Use of cloud condensate in the background error formulation

Elías Hólm and Jiandong Gong

ECMWF

June 16, 2010

Acknowledgements: Peter Bechtold, Richard Forbes and Philippe Lopez

Outline

- 2 Cloud link with the humidity control variable
- 3 Cloud condensate control variable
- 4 Summary and recommendations

Control variables - how they relate to model variables

- Nonlinear prognostic model variables: $(..., T, q_v, q_l, q_i, N, q_r, q_s)$
- Tangent linear prognostic model variables a subset of perturbations in the nonlinear variables: (..., δT, δq_ν, δq_l, δq_l)
- Control variables for the background error term a linear combination of the tangent linear variables, chosen to reduce/eliminate cross-correlations between different control variables: $(\dots, \delta T_{\mu}, (\delta q_{\nu}/q_{ext}^{b})_{\mu}, (\delta q_{c}/f^{b})_{\mu})$
- Strategy for adding tangent linear and control variables
 - Try to add new variables without needing to change the existing ones,
 e. g. for the control variable add cloud condensate, not total water.
 - Add new tangent linear prognostic variables if they help to extract observational information: model/observation operator sensitivity and linearity decisive.
 - New control variables to describe errors for new tangent linear variables
 can be a linear combination of TL variables.

イロト イポト イヨト イヨト

Adding more cloud related variables: ECMWF example

- At ECMWF blue variables above are the current operational configuration:
 - There is only δq_v in the tangent linear model diagnostic physics parameterization give cloud and precipitation variables for use in linear physics and observation operators. The adjoint model only uses cloud/rain observation information projected on δT , δq_v .
 - There is only $(\delta q_v/q_{sat}^b)_u$ in the control variable no prognostic cloud variables available in the TL/AD model.
- The variables in red are current developments at ECMWF:
 - Rain and snow (q_r, q_s) have been added to the nonlinear model.
 - Cloud liquid water and ice (δq_l, δq_i) under development for the tangent linear model. With this development information from observations also projects onto the prognostic cloud variables.
 - Cloud condensate $\delta q_c = \delta q_l + \delta q_i$ under development for the control variable liquid and ice available in the TL/AD model, and an accurate diagnostic split can be used, $\delta q_l = \alpha(T^b)\delta q_c$ and $\delta q_i = (1 \alpha(T^b))\delta q_c$.

イロト 不得下 イヨト イヨト 二日

Humidity-temperature background error correlations: connection to clouds I

- Humidity-temperature background errors as a function of relative humidity is close to 1 at saturation and reduces to zero at about 85% relative humidity.
- It appears the correlation mainly describes large scale condensation in clouds: the correlation coefficient looks very similar to cloud cover versus relative humidity for stratiform clouds.
- A simple cloud scheme describing instantaneous condensation conserves total in-cloud and gridpoint mean water in the absense of precipitation,

$$\delta q_t^c = \delta q_s(T^b) + \frac{\delta q_l + \delta q_i}{N} = \delta q_s(T^b) - \frac{\delta q_v}{N} = 0$$

Humidity-temperature background error correlations: connection to clouds II

 This gives the gridpoint mean humidity change in response to a temperature change as

$$\delta q_{\nu} = N \delta q_{s}(T^{b}) = N \left. \frac{\partial q_{s}}{\partial T} \right|_{T^{b}} \delta T$$

 The humidity control variable definition contains a similar relationship, after multiplying with q_s(T^b)

$$\delta q_{\nu} = (\delta q_{\nu})_{u} + Q_{\nu} (rh^{b}) \frac{q_{\nu}^{b}}{q_{s}(T^{b})} \left. \frac{\partial q_{s}}{\partial T} \right|_{T^{b}} \delta T$$

Humidity-temperature background error correlations: connection to clouds III

Cross section of cloud cov 20100410 2100 step 0 Expver 0001

Cross section of cloud cov 20100410 2100 step 0 Expver 0001

- Cross section Greenland-Iceland of
 - (left) Humidity-temperature correlation $Q_v(rh^b)$ in terms of $N_{eff} = \frac{q_v^b}{q_v(T^b)}Q_v(rh^b)$.
 - (right) Model first guess cloud cover N.
- Similarities, but the correlation also picks up additional processes, so $N_{eff} > N$.

Humidity-temperature background error correlations: connection to clouds IV

- Cross section Greenland-Iceland (model first guess errors in green)
 - (left) 'Balanced' δq_l increments implied by $Q_v(rh^b)$.
 - (right) 'Balanced' δq_i increments implied by $Q_v(rh^b)$.
- Too large increments here, but could use first guess N instead.
- Can this be used? Add cloud increments to nonlinear model at outer loop level, even if no clouds in TL?

Elías Hólm and Jiandong Gong (ECMWF) Cloud condensate background error

Cloud control variable - where to begin?

- Cloud condensate forms from humidity, and precipitation forms from cloud condensate, so one needs to include accurate cloud condensate before considering precipitation.
- Cloud condensate also more linear than cloud cover and precipitation, which is why cloud condensate $(\delta q_l, \delta q_i)$ chosen for extending the TL model at ECMWF.
- Humidity is (mostly) limited by condensation to $\frac{q_v}{q_{sat}} < 1$ (exception: supersaturation wrt ice).
- Similarly, cloud condensate is (mostly) limited by autoconversion (to precipitation) to $\frac{q_c}{Na^{crit}} < 1 + \varepsilon < 2$ (exception: strong convection).
- Cloud condensate perturbations are (on average) accurately split into liquid and ice as a function of temperature α(T).
- Consider as control variable $(\delta q_c)_u$ or $(\frac{\delta q_c}{N^b q_c^{crit}})_u$.
- Always need to include the 'balance/correlation' with other variables, thus $(\cdot) = (\cdot)_u + (\cdot)_b$.

Study control variable candidates with ensemble forecast differences

- We use differences of 3-h forecasts from independent analyses using perturbed observations.
- We aim for a variable with homogeneous statistics, where the forecast difference pdf is close to Gaussian.
- Building on our humidity analysis work, this will be attempted by finding a flow-dependent variable transform $f(q_c)/\sigma(q_c, T, ...)$. The transform can even be nonlinear, with nonlinearities treated at outer loop level in 4D-Var.
- 'Balances' at later stage for the 'most Gaussian' variable: options open and range from total water conservation to linear cloud scheme operators.
- We start by plotting pdf histogram of a few candidate variables.

Cloud condensate δq_c : model level 60 \approx ice

- Left: normalized by constant $\sigma(L)$ non-Gaussian, inhomogeneity causes relatively smaller values to accumulate close to zero.
- Right: normalized by flow dependent $\sigma(L, rh)$ still bad.

16 k 4 16

Normalized cloud condensate $\frac{\delta q_c}{Nq_c^{crit}}$: level 60 \approx ice

• Left: normalized by constant $\sigma(L)$

- Right: normalized by flow dependent $\sigma(L, \frac{q_c}{Na^{crit}})$.
- Both similar and better than δq_c .
- Only include samples for N > 0.01 and $\frac{q_c}{Na_c^{crit}} < 2$

- 4 3 6 4 3 6

Normalized cloud condensate level 60

Wednesday 15 October 2008 06UTC ECMWF EPS Perturbed Forecast t+3 VT: Wednesday 15 October 2008 09UTC Model Level 60 **Cloud liquid water content (11 members)

Elías Hólm and Jiandong Gong (ECMWF)

Cloud condensate background error

June 16, 2010 13 / 20

Normalized cloud condensate level 80

Wednesday 15 October 2008 06UTC ECMWF EPS Perturbed Forecast t+3 VT: Wednesday 15 October 2008 09UTC Model Level 80 **Cloud liquid water content (11 members)

3

イロト イポト イヨト イヨト

Normalized cloud condensate $\frac{\delta q_c}{Nq_c^{crit}}$ variance

- Estimated flow-dependent error variance does not vary much, so not much extra gained by using it.
- We are still working to improve upon this formulation.

Normalized cloud condensate $\frac{\delta q_c}{Nq_c^{crit}}$: level 80 \approx water

• Left: normalized by constant $\sigma(L)$

- Right: normalized by flow dependent $\sigma(L, \frac{q_c}{Na^{crit}})$.
- More Gaussian than upper (ice) levels.

A D A D A D A

Extremes bins of the normalized cloud condensate $\frac{q_c}{Na^{crit}}$

- Left: Samples with lowest background normalized cloud condensate.
- Right: Samples with highest background normalized cloud condensate.
- Asymmetry needs to be accounted for by a nonlinear transform of the control variable (at outer loop level) like for humidity.
- Note small sample size due to looking at one field more samples smooth but do not change the picture.

Elías Hólm and Jiandong Gong (ECMWF) Cloud condensate background e

June 16, 2010

Cloud condensate differences $\times 1E4$ (upper) and normalized (lower): level 60

Wednesday 15 October 2008 06UTC ECMWF EPS Perturbed Forecast t+3 VT: Wednesday 15 October 2008 09UTC Model Level 60 **Cloud liquid water content - Ensemble member number 1 of 11 20 10 5 0.2 0.1 -0.1 -0.2 -0.5 -5 -10 -20 -50 Wednesday 15 October 2008 06UTC ECMWF EPS Perturbed Forecast t+3 VT: Wednesday 15 October 2008 09UTC Model Level 60 **Cloud liquid water content - Ensemble member number 1 of 11 50 20 10 0.2 0.1-0.1 -0.2 -0.5 -1 -10 -20 .50

イロト イポト イヨト イヨト

Cloud condensate differences $\times 1E4$ (upper) and normalized (lower): level 80

Wednesday 15 October 2008 06UTC ECMWF EPS Perturbed Forecast t+3 VT: Wednesday 15 October 2008 09UTC Model Level 80 **Cloud liquid water content - Ensemble member number 1 of 11

Elías Hólm and Jiandong Gong (ECMWF)

イロト イヨト イヨト イヨト

Summary and recommendations

- Adding cloud control variable(s) (in 4D-Var together with accurate TL evolution of cloud variables) will allow more detailed studies on the impact of cloud sensitive observations.
- Simplest approaches use total water variable (e. g. UK Met Office) or cloud condensate as planned at ECMWF.
- Precipitation control variables should probably only be attempted once cloud condensate has proven beneficial.
- Cloud analysis needs to address inhomogeneous variances and asymmetric pdf's through normalizations and non-linear symmetrization at outer loop level.
- The variable transforms developed to make the cloud condensate control variable more Gaussian can be applied both in variational and ensemble assimilation context.