
4D-Var, Scalability and Code Design

Yannick Trémolet

Mike Fisher, Deborah Salmond, Anne Fouilloux, Tomas Wilhelmsson, ...

ECMWF

1 November 2010

Dedicated to Joe Sela

Y. Trémolet OOPS 1 November 2010 1 / 20



A Concern: Scalability

The supercomputers of the next generation are expected to have 10,000s of
processors or more.

Scalability has become a major concern for our applications.

In the current operational configuration, the 4D-Var data assimilation system
does not scale very well:

Resolution Grid points Threads GP/thread Halo width
T159 35718 3072 11 7
T255 88838 3072 29 11

How can the scalability of 4D-Var be improved?

Y. Trémolet OOPS 1 November 2010 2 / 20



What is 4D-Var?

Jo

Jo Jo

Jo

Assimilation window

Time

Observations

Background

The 4D-Var cost function is:

J(x) =
1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ] +
1

2
(x0 − xb)TB−1(x0 − xb)

It is minimized using an iterative algorithm.

Y. Trémolet OOPS 1 November 2010 3 / 20



What is 4D-Var?

Jo

Jo Jo

Jo

Assimilation window

Time

Observations

Background

Jb

The 4D-Var cost function is:

J(x) =
1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ] +
1

2
(x0 − xb)TB−1(x0 − xb)

It is minimized using an iterative algorithm.

Y. Trémolet OOPS 1 November 2010 3 / 20



What is 4D-Var?

Jo

Jo Jo

Jo

Assimilation window

Time

Observations

Background

Jb

The 4D-Var cost function is:

J(x) =
1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ] +
1

2
(x0 − xb)TB−1(x0 − xb)

It is minimized using an iterative algorithm.

Y. Trémolet OOPS 1 November 2010 3 / 20



The 5 Dimensions of 4D-Var

The bulk of the 4D-Var algorithm comprises 5 nested loop directions:

1 Minimisation algorithm iterations (inner and outer),
2 Time stepping of the model (and TL/AD),
3 Latitude,
4 Longitude,
5 Vertical.

Only two are parallel!

We need to look at the other directions for more parallelism, for example:

I Minimisation algorithm:
F Parallel search directions,
F Parallel preconditioner and less iterations,
F Observation space algorithms, saddle point algorithms.

I Time stepping:
F Weak constraint 4D-Var.

Scalability cannot be improved solely by technical or local optimizations!

Y. Trémolet OOPS 1 November 2010 4 / 20



The 5 Dimensions of 4D-Var

The bulk of the 4D-Var algorithm comprises 5 nested loop directions:

1 Minimisation algorithm iterations (inner and outer),
2 Time stepping of the model (and TL/AD),
3 Latitude, NPROMA
4 Longitude, NPROMA
5 Vertical.

Only two are parallel!

We need to look at the other directions for more parallelism, for example:

I Minimisation algorithm:
F Parallel search directions,
F Parallel preconditioner and less iterations,
F Observation space algorithms, saddle point algorithms.

I Time stepping:
F Weak constraint 4D-Var.

Scalability cannot be improved solely by technical or local optimizations!

Y. Trémolet OOPS 1 November 2010 4 / 20



The 5 Dimensions of 4D-Var

The bulk of the 4D-Var algorithm comprises 5 nested loop directions:

1 Minimisation algorithm iterations (inner and outer),
2 Time stepping of the model (and TL/AD),
3 Latitude, NPROMA
4 Longitude, NPROMA
5 Vertical.

Only two are parallel!

We need to look at the other directions for more parallelism, for example:

I Minimisation algorithm:
F Parallel search directions,
F Parallel preconditioner and less iterations,
F Observation space algorithms, saddle point algorithms.

I Time stepping:
F Weak constraint 4D-Var.

Scalability cannot be improved solely by technical or local optimizations!

Y. Trémolet OOPS 1 November 2010 4 / 20



An example: Weak Constraint 4D-Var

time

δx1

xb

Jb
δx0

δx2

Jq

Jq

δx3

Jq

Model integrations within each time-step (or sub-window) are independent:
I Information is not propagated across sub-windows by TL/AD models,
I M and H can be run in parallel over the sub-windows.

Several shorter 4D-Var cycles are coupled and optimised together.

4D-Var becomes an elliptic problem and preconditioning becomes more
complex.

Y. Trémolet OOPS 1 November 2010 5 / 20



Scalable Minimization Algorithms

Parallel search directions: better for problems where many iterations are
performed.

Saddle point algorithms (Lagrange multiplier approach).

Parallel preconditioner and less iterations.

In the weak constraint formulation, the preconditioning is more complex but
could be more parallel.

In all cases, exploring parallelism in new directions, through minimization
algorithms or weak constraint 4D-Var or both requires dramatic changes in
the high level data assimilation algorithm.

Evaluating these options requires a very flexible code.

Y. Trémolet OOPS 1 November 2010 6 / 20



An Example of Better Scalability in 4D-Var

0

1000

2000

3000

4000

T
im

e
 (

se
c.

)

58%

66%

79%

Scalability estimate 12h 4D-Var (36r4)

48 nodes (actual)

96 nodes (actual)

96 nodes 1 exec

96 nodes 2x6hours One executable instead of 7
reduces I/O and start-up
costs.

Weak constraints 4D-Var
with a split window gives
access to more parallelism.

Figure from Deborah Salmond

Y. Trémolet OOPS 1 November 2010 7 / 20



Another concern: Code complexity

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
0.0

0.5

1.0

1.5

2.0

Li
n
e
s 

o
f 

co
d
e
 (

x
 1

,0
0
0
,0

0
0
)

0

20

40

60

80

100

120

140

IF
 s

ta
te

m
e
n
ts

 (
x
 1

,0
0
0
)

It means growth of maintenance and development costs.

Y. Trémolet OOPS 1 November 2010 8 / 20



The Needs for a Flexible Code

The IFS is a very good global weather forecasting system. However,
continuous improvements are necessary to stay at the forefront.

Scalability has become a major concern in view of new computer
architectures.

The IFS code is more than twenty years old and, over this period, has
reached a very high level of complexity. Such complexity is becoming a
barrier to new scientific developments.

The maintenance cost has become very high and new releases take longer
and longer to create and debug.

Code flexibility will reduce the learning curve for new scientists and visitors
and enable a more efficient collaboration with external groups.

There is more uncertainty in scientific methods that will be used in the
future, in particular in the area of data assimilation.

Y. Trémolet OOPS 1 November 2010 9 / 20



Example: Data Assimilation

Data assimilation aims at finding the best estimate (analysis) of the state of
the atmosphere (or system of interest) given a previous estimate of the state
(background) and recent observations of the system.

J(x) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

n∑
i=0

[H(xi )− yi ]
TR−1

i [H(xi )− yi ]

The 4D-Var problem, and the algorithm to solve it, can be described with a
very limited number of entities:

I Vectors: x, y, g, δx and χ.
I Covariances matrices: B, R (and eventually Q).
I Two operators and their linearised counterparts: M, M, MT , H, H, HT .

All data assimilation schemes manipulate the same limited number of entities
(KF, EnKF, PSAS...).

For future developments these entities should be easily available and reusable.

Y. Trémolet OOPS 1 November 2010 10 / 20



What is modularity?

Decomposability: break the problem into small enough independent less
complex subproblems.

Composability: elements can be freely combined to produce a new system.

Understandability: elements can be understood without knowing the others.

Continuity: a small change in the problem specification triggers a change in
just one (or few) module(s).

Protection: an error does not propagate to other modules.

Some rules for modularity:
I Few interfaces,
I Small interfaces,
I Explicit (and well documented) interfaces,
I Information hiding.

Y. Trémolet OOPS 1 November 2010 11 / 20



Modularity and Object Oriented Programming

Many programmers had the same concerns before us.

The general technique that has emerged in the software industry to address
the needs for flexibility, reusability, reliability and efficiency is called
object-oriented programming.

Does it make sense to rethink the design of the IFS in that framework?

To answer this question we have started to develop an Object Oriented
Prediction System (OOPS) with simple models.

Y. Trémolet OOPS 1 November 2010 12 / 20



Programming Languages

Fortran 2003:
I Compilers are becoming available but we have been debugging them.
I The OO aspects are limited but enough for a scientific code.
I SELECT TYPE construct is a cumbersome equivalent for (dynamic) cast.
I User defined constructors are missing.
I Fortran 2008 looks promising but when will we have it? (Co-Arrays exist at

least since 1996.)
I Easy-ish transition from existing code (at the risk of adopting existing

solutions only because it is easy).
I False impression of knowing the language.

C++:
I Widely used language even for supercomputing (outside meteorology).
I Compilers are available, widely used and debugged.
I Syntax takes getting used to (for Fortran programmers). Transition is sligthly

more complex and might require training for some staff (but few would
actually see the C++ layer).

I More mature and flexible (OO aspects and memory management).

Y. Trémolet OOPS 1 November 2010 13 / 20



OOPS: Basic classes

States:
I Input, output (raw or post-processed), copy, assign.
I Interpolate.
I Move forward in time (propagate using the model).

Increments:
I Basic linear algebra operators,
I Evolve forward in time linearly and adjoint (propagateTL, propagateAD).
I Add to state.

Observations:
I Input, output, copy, assign.
I Compute observation equivalent from a state (observation operator).

Departures:
I Compute as difference between observations,
I Compute as linear variation from an increment (obsOperatorTL/AD).

Covariance matrices:
I Multiply by matrix, its inverse and/or square root.

We don’t need to know how these operations are performed, how the states
are represented or how the observations are stored (ODB or other), or if
covariance matrices are stored or implemented as a set of operators.

Y. Trémolet OOPS 1 November 2010 14 / 20



State related classes

State
propagate
interpolate
changeResolution
operator+=
read
write
getDateTime

Increment
propagateTL
propagateAD
interpolateTL
interpolateAD
operator+
operator-
read
write
getDateTime

Model
tstep
tstepTL
tstepAD
adjointTest

FieldSet
interpolate
interpolateTL
interpolateAD
changeResolution
operator=
operator+
read
write
time

Lorenz
tstep
tstepTL
tstepAD

QG
tstep
tstepTL
tstepAD

SpectralField
interpolate
...

GaussianGrid
interpolate
...

Y. Trémolet OOPS 1 November 2010 15 / 20



Observation related classes

ObsType
obsOperator
generate
save
prtInfos

DepType
obsOperatorTL
obsOperatorAD
operator=
operator+
diff
save
prtInfos

ObsEquivalent
obsEquiv
obsEquivTL
obsEquivAD
adjointTest
distribute

ObsHandler
putdb
getdb
datetimes
locations

L95Obs

QGwind

ODB
getdb
putdb

ObsTable
getdb
putdb

obsEquiv
obsEquivTL
obsEquivAD
distribute

obsEquiv
obsEquivTL
obsEquivAD
distribute

Y. Trémolet OOPS 1 November 2010 16 / 20



OOPS: Building-up a data assimilation system

These classes form the basic building blocks for OOPS and already make the
system flexible from the application point of view.

The basic classes described previously can be used to build any data
assimilation system.

For example, for an incremental 4D-Var algorithm:
I Observer (Jo):

F Iterate over time-steps, compute observation equivalent and move the state
forward.

I Control variables, control vectors and change of variable:
F To speed-up the minimisation, it is preconditionned by the square root of B, the

unknown variable is a non-physical control vector.
I Cost function:

F Takes a control vector in input, does a change of variable, computes the cost
function in physical space and performs the adjoint to obtain the gradient
(control vector).

I Minimisation algorithm:
F Abstract algorithm manipulating abstract vectors and a function to be

minimised that takes a vector as input and returns its gradient as a vector.

Y. Trémolet OOPS 1 November 2010 17 / 20



From IFS to OOPS

The main idea is to keep the computational parts of the existing code and
reuse them in a re-designed flexible structure.

This can be achieved by a top-down and bottom-up approach.

From the top: Develop a new, modern, flexible structure (C++).

From the bottom: Progressively create self-contained units of code (Fortran).

Put the two together: Extract self-contained parts of the IFS and plug them
into OOPS.

Note that:
I This can be done with other models.
I The OO layer developed for the simple models is re-used.

Y. Trémolet OOPS 1 November 2010 18 / 20



There is a limit to Scalability

Currently in 4D-Var, the dimensions are:
I Minimisation algorithm iterations: O(100)
I Time stepping of the model: O(50)
I Latitude and longitude: O(100× 100)
I Vertical: O(150).

10 to 50 times more processors than today.

Comment: Ensemble Kalman Filters:
I Scales with the number of members (for free).
I Overall cost might be prohibitive?

O(100) times more processors than today.

The limit for scalability is of the same order of magnitude.

In any case, scalability beyond 10,000s processors will be difficult to achieve
for any data assimilation system.

The quality of the analysis and forecast determine the choice of algorithm,
within our computing and operational constraints.

Y. Trémolet OOPS 1 November 2010 19 / 20



There is a limit to Scalability

Currently in 4D-Var, the dimensions are:
I Minimisation algorithm iterations: O(100) 3-5?
I Time stepping of the model: O(50) 4-10
I Latitude and longitude: O(100× 100)
I Vertical: O(150). Unexplored!

10 to 50 times more processors than today.

Comment: Ensemble Kalman Filters:
I Scales with the number of members (for free).
I Overall cost might be prohibitive?

O(100) times more processors than today.

The limit for scalability is of the same order of magnitude.

In any case, scalability beyond 10,000s processors will be difficult to achieve
for any data assimilation system.

The quality of the analysis and forecast determine the choice of algorithm,
within our computing and operational constraints.

Y. Trémolet OOPS 1 November 2010 19 / 20



There is a limit to Scalability

Currently in 4D-Var, the dimensions are:
I Minimisation algorithm iterations: O(100) 3-5?
I Time stepping of the model: O(50) 4-10
I Latitude and longitude: O(100× 100)
I Vertical: O(150). Unexplored!

10 to 50 times more processors than today.

Comment: Ensemble Kalman Filters:
I Scales with the number of members (for free).
I Overall cost might be prohibitive?

O(100) times more processors than today.

The limit for scalability is of the same order of magnitude.

In any case, scalability beyond 10,000s processors will be difficult to achieve
for any data assimilation system.

The quality of the analysis and forecast determine the choice of algorithm,
within our computing and operational constraints.

Y. Trémolet OOPS 1 November 2010 19 / 20



There is a limit to Scalability

Currently in 4D-Var, the dimensions are:
I Minimisation algorithm iterations: O(100) 3-5?
I Time stepping of the model: O(50) 4-10
I Latitude and longitude: O(100× 100)
I Vertical: O(150). Unexplored!

10 to 50 times more processors than today.

Comment: Ensemble Kalman Filters:
I Scales with the number of members (for free).
I Overall cost might be prohibitive?

O(100) times more processors than today.

The limit for scalability is of the same order of magnitude.

In any case, scalability beyond 10,000s processors will be difficult to achieve
for any data assimilation system.

The quality of the analysis and forecast determine the choice of algorithm,
within our computing and operational constraints.

Y. Trémolet OOPS 1 November 2010 19 / 20



There is a limit to Scalability

Currently in 4D-Var, the dimensions are:
I Minimisation algorithm iterations: O(100) 3-5?
I Time stepping of the model: O(50) 4-10
I Latitude and longitude: O(100× 100)
I Vertical: O(150). Unexplored!

10 to 50 times more processors than today.

Comment: Ensemble Kalman Filters:
I Scales with the number of members (for free).
I Overall cost might be prohibitive?

O(100) times more processors than today.

The limit for scalability is of the same order of magnitude.

In any case, scalability beyond 10,000s processors will be difficult to achieve
for any data assimilation system.

The quality of the analysis and forecast determine the choice of algorithm,
within our computing and operational constraints.

Y. Trémolet OOPS 1 November 2010 19 / 20



OOPS Benefits

Introduce object oriented where most of the flexibility can be expressed: at
the high level of the code structure.

Because components are independent, complexity descreases.
I Components can easily be developed in parallel.
I Less bugs and easier debuging.

Improved flexibility:
I Explore and improve scalability.
I Develop new data assimilation science.
I Adding new observations types is easier.
I Changes in one application do not affect other applications.
I Ability to handle different models opens the door for coupled DA.

Simplified systems are very useful to understand concepts and validate ideas.
I It is possible to move to the full system without re-writing code (for

algorithms that can be written at the abstract level).

The cost of developing the system is compensated by increased productivity.
I Development time (total human ressource and elapsed),
I Computer time (less experiments because there are less errors).

Y. Trémolet OOPS 1 November 2010 20 / 20


