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Application: Adaptive Mesh Refinement
(AMR) for Astrophysics simulations

• Binary black hole and black 
hole neutron star mergers 
are LIGO candidates

• AMR simulations of black 
holes typically scale very 
poorly



Example: exploring critical collapse using
Parallex based AMR with quad-precision.



Fastest Computer in the World
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Dramatic Change in Technology Trends
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DARPA Exascale Technology Study

Exascale

But not at 20 MW!

Heavyweight

Lightweight

Courtesy of Peter 
Kogge  UND
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StarSs: … taskified …
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS)             // C=A+B
vadd3 ( &A[i], &B[i], &C[i]);

...
for (i=0; i<N; i+=BS)            // 
sum(C[i])

accum (&C[i], &sum);
...
for (i=0; i<N; i+=BS)            // B=sum*A

scale_add (sum, &E[i], &B[i]);
...
for (i=0; i<N; i+=BS)            // A=C+D

vadd3 (&C[i], &D[i], &A[i]);
...
for (i=0; i<N; i+=BS)            // E=G+F

vadd3 (&G[i], &F[i], &E[i]);
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Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Compute dependences @ task instantiation time

Courtesy of Jesus Labarta, BSC



StarSs for SMP and multicores

• HPL Linpack: Comparison of SMPSs, OpenMP and MPI on a dual socket 
Istambul

Courtesy of Jesus Labarta, BSC



Runtime Solutions - Opportunities
• Adaptive scheduling

– Load balancing
– Contention avoidance, hot spots

• Lightweight mechanisms
– Reduced overhead

• Finer granularity user threads
– Increased concurrency for greater scalability

• Expanded synchronization semantics
– Eliminate barriers, more intelligent control

• Runtime exploitation of Compile time programmer knowledge
– Dedicated to specific application

• Adjusting to physical realities
– Fault tolerance
– Power management
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Performance Factors - SLOW
• Starvation

– Insufficiency of parallelism
– Either not enough work to do, or imbalance of workload

• Latency
– Distance (in cycles) to remote resources
– Avoid or hide

• Overhead
– Critical path work required to manage tasks & resources
– Imposes upper bound on scaling of fixed size workload

• Waiting for Contention
– Delays incurred for shared access to resources
– e.g., memory banks, network bandwidth, synchronization objects …
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HPC in Phase Change
• Phase I: Sequential instruction execution (1950) 
• Phase II: Sequential instruction issue (1965)

• pipeline execution, 
• reservation stations,
• ILP

• Phase III: Vector (1975)
• pipelined arithmetic, registers, memory access
• Cray

• Phase IV: SIMD (1985)
• MasPar, CM-2

• Phase V: Communicating Sequential Processes (1990)
• MPP, clusters
• MPI, PVM
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The Execution Model Imperative

• HPC in 6th Phase Change
– Driven by technology opportunities and challenges
– Historically, catalyzed by paradigm shift

• Guiding principles for governing system design and 
operation

– Semantics, Mechanisms, Policies, Parameters, Metrics
• Enables holistic reasoning about concepts and tradeoffs

– Serves for Exascale the role of von Neumann architecture for 
sequential

• Essential for co-design of all system layers
– Architecture, runtime and operating system, programming 

models
– Reduces design complexity from O(N2) to O(N)

• Empowers discrimination, commonality, portability
– Establishes a phylum of UHPC class systems

• Decision chain
– For reasoning towards optimization of design and operation



Decision Chain
• Axiom: an operation is performed at a certain place at a 

certain time to achieve a specified effect
• How did this happen?
• Every layer of the system contributed to the 

time/space/function event – the decision chain
• A program execution comprises the ensemble of such events 

across the system space and throughout the execution epoch
• There are many such paths that lead to a final result
• But not all minimize time and energy
• Understanding of the decision chain required for optimization
• Execution model required for understanding the decision chain
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X-caliber System
• Rack Scale

– Processing:128 Nodes, 1 (+) PF/s
– Memory:

• 128 TB DRAM
• 0.4 PB/s Aggregate Bandwidth

– NV Memory
• 1 PB Phase Change Memory (addressable)
• Additional 128 for Redundancy/RAID

– Network
• 0.13 PB/sec Injection, 0.06 PB/s Bisection



Memory System (M)
• Two computation Units

– Right next to the DRAM vault 
memory controller (VAU)

– To aggregate between DRAM 
vaults (DAU)

• “Memory Network” Centric
• Home-node for all addresses

– Owns the “address”
– Owns the “data”
– Owns the “state” of the data
– Can build “coherency”-like 

protocols via local operations
– Can support PGAS-like 

operations
– Can manage thread state locally



HPX Phase VI Parallel Execution Model
• Goals:

– Guide Exascale system co-design for hardware, software, and programming
– Dramatic gains in scalability, efficiency, and programmability
– Framework for reliability, power management, security
– Empower dynamic knowledge management and other graph-based problems

• Strategy:
– Move work to data when appropriate; not always data to work
– Dynamic adaptive resource and task management
– work-queue split-phase transaction execution model for high utilization
– Hierarchy name space for ease of data access with capabilities addressing for protection

• Constituent Components
– Hierarchical Active Global Address Space, AGAS
– Parallel processes spanning and overlapping multiple nodes
– Parcels support message-driven computation and continuation migration 
– Local computation complexes (threads) with partial dataflow operations on private data
– Local Control Objects, LCO, for lightweight synchronization and global parallel control 

state; includes dataflow and futures control
– Percolation for efficient use of heterogeneous resources
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ParalleX Model Components
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Multi-Grain Dataflow Multithreading:
Computation Complexes (CC)

• Complexes are collections of related operations that perform 
on locally shared data

• Complex is a continuation combined with local environment
– Modifies local named data state and temporaries
– Updates intra-thread and inter-thread control state

• Does not assume sequential execution
– Other flow control for intra-thread operations possible

• Complex can realize transaction phase
• Complex does not assume dedicated execution resources
• Complex is first class object identified in global name space
• Complex is ephemeral



Motivation for Message-Driven Computation
• To achieve high scalability, efficiency, programmability
• To enable new models of computation

– e.g., ParalleX
• To facilitate conventional models of computation

– e.g., MPI
• Hide latency

– Support overlap of communication with computation
– Move work to data, not always data to work

• Work-queue model of computing
– Segregate physical resource from abstract task
– Circumvent blocking of resource utilization

• Support asynchrony of operation
• Maintain symmetry of semantics between synchronous and 

asynchronous operation
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Latency Hiding with Parcels
with respect to System Diameter in cycles

Sensitivity to Remote Latency and Remote Access Fraction
16 Nodes

deg_parallelism in RED (pending parcels @ t=0 per node)
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Parcel Structure

LOUISIANA STATE UNIVERSITY

destination payloadaction continuations CRC

Transport / network layer
protocol wrappers

header trailer

PX Parcel

Parcels may utilize underlying communication protocol fields to minimize
the message footprint (e.g. destination address, checksum)
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Local Control Objects
• A number of forms of synchronization are incorporated into the 

semantics
• Support message-driven remote thread instantiation
• Finite State Machines (FSM)
• In-memory synchronization

– Control state is in the name space of the machine
– Producer-consumer in memory
– Local mutual exclusion protection
– Synchronization mechanisms as well as state are presumed to be intrinsic 

to memory
• Basic synchronization objects:

– Mutexes
– Semaphores
– Events
– Full-Empty bits
– Data flow
– Futures
– …

• User-defined (custom) LCOs



Dataflow LCO
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Using HPX for AMR

F0, i
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Stage 0

Stage 1



HPX Runtime System
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Fibonacci Sequence
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Using HPX for Variable Threads





Application: Adaptive Mesh Refinement
(AMR) for Astrophysics simulations

• ParalleX based AMR removes all global computation barriers, including the timestep
barrier (so not all points have to reach the same timestep in order to proceed computing)



AMR Granularity



Conclusions
• The future of HPC demands innovative response to 

technology challenges and application opportunities
• HPC is entering Phase VI requiring a new model of 

computation
– Attack starvation, latency, overhead, & waiting for contention (SLOW)
– Dynamic adaptive resource management & task scheduling
– Dynamic graph-based applications for knowledge management (AI)

• ParalleX represents an experimental step
– Dynamic, overlap/multiphase message-driven execution

• Large scale runtime experiments required to guide progress
– Application driven
– Stimulate work in Architecture and Programming Models
– ParalleX provides an experimental model with HPX reference 

implementation
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