Future activities of HPC in meteorology using K-computer

Hirofumi Tomita

Research Institute for Global Change / JAMSTEC Advanced Institute for Computational Science / RIKEN

Contents

K-computer project Detail : Dr. Okuda's talk What will we do on K-computer? The strategic research field related to meteorology NICAM (Nonhydrostatic Icosahedral **Atmospheric Model**) Grand challenge Summary

The next-generation supercomputer in Kobe

The next-generation supercomputer system (~2012)

System

- One nodes:
 - 128GFLOPS
 - Memory band width : 64GB/s
 - B/F : 0.5
- 80k nodes/640k core
- Peak performacne : ~10PFLOPS
- ♦ Total memory : ~1PB
- Network 3D(6D) torus bi-direction 5GB/s X6

R&D field: Earth science Nonhydrostatic ICosahedral Atm Cloud Resolving Simulations

Program name: NICAM

- Developer
 - Masaki Satoh, Associate Prof. of The Univ. of Tokyo
 Hirofumi Tomita, Researcher of Japan Agency for Marine-
- Earth Science and Technology (JAMSTEC) Abstract
 - Icosahedral grid and the equation system with no approximation (nonhydrostatic equation system)
 Global cloud-resolving simulation (mesh size is a few
- Global cloud-resolving simulation (mesh size is a few kilometers or less).
 Explicit cloud physics without cumulus parameterization
- Algorithm
- Two-dimensional domain decomposition with icosahedral grid.
- Explicit time difference for horizontally propagating acoustic waves, and implicit for vertical propagating acoustic waves.
- MPI parallelization.
- Current computation size
 Orid points 2049/20
 - Grid points 2048x2048x54x10, with mesh size 3.5km.
 Sustained performance 7.7 TFLOPS and memory 4.8 TB (320 nodes of Earth Simulator).
- Future computation size in 2010
 - Mesh size 400m both for horizontal and vertical directions for several days time integration (grid points 8x8 times horizontally and 2 times vertically; time step 1/8 times).
 - 10 years Integration with the current mesh model of 3.5km.

Global cloud image of aqua-

Global cloud image of aquaplanet experiment with 3.5km mesh global cloud-resolving simulation

- Expected results
 NICAM will estimate more precise global cloud properties and lead to more reliable climate prediction.
 - NICAM will resolve clouds raging from deep
 - cumulonimbus (10 km high) to shallow cumulus (1 km high) with resolution of isotropic grid spacing 400m. NICAM will provide information of extreme phenomena
 - NICAM will provide information of extreme phenomena such as typhoon and heavy rains associated with climate change based on global simulation with super high resolution (km scale).
- Reference

lcosahedral grid

http://www.ccsr.u-tokyo.ac.jp/~satoh/nicam

Strategic field : research for prevention of disaster

- **1. Research of projection of global change**
 - Change of tropical cyclones in the future climate (Fist priority) by GCRM.
 - Predictability of tropical weather such as MJO, TC genesis by GCRM.
 - Development of the application package involving all Japanese researches toward the next-generation.
 - Integration of MIROC, NICAM, COCO, and so on
- 2. Research of highly accurate prediction of mesoscale phenomena
 - ♦ 4DVAR for CRM
 - Ensemble analysis-prediction system
 - with the 4DVAR(ensemble KF)
 - Basic studies
 - Large area LES, Bin model and so on.

Motivation

- Under greenhouse-warmed climate
 - Tropical clyclone activities change (Oouchi et al, 2006; IPCC AR4 2007, Emanuel et al.2008)
 - MRI-GCM time slice experiment
 20km global mesh / hydrostatic dynamics
 - Global frequency : decrease.
 - Intensity : # of more intense TC increases.
- However, ……
 - Depend on each ocean basis(Sugi et al, 2009)
 - # of TC is still underestimated. (Oouchi et al, 2006)
 - Cumulus parameterization?

conventional GCM

→ Global Cloud system resolving model (GCRM)

NICAM project

NICAM project (~2000)

- Dynamical core
 - Horizontal grid : icosahedral grid (grid modification : Tomita et al. 2001, 2002)
 - Dynamics : Non-hydrostatic scheme (energy conservation : Satoh 2002, 2003)
 - \rightarrow 3D DC
- Cloud representation
 - Avoid "cumulus parameterization"
 - Microphysics only.
- The 1st global cloud resolving simulation (2004)
 - Aqua-planet experiment (Tomita et al. 2005)

Successful simulation of MJO (2007)

- ◆ 2006 boreal winter (Miura et al. 2007)
- Computational tuning
 - for the massively parallel vector computer system (ES)
 - Now, Earth Simulator 2!

Next

Current version of NICAM

Ref. Satoh et al. 2008 J. Comput. Phys. / Tomita & Satoh 2004 Fluid Dyn. Res.

Dynamics		
Governing equations	Fully compressible non-hydrostatic system	
Spatial discretization	Finite Volume Method	
Horizontal grid configuration	Icosahedral grid with spring dynamics smoothing	
Vertical grid configuration	(Tomita et al. 2001/2002) Lorenz grid	
Topography	Terrain-following coordinate	
Conservation	Total mass, total energy (Satoh 2002, 2003)	
Temporal scheme	Slow mode - explicit scheme (RK2, RK3)	
	Fast mode - Horizontal Explicit Vertical Implicit scheme	
Physics		
Turbulence/shallow clouds	MYNN 2.0,2.5(Nakanishi and Niino 2004) modified by Noda(2009)	
Surface flux	Louis (1979), Uno et al. (1995)	
Radiation	MSTRNX (Sekiguchi and Nakajima, 2005)	
Cloud microphysics	NSW6 (Tomita 2008) 6 caegories of water (1moment-bulk)	
Cloud parameterization	NONE	
Surface process	MATSIRO(Takata et al.)	

Qusetion: Global cloud system resolving model overwhelms the traditional GCM?

Is it true?

Athena project

Purpose

- Investigate the impact of global high resolution
 - How is the climatology / diurnal cycles improved?
 - Dependency on the resolution?
 - Hydrostatic / non-hydrostatic?
 - With/without cumulus parameterization?

Collaboration

- COLA Center for Ocean-Land-Atmosphere Studies, USA
- ECMWF European Center for Medium-range Weather Forecasts, UK
- JAMSTEC Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Japan
- University of Tokyo, Japan
- NICS National Institute for Computational Sciences, USA
- Cray Inc

Codes

- NICAM: Nonhydrostatic Icosahedral Atmospheric Model
- IFS: ECMWF Integrated Forecast System
- Computer
 - Athena: Cray XT4 4512 quad-core Opteron nodes (18048) #30 on Top500 list (November 2009)
 - Kraken: Cray XT5 8256 dual hex-core Opteron nodes (99072) #3 on Top500 list (November 2009)

Model	NICAM	IFS
Horizontal resolution	7 km	10 km
# of Vertical layer	40 layers	62 layers
Basic equation	Non-hydrostatic	Hydrostatic
Cumulus pram.	Not use	Tiedtke, 1989
Radiation scheme	Sekiguchi & Nakajima, 2008	Morcrette et al, 2008
Turbulent model	Nakanishi & Nino, 2004 A. T. Noda et al, 2009	Siebesma & Cuijpers, 1995
Boundary condition (SST)	Slab ocean with nudging	Fixed
Period	May 21 – August 31 of the years 2001 – 2009 excluding 2003	

2009 boreal summer precipitation

Next Generation Climate Model

Cyclogenesis (per Year) & its seasonal change

Over the eastern Pacific basin

Seasonal cycle: IBTrACs:increase NICAM: increase IFS: slight increases

Cyclogenesis (per Year) & its seasonal change

Over the western Pacific basin

Next Generation Climate Model

Precipitation bias

TRMM June 2006 Total Precipitation, (mm/day)

Climatology: still bias

→Possible reason : evaporation formulation? Land surface model? Task: This climatological bias must be reduced within 1 or 2 years!

Minimum Sea Level Pressure (SLP) vs. Maximum Wind Speed (MWS)

Cloud-system-resolving model (NICAM) represents MWS-SLP relationship better than parameterization model (IFS). → TC structure is captured by GCRM

Next Generation Climate Model

First attempt for TC change study by GCRM (Yamada et al. 2010)

Time slice experiment

	CTL run	GW run
Initial condition	NCEP/FNL(2004 June)	NCEP/FNL(2004 May) with 1-month spinup
SST	Reynolds OI SST	Reynolds OI SST + ∆T * CMIP3 model ensemble (Mizuta et. al 2008)
CO2 concentration	348ppm	696ppm
Integration time	5 months	5 months

Yamada et al.2010

Change of tropical cyclones

Yamada et al.2010

Next Generation Climate Model

GPI distributions

Pacific ocean

- Yamada et al.2010
- ♦ Higher GPI region : west → east
 - El Nino like distribution of SST
- Atlantic ocean
 - South region : increase/ north region : decrease
 - TCs are generated well, but suppressed.

Next Generation Climate Model

Too less integration time! Just 6 months → Several 10 years on K-computer Too less horizontal resolution! ♦ Dx =14km → 7km, 3.5km, 1.8km Too simple microphysics! ♦ 3 categories → 6 categories (3 ice/ 2 water/ vapor)

More statistical analysis for TC changes!
 More detail analysis for TC structure!

K-computer will resolve them!

Global 400m mesh run

- Collaboration project with RIKEN and JAMSTEC
 - Horizontally 400m with 100 vertical levels
 - Truly, global cloud-resolving!
 - Use of the full computational resource
 - 1PB memory
 - All computational nodes
 - Integration time : 1 week?
- Purpose :
 - Improve PBL cloud?
 - Improve detail structure of cumulus?
 - Diurnal cycle?
 - Computationally,
 - Well work in the case of full use?
 - Suggestion to the next-next computer systems

Vector-based machine

- Problem size 7km/L40
- ♦ ES : 30 ~ 40%
- ♦ ES2:10 ~ 15%

Scalar-based machine (as is)

- Cray XT4 : 2.9% (@Oct. 2009)
 - In collaboration with COLA
- T2K tsukuba : 3.3%
- ♦ IBM :BlueGene/P : 6%
- Recent PC : Core i7(nehalem core) 6%

Roughly estimated computational performance on K-comuter

Now, scalar tuning of NICAM is starting with RIKEN.

- Each subroutine : 20% (estimated)
- Overhead of communication part : ???
 - @ communication part is 30%, total performance : 15%
 - @ communication part is 50%, total performance : 10%
- Assumption :

10% (minimum estimate) of peak performance

- 7km mesh run
 - 15 hours for 1 year integration (@ 1/5 resources)
- 3.5km mesh run
 - 5 days for 1 year integration (@ 1/5 resources)
- 1.8km mesh run
 - 8 days for 1 year integration (@ full resources)

Summary

- K-computer with 10PFLOPS will be operated from 2012.
- The Japanese government set 5 strategic research fields up, including the climate problem.
 - In order to get much more reliable information about TC in the global warmed period, global cloud system resolving model NICAM is the tool for this purpose.
 - The current NICAM still has a bias in the climatology.
 - To resolve the problem is the first priority.
- The global 400m grid run is also scheduled as a grand challenge.
 - For next-generation (Hexa FLOPS era)

