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JCSDA Partners, Vision, Mission
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Vision:

An interagency partnership working to become a world leader in
applying satellite data and research to operational goals in environmental analysis
and prediction

Mission:

...to accelerate and improve the quantitative use of research and
operational satellite data in weather, ocean, climate and environmental analysis
and prediction models.
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JCSDA Science Priorities

Overarching goal: Help the operational services improve the quality
of their prediction products via improved and accelerated use of
satellite data and related research

= Radiative Transfer Modeling (CRTM)
= Preparation for assimilation of data from new instruments

= Clouds and precipitation

= Assimilation of land surface observations

= Assimilation of ocean surface observations

= Atmospheric composition; chemistry and aerosol

Driving the activities of the Joint Center since 2001, approved
by the Science Steering Committee
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JCSDA Mode of operation

Directed research
= Carried out by the partners
= Mixture of new and leveraged funding
= JCSDA plays a coordinating role

External research

= Grants awarded following proposals submitted to Federal Funding
Opportunity, administered by NOAA on behalf of all JCSDA
partners

= Option for contracts will be added for FY2011 with help from NASA
= Open to the broader research community
= Funding awarded competitively, peer review process

Visiting Scientist program
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JCSDA accomplishments

Common assimilation infrastructure (EMC, GMAO, AFWA)
Community radiative transfer model (all partners)
Common NOAA/NASA land data assimilation system (EMC, GSFC, AFWA)

Numerous new satellite data assimilated operationally, e.g. MODIS (winds
and AOD), AIRS and IASI hyperspectral IR radiances, GPSRO sensors
(COSMIC, GRAS, GRACE), SSMI/S, Windsat, Jason-2,...

Advanced sensors tested for operational readiness, e.g. ASCAT, MLS,
SEVIRI (radiances),...

Ongoing methodology improvement for sensors already assimilated, e.g.
AIRS, GPSRO, SSMI/S, ...

Improved physically based SST analysis
Adjoint sensitivity diagnostics

Emerging OSSE capability in support of COSMIC-2, JPSS, GOES-R, Decadal
Survey and other missions
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Clouds and precipitation in
JCSDA

= Why are we interested in this?

= Often, information about clouds and
precipitation is what NWP end users need
the most
= Not areas where NWP systems shine

= Difficult, and strongly non-linear
modeling/physical parameterizations

= Most (if not all) types of satellite data are
affected by one or the other
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Clouds and precipitation related
assimilation efforts in JCSDA

= EMC (Kim, Jung)

= STAR (Boukabara, Kim, Liu, Weng)

= GMAO (Liu, McCarty)

= AFWA (Eylander, Huang, Auligne, Gustafson)
= NRL/Monterey (Baker et al.)

= OAR (Benjamin et al.)

= AER
« CIMSS
= NCAR
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Jung, Le Marshall, Riishojgaard

ata Assimilation using cloudy fields
ith NCEP/EMC*s GFS

y by drive toward better data coverage, including areas
of potential meteorological significance

Assimilate radiances from cloudy FOVs preferably with single level cloud.
(Follow-on to 2007 experiments by Le Marshall and Jung)

Initially use radiances where cloud coverage and uniformity of FOVs
allow accurate estimation of radiances from clear portion

Compare impact on forecast skill of NCEP GFS with that of clear
radiances from identical channel set (~140 channels)

Compare impact of expanded (~220) set of cloud-cleared channels with
that of basic clear set

Susskind, J., C.D. Barnet and J.M. Blaisdell 2003. Retrieval of atmospheric and
surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE
Trans. Geosci. Remote Sens., 41, 390-409.
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Min-Jeong Kim, NESDIS/STAR and NCEP/EMC

Current Setup for TMI Retrieved Rainrate Assimiation
in Operational GSI

* TMI “"SURFACE?” rainrates are currently being
assimilated in GDAS.
e Data resolution : 1°x1°

* Observation error = 0.137+0.118%*log (1+RR) : ocean
0.3148+0.1781*log(1+RR) : land

* Observation errors are inflated depending on
(1) surface type
(2) magnitude of adjoint sensitivities,
(3) smoothness of adjoint sensitivity profile,
(4) difference between analysis time and overpass
time, etc ..



Forward and Adjoint Models for Moisture
Physics
4 =B"'x+H'O"'(Hx - 0)

Forward model

Jacobians
T
Q - Moistur
U e R_RC-I?RO
V Physics mHxeo
SST |

Adjoint model

computes sensitivity of
analysis variables to
surface rainrate changes

ORR  ORR d RR
oT ~ dq ~OCW

Slide by Min-Jeong Kim
ECMWF-JCSDA Workshop, 06/15/2010 14



Assimilation of TMI Retrieved Rainrates

* From the first trial, | found 90% of TMI rainrate
observations are not being assimilated with old or
new moisture models.

 |n addition to the QC criteria, the major reason is
that the sensitivities of T, Q, and CW come out to be
zero for most of cases. That is, even though the
observation is "rainy", if the first guess field doesn't
generate rain, the TMI observations are tossed.

Currently in operation

| obs i Obs (not rainy)

First guess (rainy)

First guess (not rainy) X X
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Experiments for TMI Rainrate
Assimilation
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Impact study results show that TMI surface rain rates do not make significant impacts on the current GDAS
analysis. Slide by Min-Jeong Kim



1st outer
loop

After finishing
2nd outer loop
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Experiments for TMI Rainrate
Assimilation
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MiRS Mathematical Concept Boukabara et al.

Correlation Matrix used in MiRS

A 1DVAR System (MIiRS) has been
developed by NOAA/NESDIS that has
the following characteristics:

— Minimizes a Cost Function similar to NWP: sis

J( X)={%(X—XO)T><B1><(X—Xo)}+[%(Y"‘—Y( X)) xE x (Y™ - Y( X))}

401.0

Parameters Index

— Uses CRTM as a forward Model for TB and Jacobians
(all-weather conditions)

— Handles cloud/rain/ice- impacted radiances by
including them in the state vector (cloud, rain and ice
profiles are control variables)

— No use of a cloud-resolving model

— Handles emissivity dynamically (all-surfaces =
applications) Is the retrieval stable?

— The Rainfall Rate is a by-product of the hydrometeors - EOF decomposition for all profiles (T, Q,
retrieved by the 1DVAR C, R, I) and emissivity vector.

— Runs operationally for Metop-A, NOAA-18,19 and , _ _
DMSP F16/F18 Is the solution physically consistent?

(between T, Q, C, Rand )

_ -Cov Matrix constraint
Features: -Physical Retrieval & RT constraints

- Applicability over all surfaces -Convergence (fitting Ym)
- Rainfall rate is a by-product of the hydrometeors | -Jacobians to determine signals

ECMWF-JCSDA Workshop, 06/15/2010 18



Assessment of the Cloudy/Rainy Radiance Handling:

Added Value of Emissivity Handling:
Same RR algorithm Over Both Ocean and Land

No discontinuity at coasts (MiRS applies to both land and ocean)

MIRSJNTG eetlmqtes for 20090723

measurements

X Raln along W|th emlsswlty (and other parameters)
are all consistent and fit collectively the

Dully gquge anlysm [Icmd only} for 20@9@?23
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Equitable threat score= 0167
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Cloud validation at GMAQO (Emily Liu)

Goals

B Use Lidar and Radar measurements as guidance
for comparing cloud top heights (CTHs) retrieved
from IR instruments using various cloud detection
schemes

B Study the potential for using cloud parameters
retrieved from the cloud detection scheme as
first-guess cloud parameters for assimilating
cloudy radiances in the variational analysis system.

ECMWF-JCSDA Workshop, 20
06/15/2010



Cloud Detection in GSI

R:(P) R

Minimum residual method
(Eyre and Menzel 1989, JAM)
Assumptions:
= One single layer of cloud
with emissivity equal to one
= Clouds has the same P, |
temperature as the layer |
they are in
Additional constraints:
= O<N. =1
= Pc > pressure at the AIRS Pixel
Tropopause
Given the N_ and P_, all channels

vald _Ré)bs 2
which would produce a change in J(N_,P)= Z[ ]
the brightness temperature y 0
greater than a threshold are

eliminated ECMWF-JCSI szc(rNg’PPc) =(1-N_,)R, +N2R’(P)

06/15
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CloudSat and CALIPSO are being used to evaluate and
improve the NCEP/GMAOQO GSI cloud detection algorithm for
AIRS

GSI retrieved cloud top CloudSat CPR Radar Reflectivity vs. AIRS Cloud Top Height (red dot)
height (CTH) from AIRS
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Due to large differences in footprint size between AIRS and CPR/ CALIOP, the CTH
validation is done only in regions A and C where the clouds’ are more uniform.

In general, GSI-retrieved CTHs from AIRS are unde.res‘nma‘red for optically thick
clouds. -

Difficulties are seen in retrieving CTH in multi- Iayer' clouds.

Emily Liu, GMAO



AFWA Coupled Analysis and
Prediction System (ACAPS)

0.1 mm hourly precipitation skill scores over 21 days

0.6}
World- aiil
Wide
Merged
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Cloud
Analysis ¥ g
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(AFWA current
operational system) TIME (h) From Lin et al. (2005)

SCOPE: Develop an analysis and
prediction system of 3D cloud properties
combined with the dynamical variables.

ECMWF-JCSDA Workshop, 23
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Highlights from ACAPS 2009

* International Workshop on Cloud Analysis in Boulder, CO
« Simple (warm-rain) microphysics in WRF TL/AD model
» Wavelet formulation for Background Error Covariances

« 1DVar and 3DVar simulated satellite cloudy/rainy
(IR and MW) radlances DA experlments
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Remote Sensing Division B 00

i Application of 1DVAR methodology to
retrieval of cirrus cloud properties

. Variational technique adapted to . Optimal match of radiances to
retrieval of cloud properties from cloud properties achieved by
infrared MODIS imager data minimizing cost function

« Oriented toward global, real-time 70 = (v — vV s (v — VS (x—
production of cloud products and ) (z y(x)) g (y ny)) " ({ %)'S,x Xﬂ)
data aSSimiIation Match of?;ultto the Consistency offresultwith

radiancemeasurements “background”information

. Variational framework ensures
radiometric consistency between

- _ . Uses Newton iterative method
retrieved cloud properties

Initial state vector: x,

— Facilitates conversion between l
retneve_d m|crophy_5|cal properties S e
and optical properties computes y,=F(x,) and

. 1DVAR Framework compatible with Reduce costfunction | ocal derivatives
agm - - with linearize nooTew
transition to four-dimensional ~solution to obtain a
assimilation systems new state vector: x,, Iteration

loop
— Either as a pre-processor or toward \
inclusion of cloud properties among —No o

the assimilation control variables

Yes | Retrieved state
vector: x

-25.



Remote Sensing Division Bl

aer
1DVAR summary

Atmospheric and
Environmental Research, Inc.

« Initial comparisons with CALIPSO encouraging
Cloud altitude Cloud optical depth
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« Future work: combined microwave/IR retrievals
— Information is complementary
— Microwave ability to detect liquid clouds under ice clouds
— Most ice clouds are largely transparent in the microwave

(4]

10
Ice optical depth
£ 10% | ~1order of magnitude less
B than liguid at 150 GHz,
8 ~2at 50 GHz
g 10 ol B Lig absorption
....... :z: ;T::.ermg 200g/me liguid and
o Ice absorption 100g/mé ice cloud
09 20 40 60 80 100 120 140 160 180 200 (spheres Lpe 100 pm)

Frequency (GHz)
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). Advanced Assimilation of Non-conventional Data
() for. Improved High-Impact Weather Prediction

o, -

ssimilation of Precipitation Affected Microwave (SSM/I)
Radiances
with Improved COAMPS® Adjoint Model
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Observed SSM/I 85V Brightness Temperature (K) Brightness Temperature (K)
Brightness Temperature (K) from Background from Analysis
12:00 UTC August 23 1998 RMSE =114 K RMSE =5.1 K

1.  The brightness temperature from analysis after SSM/| assimilation is much closer to the
observations than the background field. RMS error reduced by >50%.

2. The improved COAMPS® adjoint model has been incorporated into COAMPS® 4DVAR for

assimilation of storm-related observations from conventional & non-conventional sensors.
Slide by C.Amerault

Naval Research Laborator



Summary

Clouds and precipitation important to NWP
=« Important to end users

= Modeling and prediction arguably among the most difficult
problems in atmospheric science

= Affects nearly all satellite observations, either as signal or as
noise

JCSDA and its partners has efforts going on in
several different directions

We look forward to the guidance provided by this
Workshop
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