U.S. Navy Mesoscale Forecast System and HPC Attributes

Dr. James D. Doyle **Naval Research Laboratory** james.doyle@nrlmry.navy.mil

COAMPS Research and Development Team

Clark Amerault Brian Billings⁴ Sue Chen Jim Cummings¹ Saša Gaberšek² **Tracy Haack**

Eric Hendricks
Rich Hodur ³
Teddy Holt
Xiaodong Hong
Qingfang Jiang ²

Hao Jin Yi .Jin Chi-Sann Liou Paul May⁵ Jason Nachamkin Kevin Viner⁴

Larry O'Neill⁴ **Alex Reinecke Jerome Schmidt** William Thompson Shouping Wang

Naval Research Laboratory, Monterey, CA ¹NRL-SSC, ²UCAR, ³SAIC, ⁴NRC, ⁵CSC

Outline

- Computational Aspects
- Coupled Modeling
- Tropical Cyclone Prediction
- Adjoint and Ensemble Kalman Filter
- Next-Generation High-Resolution Models

U.S. Navy Models and Tools Telescoping Strategy

COAMPS® and COAMPS-OS® are registered trademarks of Naval Research Laboratory.

Computational Platforms NRL, DoD HPC, FNMOC

- NRL Marine Meteorology Division research is conducted on a mix of computers:
- NRL-Monterey Based Systems
 - 176 and 44 cores Linux Clusters
- DOD HPC Network systems
 - -IBM P6 (4800 cores), Cray XT5 (12736 cores),
 - -SGI Altix 4700 (9216 cores), Altix Ice (15360 cores)
 - -17 Large HPC Systems (2000-16000+ cores)
 - -12 Petabytes of single copy storage
- Fleet Numerical Meteorology & Oceanography Command
 - -Linux Clusters (3720 cores), IBM (486 cores)
 - -SGI File Systems (512 cores)

Coupled Ocean/Atmosphere Mesoscale Prediction System

Atmospheric Analysis	Ocean Analysis			
 Complex Data Quality Control NAVDAS 3D-Var: u, v, T, q TC Analysis: Synthetic obs., 3D-Var Initialization: Hydrostatic Constraint on Analysis Increments, and/or Digital Filter Ensembles: ET, EnKF (DART) 	 Navy Coupled Ocean Data Assimilation (NCODA) System 2D OI: SST 3D MVOI: T, S, SSH, Sea Ice, Currents Complex Data Quality Control Initialization: Stability check 			
Atmospheric Model	Ocean Models			
 Numerics: Nonhydrostatic, Scheme C, Nested Grids, Sigma-z, Flexible Lateral BCs Physics: PBL, Convection, Microphysics, Radiation, LSM, Sfc. Fluxes, Ensembles Aerosols: Transport, Deposition TC Option: Moving Nests, TC Physics Adjoint: Nests, PBL, Microphysics 	 NRL Coastal Ocean Model (NCOM) Numerics: Hydrostatic, Scheme C, Nested Grids, Hybrid Sigma/z Physics: Mellor-Yamada 2.5 Wave Models: WWIII and SWAN Generalized Coupler: Earth System Modeling Framework (ESMF) 			
Features				
•COAMPS-OS [®] Turnkey Automated System with GUI •Globally Relocatable: 5 Map Projections				

Single Configuration Managed System for All Applications

•Operational FNMOC for over 50 areas per forecast watch (2-27 km resolution) •Operational at FNMOC since 1998: Over 200,000 Operational Forecasts

Fully Coupled Air-Ocean-Wave Prediction Capability Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)

• Component-specific exchange grid is used facilitate interactions between the model components and grid meshes.

• Atmospheric model domain encompasses both wave and ocean domains.

• Transition to Navy operations in FY11.

(3)

Chen S., T.J. Campbell, H. Jin, S. Gaberšek, R. M. Hodur, and P. Martin, 2010: Effect of two-way air-sea coupling in high and low wind speed regimes. *Mon. Wea. Rev.*, 138, 3579–3602

Coupling Modes

Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)

COAMPS Scalability on DoD HPC Platforms

Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)

Code is Scalable to 1000+ Processors for Typical Operational and Research Applications

COAMPS Air-Sea Interaction Research Coupled Atmosphere-Ocean-Wave Coupling

Model Configuration

- •One month continuous data assimilation in atmosphere & ocean, using 3 km resolution
- Adaptive (AOSNII) ocean glider observations from assimilated.

COAMPS Ensembles

High-Resolution Ensemble Transform Coupled Ensembles

atmospheric BL top & ocean ML bottom

Ensemble Spread

21Z 27 June 2005 (9 h) Atmospheric u-wind component Ocean u-current component

Atmospheric potential temperature Ocean temperature

Tropical Cyclone Prediction Using COAMPS-TC COAMPS-TC Air-Ocean Coupled Prediction of Hurricane Gustav

New version of COAMPS developed to predict tropical cyclone track, structure and intensity: COAMPS-TC.

Hurricane Forecast Improvement Project (HFIP) COAMPS-TC Retrospective Tests (2008/2009 Seasons)

HFIP: NOAA, Navy, Academia Effort to Improve Hurricane Intensity and Track Forecasts
COAMPS-TC Intensity Skill is Superior to HWRF, GFDN, GFDL, NCAR AHW (30-84h).
COAMPS-TC is the Leading Intensity Model and Shows Skill to 60 h for 2010.

Impact of Typhoons on the Ocean in Pacific (ITOP) 2010 Field Campaign in W. Pacific: COAMPS-TC Adjoint Targeting

ODOGe

Ensemble Data Assimilation and Predictability Application of COAMPS EnKF to a Pacific NW Snow Event

100-member EnKF Data Assimilation System (27 and 9-km)

Covariance between SLP and 700 hPa Temp (contours) 700 hPa RH (fill)

Puget Sound 850 hPa Temp 17 Warm and Cold Members

Flow dependent mesoscale covariances
Mesoscale cyclogenesis (500 km difference in low position)
Rapid error growth; 36-h temperature differences of 6°C.

Clouds, Aerosols, Turbulence Interactions VAMOS Ocean Cloud Atmosphere Land Study (VOCALS)

180

160

140

120

20

40 SL

110 W

70 W

S. Wand

- Real-time COAMPS guidance during VOCALS.
- Pre-VOCALS model intercomparison.
- New insight into cloud-turbulence- aerosol interactions & cloud variability.

COAMPS Aerosol Modeling Coupled Aerosol Modeling Capability

Time) NRL Monterey Sunglint)=True Color

NRL DEP 0955 UTC 12 Nov 2008

COAMPS 54 h Surface Dust Forecast valid 0600 UTC 12 Nov 2008

Dust surface concen (ug/m^3) 54h fcst valid at 06Z12NOV2008 COAMPS starting from 00Z10NOV2008 grid 18-km

Fully integrated aerosol transport model within COAMPS.
Improved dust source database (DSD) resolves dust plumes.
Aerosol data assimilation development is underway.

High-Resolution Modeling Over Complex Terrain Terrain-Induced Rotor Experiment (T-REX)

- Ultra high-resolution simulations of intense subrotor vortices.
- Lidars observed similar structures.
- Models can guide our search for new finescale phenomena.

COAMPS-LES: Subrotor Vortices ∆x=60 m 2100 UTC 16 April 2007

η Vorticity (color) η = 0.15 s-1 (red) η = 0.02 s-1 (gray)

DLR Doppler Lidar Velocities

Next Generation High-Resolution Modeling Nonhydrostatic Unified Model for the Atmosphere (NUMA)

• Spectral Element Dynamical Core:

- High order accuracy
- Highly scalable
- Mesoscale, Global options (w/ MPI)
- Semi-implicit solver
- Incorporation of physics underway

Nonhydrostatic Unified Model for the Atmosphere NUMA Grid Capabilities

Nonhydrostatic Unified Model for the Atmosphere NUMA Scaling Performance and DG Adaptivity

Nonhydrostatic Adaptivity using a Discontinuous Galerkin Method.

Müller, Behrens, Giraldo, Wirth 2010

Challenges and Future Directions

• High-Resolution Coupled Modeling:

Representation of key environmental interactions (air, sea, wave...)
High resolution needed to resolve key processes, however gray areas exists

convection (∆x~1-4 km), gravity waves (~2 km), turbulence (5-100 m)

Motivates need for new physics algorithms (turbulence, clouds, spray...)
Coupled mesoscale ensembles provide estimates of the uncertainty
New model development underway (nonhydrostatic SE, semi-Lagrangian)
New data assimilation methods for the cloud scale (hybrid)
Community efforts: HFIP, Earth System Prediction Capability, NUOPC

• Computational Attributes and Challenges:

- -Faster cores and greater number of cores (resolution, physics, ensembles)
- -Fast I/O (ensembles, post processing)
- -New paradigms (SE) may be needed for scaling across 10,000+ cores
- -Adaptive load balancing for embedded meshes
- -Challenges for coupled codes (balancing)
- -Grid / cloud computing challenges for ensembles (post processing)
- -Visualization / data management challengesre

Three-Way Coupled COAMPS Scaling (Concurrent) Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®)

No of processors

Total no. of proc.	No. of atmos proc./run-phase wall time(s)	No. of ocean proc./ run- phase wall time(s)	No. of wave proc./ run-phase wall time(s)	Component run- phase wall time ratio
78	72 / 2908	2 / 2600	4 / 2449	1.18 : 1.06 : 1
54	48 / 3799	2 / 2601	4 / 2468	1.54 : 1.05 : 1
48	36 / 4271	4 / 1466	8 / 1491	2.91 : 1 : 1.02
32	24 / 5649	2 / 2624	6 / 1922	2.94 : 1.33 : 1
16	16 / 7814	16 / 462	16 / 788	16.91 : 1 : 1.69

COAMPS-TC Forecast Skill

Real-Time Forecasts for Typhoon Fanapi (12W) (2010)

COAMPS-TC Track and Intensity Skill is Significantly Better than the Global (GFS, NOGAPS) and Regional Models (GFDN) for Typhoon Fanapi.

COAMPS-TC Forecast Skill Real-Time Forecasts for Typhoon Fanapi (12W) (2010)

COAMPS-TC Track Skill is Comparable to UKMET and Slightly Lags ECMWF.
COAMPS-TC Intensity Skill is Greater Than ECMWF.