Debugging at Scale

Lindon Locks
llocks@allinea.com
• At scale debugging - from 100 cores to 250,000
 – Problems faced by developers on real systems
 – Alternative approaches to debugging and how they stack up
 – How Allinea makes debugging at scale work
• HPC tools since 2001
 – Allinea DDT – Scalable parallel debugger
 – Allinea OPT – Optimisation tool for MPI and non-MPI
 – Allinea DDTLite – Parallel debugging plugin for Microsoft Visual Studio

• Large customer base
 – Ease of use – means tools get used
 – Users debugging regularly at all scales: 1 to 100,000 cores
 – World's only Petascale debugger
Some Clients and Partners

- **Academic**
 - Over 200 universities

- **Major research centres**
 - ANL, CEA, EPCC, GENCI, IDRIS, Juelich, NERSC, ORNL

- **Aviation and Defence**
 - Airbus, AWE, BAE, Dassault, DLR, EADS

- **Energy**
 - CGG Veritas, IFP, Total

- **EDA**
 - Cadence, Intel, Synopsys

- **Climate and Weather**
 - UK Met Office, Meteo France, NOAA
• Processor counts growing rapidly

• GPUs entering HPC

• Large hybrid systems imminent

• But what happens when software doesn't work?
Problems at Scale

• Increasing job sizes leads to unanticipated errors
 – Regular bugs
 • Data issues from larger data sets – eg. garbage in..., overflow
 • Logic issues and control flow
 – Increasing probability of independent random error
 • Memory errors/exhaustion – “random” bugs!
 • System problems – MPI and operating system
 – Pushing coded boundaries
 • Algorithmic (performance)
 • Hard-wired limits (“magic numbers”)
 – Unknown unknowns
 •
• Improved coding standards

 – Unit tests, assertions and consistency checks
 • Good practice – but tend to be single-process checks
 • Parallel checks also valid and good practice

 – Only checks for things you predict when developed
 • Coverage is rarely perfect
 – Unexpected problems – particularly random/system issues – often missed
 • Debugger still required

 – Combines well with debuggers
 • Find why a failure occurs not just a pass/fail
Strategies for bug fixing II

• Logging – printf and write
 – The oldest debugger still in active use
 • Tried and tested - as easy as “hello world”
 • If you have good intuition into the problem
 – Edit code, insert print, recompile and re-run
 • **Slow and iterative**
 – Use to log exceptions, progress or state
 • Post-mortem analysis only
 – Hard to establish real causal order of output of multiple processes
 – Output can be lost by process termination
 • Rapid growth in log output size
 • **Unscalable**
Strategies for bug fixing III

- Reproduce at a smaller scale
 - Attempt to make problem happen on fewer nodes
 - Often requires reduced data set – the large one may not fit
 - Didn't you already try the code at small scale?
 - Smaller data set may not trigger the problem
 - Does the bug even exist on smaller problems?
 - Is it a system issue – eg. an MPI problem?
 - Is probability stacking up against you?
 - **Example:** 1 in 10,000 independent probability of error?
 - Unlikely to spot on smaller runs – without many many runs
 - But near guaranteed to see it on a 10,000 core run
 - What can a parallel debugger do to help?
 - Debug at the scale of the problem. **Now.**
• Many benefits to graphical parallel debuggers
 – Large feature sets for common bugs
 – Richness of user interface and real control of processes

• Historically **all** parallel debuggers hit scale problems
 – Bottleneck at the frontend: Direct GUI → nodes architectures
 • Linear performance in number of processes
 – Human factors limit – mouse fatigue and brain overload

• Are tools ready for the task?
 – Allinea DDT has changed the game
DDT in a nutshell

- **Scalar features**
 - Advanced C++ and STL
 - Fortran 90, 95 and 2003: modules, allocatable data, pointers, derived types
 - Memory debugging

- **Multithreading & OpenMP features**
 - Step, breakpoint etc. one or all threads

- **MPI features**
 - Easy to manage groups
 - Control processes by groups
 - Compare data
 - Visualise message queues
Scalable Process Control

- Parallel Stack View
 - Find rogue processes quickly
 - Identify classes of process behaviour
 - Rapid grouping of processes

- Control Processes by Groups
 - Set breakpoints, step, play, stop for groups
 - Scalable groups view: compact group display
Handling Regular Bugs

- Immediate stop on crash
 - Segmentation fault, or other memory problems
 - Abort, exit, error handlers
 - CUDA errors

- Scalable handling of error messages

- Leaps to the problem
 - Source code highlighted
 - Affected processes shown
 - Process stacks displayed clearly in parallel
Finding the cause

• Full class/structure browsing
 – Local variables and current line(s)
 • Show variables relevant to current position
 • Drag in the source code to see more
 – C, C++, F90: object members, static members, derived types

• Automatic comparison and change detection
 – Scalable and fast
Finding rogue processes

- Easy to find where the differences are...
 - Cross process comparison of data
 - Fetches values from every process, compares and then groups by value
 - Summary of NaN, Inf and statistics
 - Easy to spot rogues

- Use to group processes
 - Define a process group and control en-masse
Large Array Support

- Browse arrays
 - 1, 2, 3, … dimensions
 - Table view
- Filtering
 - Look for an outlying value
- Export
 - Save to a spreadsheet
- View arrays from multiple processes
 - Search terabytes for rogue data: in parallel with [v3.0]
• Find memory leaks

• Or stop on read/write beyond end of array:
DDT is delivering Petascale debugging today

- Collaborations with ORNL on Jaguar Cray XT and CEA
- Logarithmic performance
- Many operations now faster at 220,000 than previously at 1,000 cores
- \(~1/10\text{th of a second}\) to step and gather all stacks at 220,000 cores
Summary

• Debuggers are recognised as the right tools to fix bugs quickly: other methods have limited success, and major issues at scale

• Debugging interfaces must scale to help the user understand what is happening

• Allinea DDT scales in performance and interface – breaking all records and making problems manageable

• See Allinea at Supercomputing 2010: Booth 2305
Questions?