be used in 1D-Var applied to ATOVS, SSMI or TRMM 
radiances.

⇒ In Moreau et al. (2003), the vertical covariances were calculated at each 
forecast point in the horizontal domain of a global model, by perturbing profiles 
of T and q used as input for the model’s moisture scheme. 

• Amerault and Zou (2006) has performed 
statistics on differences of forecasts that 
were using different explicit moisture 
schemes.

⇒ Retrieved profiles of hydrometeors can then 
potentially be assimilate in 3D/4DVar, assuming 
that their 3D error covariances are known. 
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3D Error covariances:

P. Lopez in his PhD Thesis (2001) shows some auto- and cross-correlations 
between qc, qr and the other traditional control variables for ARPEGE global 
model, using forecast differences for one meteorological situation. Main 
conclusions for extratropics:

qc (and qr) seems 
decorrelated to T, but 
correlated to qv and to 
divergence

horizontal lengthscales 
are shorter at all levels 

for qc (and qr)

PBL

Top PBL

Top

Diagnostics of covariances in clouds and precipitation
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Spatial and spectral localization of correlations

Needed to reduce the sampling error in ensemble assimilation 

Wavelet formulation (Fisher, 2003) allowing to model simultaneously scale 
and position-dependent aspects of covariances

• Instead of having one control vector χ ,which is function of wave number 
and vertical mode, there are now K sub-control vectors χi function of 
(lat,lon,z) per parameter.

• A wavelet ψj(r) acts as a bandpass filter when convolved with correlations.

⇒ This approach allows inhomogeneity and anisotropy and thus 
seems attractive for mesoscale application

⇒ Curvelets may be more adapted for LAM

( )( ) ( )∑
=

−− ⊗==
K

j
jjj

TTT
u r

1

2/12/12/12/12/1 χψχχ CVSEDSVSB

How to get cloud and precipitation-dependent statistics?
Ensemble-based flow-dependent B
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23/02 24/02 25/02

27/02 28/02 01/03

02/03 03/03 04/03

1 obs experiment
T innovation at 850 hPa

Daily covariances are 
computed using 3h 
AROME forecasts from 
6 members at each of 
the 8 analysis times of 
the day before

Daily evolution of mesoscale
δq increments
Vertical cross-sections 

Anticyclonic conditions

Perturbed conditions

⇒ Strong variabilities 
depending on 
weather regimes

P. Brousseau

Ensemble-flow dependent B: Example at mesoscale
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• Recursive filters, based on a convolution (in grid space) of a field 
with a Gaussian-shaped kernel (Purser et al, 2003a). Used in WRF, 
MM5 and JMA regional models to simulate isotropic and homogeneous 
horizontal correlations (More details in Yann Michel’s talk). 

Inhomogeneity can be added by varying geographically smoothing 
scales

To stretch covariance functions (and thus to add anisotropy), 
nonstandard grid lines have to be included among the set of direction 
along which recursive smoothing operators apply (Purser et al, 2003b) 

Spatial and spectral localization of correlations

At convective scales, inhomogeneity can be assessed through non 
trivial normalization and specific tunings, and anisotropy can be 
obtained but is technically difficult
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• Diffusion operators (Weaver and Courtier, 2001): based on replacing 
the Laplacian operator in the generalized diffusion equation by a 
polynomial in the Laplacian. 

The integral solution of this equation can be interpreted, after appropriate 
normalization, as a covariance operator on the sphere.

The shape (spectrum) of the correlation function can be controlled by 
adjusting the relative weights of the different Laplacian terms.

The correlation functions can be made anisotropic by stretching and/or 
rotating the computational coordinate system via a ‘diffusion’ tensor.

Could be adapted for LAM applications. « Playing » on diffusion 
coefficients to get weather-dependent length-scales could be 
interesting. Filtering of sampling noise still needs to be addressed 

Spatial and spectral localization of correlations

0
2

=∇−∂
∂ ηκη

t
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Wavelet-implied length-
scales, superimposed on 

the background field of sea-
level pressure

Meridional length-scales (km) for surface pressure on 10 February 2002 
at 12 UTC, computed from 6 ensemble members

Raw length-scales

Pannekoucke, et al. (2007)

Shorter correlation lengths  
in regions of large gradients

Ensemble-flow dependent B: wavelet correlations
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Main approaches: 

• Schur product of correlations with localization functions in the 
spatial and spectral domains (Buehner and Charron, 2007). These 
functions are simple “correlation” matrices with monotonically decreasing 
values as a function of separation distance

Spatial and spectral 
localizations improve 
long and short ranges 
respectively.
Combination seems to 
give best results.

They show that localization of correlations in spectral space 
(multiplication) is equivalent with spatial averaging of correlations in grid-
point space (convolution) => mainly usefull to reduce sampling error in an 
ensemble.

Spatial and spectral localization of correlations
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Increments at level 31 from a single height observation at 300hPa

Top panels: Jb includes Nonlinear balance and QG omega equations
Bottom panels: Linear balance only

Wind Divergence

Fisher (2003)

⇒ Enforcement of coherent extratropical divergent flow structures

How to get weather-dependent statistics?
Non linear balance relationships
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Real case experiment
CNTRL: AROME oper + Reflectivities
EXP: CNTRL using simultaneously (Bp, Bnp)
Mask deduced from observed reflectivities (zoom)

CNTRL EXP

δT950hPa

δq800hPa

Low level cooling localized 
to precipitating regions

Clear air regions are characterized 
by “smoother” increments

Strong gradients associated to 
precipitations are kept in the analysis
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