Operational status and recent developments on cloud and precipitation assimilation at JMA

Masahiro Kazumori
Takashi Kadowaki, Takuya Komori
Hidenori Nishihata, Kozo Okamoto
Ko Koizumi

Japan Meteorological Agency
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
Outline

- JMA NWP models and DA system
 - Precipitation assimilation in MSM
 - Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
 - Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
JMA NWP models

Global Model (GSM)

- **Purposes**: Short- and medium-range forecast
- **Forecast domain**: Globe
- **Grid size and/or number of grids**: 0.1875 deg. (TL959)
- **Vertical levels / Top**: 60 / 0.1 hPa, 50 / 21,800 m
- **Forecast hours (Initial time)**: 84 hours (00, 06, 18 UTC), 216 hours (12 UTC)
- **Analysis**: 4D-Var

Meso Scale Model (MSM)

- **Purposes**: Very-short-range forecast
- **Forecast domain**: Japan and its surrounding areas
- **Grid size and/or number of grids**: 5 km / 721 x 577
- **Vertical levels / Top**: 50 / 21,800 m
- **Forecast hours (Initial time)**: 15 hours (00, 06, 12, 18 UTC), 33 hours (03, 09, 15, 21 UTC)
- **Analysis**: 4D-Var

Legend:
- **GSM**: Global Model
- **MSM**: Meso Scale Model
DA system

- **Incremental 4D-Var for GSM and MSM**
 - **G**: Outer TL959L60, Inner T159L60
 - **M**: Outer horizontal reso. 5km, Inner 15km, non-hydrostatic model based 4D-Var
 - Assimilation time window (**G**: 6-hour, **M**: 3-hour)

- **Clouds and large-scale precipitation**
 - **G**: Prognostic cloud water content, Smith (1990), Sommeria and Deardorff (1977), Sundqvist (1978)
 - **M**: 6 categories bulk cloud microphysics (Inner: large scale condensation only)

- **Cumulus convection**
 - **G**: Prognostic Arakawa-Schubert scheme (1974)
 - **M**: Kain-Fritsch Scheme (N/A for adjoint model)

<table>
<thead>
<tr>
<th>Observation type</th>
<th>Instrument</th>
<th>Global DA system</th>
<th>Meso Scale DA system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional data</td>
<td>Surface Observations</td>
<td>Surface Pressure</td>
<td>Surface Pressure</td>
</tr>
<tr>
<td></td>
<td>AMeDAS (Automated Meteorological Data Acquisition System)</td>
<td>Wind, Pressure, Temperature, Relative Humidity</td>
<td>Wind, Pressure, Temperature, Relative Humidity</td>
</tr>
<tr>
<td></td>
<td>Ship, Buoy</td>
<td>Surface Pressure</td>
<td>Surface Pressure</td>
</tr>
<tr>
<td></td>
<td>RAOOB</td>
<td>Wind, Pressure, Temperature, Relative Humidity</td>
<td>Wind, Pressure, Temperature, Relative Humidity</td>
</tr>
<tr>
<td></td>
<td>Aircraft</td>
<td>Wind, Temperature</td>
<td>Wind, Temperature</td>
</tr>
<tr>
<td>Groud based remote sensing</td>
<td>Wind profiler</td>
<td>Wind</td>
<td>Radar reflectivity (Analyzed Rain), Doppler velocity</td>
</tr>
<tr>
<td></td>
<td>Radar</td>
<td></td>
<td>Total Precipitable Water</td>
</tr>
<tr>
<td>Satellite</td>
<td>VIS IR radiometer</td>
<td>AMV, Radiance (clear sky)</td>
<td>AMV</td>
</tr>
<tr>
<td></td>
<td>IR MW Sounder</td>
<td>Radiance (clear sky)</td>
<td>Radiance (Temperature)</td>
</tr>
<tr>
<td></td>
<td>MW Imager</td>
<td>Radiance (clear sky)</td>
<td>Radiance (TPW and Rain Rate)</td>
</tr>
<tr>
<td></td>
<td>Scattrometer</td>
<td>Surface Wind</td>
<td>Surface Wind</td>
</tr>
<tr>
<td></td>
<td>GPS-RO</td>
<td>Refractivity</td>
<td></td>
</tr>
</tbody>
</table>
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM
- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method
- Summary and Recommendations
In 2002, JMA started direct assimilation of precipitation in Meso-scale 4D-Var data assimilation system operationally.
Total Precipitable Water (TPW) derived from MW-Imager, Rain Rate (RR) derived from ground based Radar and MW imager have been assimilated in MSM 4D-Var.

Conventional data (such as surface observation, RAOB, aircraft, AMVs and GPS-TPW) around Japan are assimilated.

Assimilation of TPW and RR produces better rain precipitation. RR assimilation reduces the model spin-up in precipitation.
Impacts of TPW and RR assimilation

Analysis (TPW)

- **a. w/o AMSR-E**
- **b. w/ AMSR-E**
- **c. AMSR-E coverage**

Forecast (Rainfall)

- **a. w/o AMSR-E**
- **b. w/ AMSR-E**
- **c. Radar Obs.**

Fig. 1 (a) Analyzed TCPW field without the AMSR assimilation at 18UTC 17 July 2004. (b) Same as in (a) but with the AMSR-E assimilation. (c) The AMSR-E data coverage at the same time.

Fig. 2 (a) 3-hour rain forecasts after 6 hours (upper) and 9 hours (lower) from the initial condition of Fig.1 (a). (b) Same as in (a) but from the initial condition of Fig.1 (b). (c) 3-hour rain at 00UTC 18 July 2004 (upper) and 03UTC (lower) estimated by radar observation.
Precipitation assimilation in MSM

Scatter diagram of first-guess value and O-B departure

Precipitation departure is not Gaussian distribution and not symmetrically distributed around zero.
PDF of Precipitation

- PDF is assumed to follow the exponential distribution

\[P(y \mid x) = \frac{1}{\alpha} \exp\left(-\frac{y}{\alpha}\right) \]

\[E(y) = \alpha \approx x \]

In this case,

\[J_{\text{rain}} = -\log P(y \mid x) = \log(x) + \frac{y}{x} \]
A devised cost function of precipitation observation

Quadratic form representation

\[J_{\text{rain}} \approx 1 + \log(y) + \frac{1}{2y^2}(x - y)^2 + O((x - y)^3) \]

That is, Obs. error \(y \approx y \) in Gaussian distribution approximation

Considering the asymmetricity around minimum point, following cost function is employed for precipitation amount

\[J_{\text{rain}} = \frac{1}{2\sigma^2}(x - y)^2 \]

\[\sigma = \begin{cases} y & (x \leq y) \\ 3y & (x > y) \end{cases} \]

Empirically determined the factor “3”
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
Radiance assimilation in JMA Global DA system

(a) Departure is calculated by using High-reso. NL model.

(b), (c) High-res. NL field is interpolated to low-reso., and low-reso. NL model is performed to make trajectory.

(d) Low-reso. TL and AD model are used in minimization. No updates of background due to a computational limit.

(e) Obtained increment is added to high resolution background field.

Fig. 3.5.2 Flow of 4D-Var procedure for the case of 12UTC analysis time
Radiance assimilation in JMA Global DA system

RTM: RTTOV-9.3 (rttov_k)

Data thinning: Equal distance thinning with grid box (200km for MW-Imagers)

QC: Cloud screening based on CLW and gross error check

Bias Correction: VarBC

Two step minimization process:
First 35 times: Dry model,
Last 35 times: Included moist physics.

Observational error inflation was pre-determined in the preprocess of 4D-Var.

Relatively large obs. error was assigned for MW-Imager to avoid excessive rainfall in short range (6-hr) forecast.
Coverage of MW-Imager Data

Colored point data are actually assimilated.

Variational Bias Correction: Linear function with some predictors is used, and the coefficients are optimized in previous 4D-Var analysis and updated every analysis.

\[y = \tilde{h}(z) = h(x) + \sum \beta p(x_b (\cong x)) \]

Predictors: p

TCPW, \(T_{SRF} \), \(T_{SRF}^2 \), \(W_{SRF} \), CLW, 1(Const)

Time sequences of coefficients

19GHz V.pol.

23GHz V.pol.

37GHz V.pol.
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
Profile comparisons of JMA and ECMWF (over tropical ocean)

Quite different characteristic, especially, cloud and rain profiles

The difference of CVR profiles may cause large discrepancy in RTM calculation.
Comparisons of O-B with RTTOV and RTTOV-SCATT in GSM

O-B distribution (AMSR-E 19GHz V.pol. over ocean)
Red: RTTOV_SCATT
Blue: RTTOV

Input: Atmospheric profiles including cloud and rain from JMA GSM

RTM: RTTOV-SCATT

RTTOV

RTTOV-SCATT with cloud and rain profiles from GSM

00UTC July 20, 2009
Initial test of MW-Imager radiance assimilation with RTTOV_SCATT

- Configuration of the experiment

 RTTOV_SCATT for AMSR-E, SSMI(S) and TMI radiance in Test run.
 O-B departure was calculated in T, Q, CWC, CC profiles from JMA high reso. model.
 In 4D-Var, trajectory from low reso. NL model was used but not updated in the minimization.
 CWC and CC were not perturbed.
 Heavy rain data was screened out in the pre-process to avoid non linearity in 4D-Var.

- Result

 Available data number was increased.
 Increased TPW analysis increment over ocean.

 It is necessary to investigate the detail on the assimilation result.
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
Early study for cloudy IR radiance assimilation with 1D-Var

Cloud profiles (CWC, CC) were diagnosed by ECMWF scheme (Tompkins and Janiskova 2004)

Perturbed variables: T, Q, SST (Fixed CWC, CC)
Perturbed variables: T, Q, SST, CWC (Fixed CC)

Linearity (IASI)
When relative humidity was reached 100% at any level before or after 1D-Var process, the non-linearity was found.
Outline

- JMA NWP models and DA system
- Precipitation assimilation in MSM
- Radiance assimilation in GSM

- Development of all-sky MW radiance assimilation for the global DA system
- Early study for cloudy IR radiance assimilation with 1D-Var method

- Summary and Recommendations
Summary

- JMA operates two deterministic NWP models. Global model (GSM) and Meso Scale Model (MSM). 4D-Var DA is used for both system.

- Microwave Imager data have been assimilated under all weather condition (TPW in clear condition and RR in rainy condition) in the operational MSM 4D-Var DA system. TPW and RR assimilation showed positive impacts on precipitation forecasts.

- In the global DA system, radiance data in clear sky condition are assimilated. All sky microwave radiance DA system is under development. Different characteristic in background profiles (cloud cover) was identified and it is related with forecast model performance differences.

- Early study with 1D-Var method toward assimilation on cloudy IR radiance was started. TL and ADJ model’s linearity by using ECMWF cloud scheme was investigated. Better linearity was found when CWC, CC profiles were fixed. However, large non linearity has found when CWC, CC are perturbed in 1D-Var. It suggests difficulty of water vapor saturation or cloud generation in variational DA scheme.
Recommendations

- **Improve background atmospheric profiles**

 Forecast model performance is an important factor for successful data assimilation in cloudy and rainy conditions. Better cloud and rain profiles are necessary. And forecast model spin up issues (e.g. excessive rainfall in early forecast stage) should be reduced. Data assimilation experts and modelers should work together for further improvement in moist physics parameterization.

- **Find optimal cloud and rain assimilation scheme in the 4D-Var and forecast model configuration**

 Due to computer power and human resource limitation, JMA 4D-Var has some limitations (Low reso. inner model and no update for trajectory. Two step minimization by dry and moist model, and relatively old moist physics parameterization).

- **Share the experience and knowledge on cloud and rain assimilation among NWP centers. And learn how to overcome difficulties from advance NWP centers.**

 Exchange the information on cloud/rain assimilation will accelerate the development of cloud and rain assimilation scheme.
Thank you for your attention.
Backup Slides
In JMA Global DA system, larger observation error was assigned for MW Imager radiance data to avoid an excessive rainfall in the short range forecast (6-hr). Unless the model spin down issue is solved, is it difficult to assimilate the radiance data in cloudy and rainy condition? Or are there any advantages of cloud and rain assimilation in this situation?

To consider spatial and temporal representativeness, is it necessary to make average and/or select nearest neighbor observations in the data thinning?

How can we deal with the difference of biases (or observation error) between clear and cloud-rainy condition?

What kind of observation (BT or TPW) should be used and what kind of variables (T, Q and/or cloud physics parameters) should be analyzed in DA?
4D-Var cost function

\[J = J_b + J_o \]

\[= \frac{1}{2} (x_0 - x_{b0})^T B^{-1} (x_0 - x_{b0}) + \frac{1}{2} (y - \text{HM } x_0)^T R^{-1} (y - \text{HM } x_0) \]

Maximize

\[P(x \mid x_b, y) = \frac{P(x_b \mid x) P(y \mid x) P(x)}{P(x_b) P(y)} \]

Minimize

\[-\log(P(x \mid x_b, y)) \]

\[= -\log(P(x_b \mid x)) - \log(P(y \mid x)) - \log(P(x)) + \text{const.} \]
Relationship between PDF and J (maximum likelihood estimation)

\[
P(y \mid x) = \frac{1}{\sqrt{2\pi} \sigma_o} \exp\left\{ -\frac{(y - HM(x))^2}{2\sigma_o^2} \right\}
\]

\[
-\log(P(y \mid x)) = \frac{(y - HM(x))^2}{2\sigma_o^2} + \text{const.}
\]

Multidimensional case,

\[
P(y \mid x) = \frac{1}{(\sqrt{2\pi})^m \sqrt{\mathbf{R}}} \exp\left\{ -\frac{1}{2} (y - HMx)^T \mathbf{R}^{-1} (y - HMx) \right\}
\]

\[
-\log(P(y \mid x)) = \frac{1}{2} (y - HMx)^T \mathbf{R}^{-1} (y - HMx) + \text{const.}
\]

\[
(y - HMx_0)^T \mathbf{R}^{-1} (y - HMx_0)
\]

The cost function in this form assumes Gaussian type probability density function.