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A New Equitable Score Suitable for Verifying PrecipitationNWP ECMWF

Abstract

A new equitable score is developed for monitoring precijataforecasts and for guiding forecast system
development. To accommodate the difficult distribution qgipitation, the score measures error in ‘prob-
ability space’ through use of the climatological cumulatdistribution function. For sufficiently skillful
forecasting systems, the new score is less sensitive tolsanyncertainty than other established scores. It
is therefore called here ‘Stable Equitable Error in Prolitgtispace’ (SEEPS). Weather is partitioned into
three categories: ‘dry’, ‘light precipitation’ and ‘heaypyecipitation’. SEEPS adapts to the climate of the
region in question so that it assesses the salient aspettts twfcal weather, encouraging ‘refinement’ and
‘discrimination’ and discouraging ‘hedging’. To permitr@uous monitoring of a system whose resolution
is increasing with time, forecasts are verified againstipaliservations. With some careful choices, obser-
vation error and lack of representativeness of model goxldverages are found to have minimal impact.
SEEPS can identify key forecasting errors including the-grediction of drizzle, failure to predict heavy
large-scale precipitation, and incorrectly locating aective cells. Area-averages are calculated taking into
account the observation density, so that all sub-regioagraated more equally. A gain ef2 days, at
lead-times 3—-9 days, over the last 14 years is found in egpaial scores of forecasts made at the European
Centre for Medium-range Weather Forecasts (ECMWF). This igadue to system improvements, not the
increased amount of data assimilated. SEEPS may also bieagplfor verifying other quantities that
suffer from difficult spatio-temporal distributions.

1 Introduction

Routine verification is crucial in numerical weather préidic (NWP) for monitoring progress, setting targets,
comparing forecasts by different centres and for guidingetigpment decisions. Through these various roles,
verification scores for the large-scale flow have helpededrivpressive improvements in NWP performance.
An example of these improvements is that an 8 day (D+8) ECM@eEchst for the Northern Extratropics in
2008 has the same average spatial anomaly correlatior{fekiBO0 hPa geopotential heights, Z500) as a §+5
forecast had in 1980.

Contours in Fig.l show (a) observed.€. analysed) and (b) D+4 forecast Z500 verifying at 12 UTC on 23
August 2008. The correspondence is indicative of the imgmmants in large-scale skill. However, it is clear
that Z500 is not sufficient to characterise the entire floveciitation (shaded), for example, is rather poorly
predicted over Europe. This emphasises the need to mottiter aspects of the forecast; for example aspects of
direct relevance to the user community and aspects repatiserof diabatic processes. It is difficult, however,
to make development decisions based on many scores. ldksligions should be based on some minimal
number of scores that concisely summarise a system’s peafure. Since precipitation is user-relevant and a
consequence of diabatic processes, it would appear to he@hehoice.

Precipitation is a difficult quantity to verify for numerousasons. Firstly, it is rather sparsely observed by
surface observations and imperfectly estimated by radaei@vavailable) and satellite at present. Secondly, a
point observation may not be representative of a modellgmidaverage. Thirdly, precipitation has a difficult
spatio-temporal distribution with, often, a large numbkdry days and occasional very extreme events (notice
the non-linear colour scale in Figj). Any precipitation score must contend with these issues.

Considerable research has focused on developing preitpitscores. For exampl®u et al.(2000), follow-

ing Hoffman et al.(1999), partitioned precipitation forecast error into compasesssociated with large-scale
advection, magnitude and a residu@iasati et al(2004) partitioned error by intensity and spatial scale. Such
decompositions are essential to truly understand the eafufiorecast error but can be overly complex for the
purposes of monitoring. Importantly, they do not necesaive useful guidance for high-level development
decisions. For instance, doubling precipitation everywheonstitutes a major change to a forecast system,
but it would not alter values of the intensity-scale scor€aséati et al(2004). Other research has centred on
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Figure 1: 500 hPa geopotential height field (Z500, contousdtth interval 50m) and 24-hour accumulated precipitation
(shaded, mm). (a) ‘Observations’: analysed Z500 and stenge (D+0—D+1) forecast precipitation centred at time 12
UTC on 23 August 2008. (b) Forecast: D+4 forecast 2500 and @+B+4% forecast precipitation verifying at the same

time.
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the verification of extreme precipitation (e$tephenson et aR008. This is highly desirable from the users’
perspective, but sampling uncertainties render it a difftaisk.

Here the aim is to develop a new score that concisely quanhifi¥P performance in the prediction of precipita-
tion and steers development in the correct direction. Thealgle attributes of such a score can be summarised
as

(a) Monitoring Progress

e A single score that assesses forecast skill foradrgwet weather.

e \erification against point observations in order to perroittthuous monitoring of a system whose reso-
lution is increasing with time, and to satisfy the typicatumterested in a small geographic area.

e To detect performance changes, sensitivity to samplingmiaiaty should be minimised, while main-
taining the ability to differentiate between ‘good’ and dbhéorecasts.

e For area and temporal averages to be meaningful, it shoybd&sble to combine scores from different
climate regions and different times of the year.

(b) Aiding decision-making

e To facilitate the identification of model error, there shbhk a clear link between the score and the error
in the forecast.

e A score should encourage developments that permit a fdregstem to predict the full range of possible
outcomes.

e A better score should indicate a ‘better forecast system’.

Two key approaches are used as a starting-point for thergresaly. The first represents a method discussed
by Ward and Folland199]). They transformed seasonal-mean precipitation anomlie ‘probability space’
through the application of the observed cumulative distiim function. This results in a score known as Lin-
ear Error in Probability Space (LEPS). The transformatiandtes, in a natural way, the difficult distribution of
precipitation and makes a score much less sensitive tonegtvalues. The LEPS approach seems attractive for
the routine scoring of moderate daily precipitation acclations if the problem of the existence of dry days
can be overcome. The second approach is the applicatioryoitébility’ constraints Gandin and Murphy
1992 that place upper and lower bounds on the expected skilesdor perfect and unskillful forecasting sys-
tems, respectively. Defined bounds facilitate the comparand combination of scores from climatologically
different regions and from different times of the year. Ifc@® isinequitable, it is possible for an unskilled
forecast system to score better than a forecast systemevita skill. This is clearly undesirable.

The data used here are described in se@idpection3 reviews some established scores and comments further
on ‘equitability’ and ‘error in probability space’. The nesgore is developed in sectidin Section5 compares

this score with other established scores in terms of sagplntertainty and susceptibility to hedging. Section
6 discusses some parameter settings and seétgines a summary of the new score. Sectiapplies the
score to some case-studies. Area-mean scores, that takenaof observation density, are presented in section
9. Sectionl0investigates the detection of system improvements. Thadtspf observation error and lack of
representativeness are quantified in sectibnConclusions are given in sectid2.
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2 Data

2.1 Observational Data
2.1.1 Daily SYNOP data from the GTS: 1980-2008

The data used for the point-verification of precipitatioa @YNOP’ observations. Other sources of data, such
as retrievals from radar or satellite may be suitable in tharé, and could equally be used with the score
developed here. Another alternative is to use short-raogeeésts of precipitation, as shown in Flg. The
(inyadequacy of such short-range forecasts can be gaugextiiie scores against real observations presented
here. The SYNOP observations used are those that are exathangear real-time over the Global Telecom-
munications System (GTS) and stored at ECMWF in ‘BUFR’ arehi Verification against these data, which
are not assimilated at ECMWEF, should provide an indepenglaltiation of performance and a valuable ‘an-
chor’ to the systemGasati et al.2008. Daily observations of 24-hour accumulated precipitafar the period
1980-2008 are used here. The hope is that a 24-hour temperaba will alleviate to some extent the problem
of the lack of representativity of grid-box spatial average

Since precipitation is an accumulated quantity, it is galienecessary to derive the required ‘observed’ ac-
cumulations from the raw reports. For example, under Ewopeporting practices, the 6-hour 0—-6 UTC
accumulation is derived by subtracting the previous 6-t@+#0 UTC accumulation from the 12-hour 18-6

UTC accumulation. European 24-hour 0—0 UTC accumulatioaghen deduced by combining this derived
6-hour 0—6 UTC accumulation with the subsequent reportetial® 6-18 UTC and the 6-hour 18-0 UTC

accumulations.

Because reporting practices vary throughout the World,neeige algorithm has been developed that can pro-
duce almost all derivable 6, 12 and 24-hour accumulatioos fthe raw observations for periods ending at
any hour of the day, regardless of local reporting practitiee algorithm dramatically increases the number
of available accumulations. For example, the number of @4-ccumulations, world-wide, is increased from
~500 to~4000 for periods ending 0,6,12 and 18 UTC. There are alsatepand derivable) accumulations
ending at other times of the day. For example, India repards @, 15 and 21 UTC. The results presented here
mainly focus on accumulations ending at 12 UTC.

Because forecast error will be measured in ‘probabilitycephaquality control can be more relaxed than for
(e.g) correlation scores or scores for extreme weather. Heperted (and derived) 24-hour accumulations are
required to be merely:1m.

2.1.2 Climatology of daily SYNOP data: 1980-2008

Climatologies for all stations are based on the reporte@émbsions and derived accumulations discussed in
section2.1.1 At least 150 daily accumulations are required for a statobe accorded a climatology for a
given month. This equates %05 years of observations (5x30=150).

With the intention of following the ‘LEPS’ approach of measg error in probability space, climatological
cumulative distribution functions are derived for thesgiens. Figur€ shows the cumulative distribution func-
tions for a range of such stations and months based on 2412U2UTC accumulations. These cumulative
distribution functions have a different structure to thpsesented for seasonal-mean dataN@ard and Folland
(1997). In particular, they do not start at zero probability (vispbut rather at a value corresponding to the
fraction of days with zero reported precipitation (for themth in question). Baoshan, China (F&g) in July

is frequently wet, with only 10% of days being ‘dry’. Formogagentina (Fig.2f) is dry 80% of the time in
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(a) Baoshan, China ( 25.1°N, 98.5°E, Jul) (b) Kirkwell, Orkney ( 59.0°N, 2.9°W, Jan)
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Figure 2: Cumulative distributions for selected SYNOPistat and months based on 12-12UTC 24-hour precipitation
accumulations for 1980-2008. The extreme right of each ly@presponds to the Y5percentile of the distribution.
Dotted lines indicate the sub-division of the wet days inrétti® 1:1 and 2:1.
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May. Figure2 will be referred to further in subsequent sections.

2.1.3 High-density gridded observations: 2007

Gridded precipitation observations, based on a high-tenstwork of European station&helli and Lalaurette
2000, are available from 2002ZCherubini et al(2002) used this as forecast verification data. Here, point data
are required for verification but the gridded 24-hour 6—6UddCumulations for 2007 (the most recent year
available) are used to represent a ‘perfect model’. Scdhisgperfect model will provide an upper bound for a
skill-score that takes SYNOP observation error and reptageity into account.

2.2 Forecast Data: 1995-2008

The ECMWEF operational 12UTC high resolution (‘determiiai$tforecast is used to obtain 24-hour 12-12UTC
accumulated precipitation forecasts for leadtimes 1-8,dar the period 1995-2008. These data are matched
to all the available SYNOP stations on any given day usingegest grid-point approach. The alternative ap-
proach of bilinear interpolation between the four gridrgsisurrounding an observation (eGherubini et al.
2002 was thought more likely to exacerbate the lack of repregity of point data. No account is made for
discrepancies between model orographic height and sthgaht and no distinction is made between land-
points and sea-points. This should ensure that trends irehpedformance, including the impact of resolution
changes, are not removed from the data.

The operational forecasts are compared with a parallelfderecasts (for the same period) made within the
‘ERA Interim’ re-analysis projectimmons et aJ.2007). ERA-Interim uses a single model cycle run at con-
stant resolution. Comparison is also made against a plasatlef test forecasts for a (previously) experimental
model cycle for the period 1 April to 8 September 20009.

2.3 What does ‘dry’ mean?

It is important from the atmospheric physics perspectivadsess a forecast’s ability to distinguish between
wet and dry conditions. However, the definition of ‘dry’ neei be applicable to all regions of the World,
where reporting practices vary, and should allow a consistemparison with forecast data. The solution has
been to base the definition on the WMO publication ‘Guide taddeological Instruments and Methods of
Observation’ (WMO-No. 8, ISBN 978-92-63-10008-5). In plarthapter 6, the guide states that:

¢ “Daily amounts of precipitation should be read to the nga®de&d mm and, if feasible, to the nearest 0.1

mm-.

e “Less than 0.1 mm (0.2 mm in the United States) is generafrmed to as a trace”.

Based on the second statement the definition of ‘dry’ musirlylénclude all forecast (and reported) values
strictly less than 0.2 mm. However, with the possibility ofinding, an observation of 0.16 mm could be
recorded as 0.2 mm in some parts of the World and simply recbes ‘trace’ in other regions. Hence the
definition of ‘dry’ used here is all accumulatiors 0.2 mm. Note that, for rounding to the nearest 0.1 mm,
an observation of 0.24 mm would be recorded as 0.2 mm and thw<lassified as ‘dry’. For compatibility,
forecast data is therefore also rounded here to the neaflestrd prior to classification.
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There is a potential caveat in this definition of ‘dry’. Fogiens where rounding is to the nearest 0.2 mm,
observations in the interv@.25,0.3) mm will be classified as ‘dry’, while forecast values in thigarval will

be classified as not ‘dry’. Other definitions of ‘dry’ ("anylua < 0.05 mm”, "any value< 0.1 mm”) have
also been tried but the chosen definition seems preferaliteaint is as-compatible-as-possible with WMO
standards and has a higher (more easily observable) thdesthmwvever, it appears that there is little difference
in the trends in area-mean scores whichever definition id.use

3 Review of previous scores

3.1 Continuous scores

Continuous (at opposed to categorical) scores of pretignitdnave previously been considered. For example,
the spatial correlation of normalised precipitatidtofwell 2005 shows a clear trend of improvement in the
prediction of extratropical precipitation at ECMWF. Hovee\the contributions to the score from different re-
gions within the area of interest are difficult to assess dutiteon, the correlation is sensitive to extreme values,
whether real or due to erroneous observations, and thisaeses the score’s uncertaintyard and Folland
(1997 applied the LEPS approach to continuous (as well as catedjoseasonal-mean precipitation anoma-
lies. The method greatly reduces the sensitivity to extreahges, but it is unclear how this continuous version
can be made compatible with the existence of dry weather.

3.2 Categorical scores

This study focuses on the development of a linear cateda@mae for precipitation. Such scores make use
of a scoring matrix{sys }, that defines the score for any given combination of fore@&s) category,f, and
verifying observation (Obs) category, The general scoring matrix for arcategory forecast is shown in Table
1. Here, the observed (climatological) probabilities fog thcategories ar@i, po, -+, pn (With 374 py = 1).

If a set of observation/forecast pairs have a sample digtoib of (3, ¢, then the sample-mean score over the set
of forecasts is given by

S= Z Puisvi 1)

A tilde (7) is used here to denote sample-mean values, asseppm expectedi.€. population-mean or
climatological-mean) values or constants.

The definition of{s,s} will affect the relative sensitivities of the score to thega of possible forecasting
errors, such as the over-prediction of drizzle or the unlediction of heavy rain. In general, one would hope
that a better score would indicate a ‘better forecast systéhat is meant by a ‘better forecast system’ is partly
subjective - the relative emphases placed on drizzle ang/lvaa could reflect the user’s subjective notion of
the inconvenience associated with these precipitatioturfes, for example. These subjective aspects will be
discussed in sectio® Below, some objective criteria that have been used in pusvécores are highlighted.

3.2.1 2-category scores

The ‘Hit-Rate’, or ‘Probability of Detection’ is an examptd a score where a better score value does not
necessarily indicate a better forecast system. The Hi-Ratefined a$i /(H + M) whereH is the number
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Obs
Probability p1 p2 - pn
Category 1 9 Y . n
1 S11 S1 0 Sm
FCf 2 S12 S2  Sm2
n Sn Sn ' Sin

Table 1: General scoring matriX,s,¢ }, for an n-category score. ‘FC’ refers to the forecast, ‘Obsfers to the verifying
observations and the valuésy } refer to the observed climatological probabilities of treegories.

of correctly forecast events (hits) ail is the number of events that were not predicted (misses)e hait

H + M is the number of events that actually occurred. For a peffeetasting system, Hit-Ratel. However,
the converse is not true. A single line program that alwagslisted the event would have Hit-Ratd but

is clearly not a perfect forecasting system. Decisions nuadthe basis of the Hit-Rate alone could lead to
a forecasting system that issued far too many forecastgfhbatvent would happen. What is missing from
this score is a penalty for predicting the event when it ditdhrappen (a false alarm) and a bonus for correctly
predicting that the event would not occur (a correct negativ

As the sample size increases (so that the observed samipibudisn tends to the climatological distribution,
{fv} — {pv}), the Hit-Rate (for hits on category 1) will tend ®= f11/p1. Gandin and Murphy(1992
highlighted the desirability of separating the forecagtand scoring tasks by makin, ¢} independent of
{Pv¢} (but possibly dependent on the climatological distribut{g,}). Table2 makes this separation for the
Hit-Rate (valid for large sample size).

Obs
Prob p1 p2
Y,
Cat 1 5
1
FC f 1 P 0
2 0 0

Table 2: Scoring matrix for the Hit-Rate score (for categdripits).

The main contribution oGandin and Murphy1992 was to introduce some ‘equitability’ constraints that, if
applied to the definition of the scoring matrix, ensure ascmes not suffer in the way that the Hit-Rate does.
These constraints give a perfect forecasting system arcegskill value 1 and give all constant and random
forecasting systems an expected skill O:

Perfect FC:  S,psw=1
Constant FC: 3, pysyt =0 Vf (2)
Random FC: 5, ¢qrpysvt =0 ,

where V' means ‘for all'’ and{qs } represents any distribution of forecast categories (Witfg; = 1 and

8 Technical Memorandum No. 615



A New Equitable Score Suitable for Verifying PrecipitationNWP ECMWF

gs > 0Vf).

A score whose scoring matrix satisfies these constraintsas/i as an ‘equitable score’. Strictly speaking, a
score is equitable if any linear transformation of its segninatrix (of the formm{s,¢ } + ¢, wherem, c are real)
satisfies 2). Such a transformation simply re-bases and scales a sdtireuvaltering its properties. In the
present study, this transformation has already been apiplithe scoring matrices displayed. The implications
of equitability can be summarised as follows. If a scorgeqjuitable, and it accords different scores to two
unskillful (e.g. random) forecast systems, then adding some skill to themsysgtith the poorer score could
still leave it appearing worse than the other unskillfulteys. Equitability removes this possibility. By heavily
penalising systems that produce a constant forecast (subébr ahe climatologically most likely category),
equitability also encourages ‘refinement’ (whereby thedast distribution becomes equal to the climatological
distribution;{qs } = { pv}, Murphy and Winkler1987). Refinement is discussed further in subsequent sections.

Notice that the Hit-Rate (as defined in TaB)edoes not satisfy the constant and random constraints lansl, t
is not equitable.

As Gandin and Murphy1992) point out, the random forecast constraint readily folldwsn the constant fore-
cast constraints so equatior®y éctually represem + 1 constraints on the? values of am-category scoring
matrix. Sincen+1 < n? (for n >= 2), other constraints or optimisations are required tyfdéfine the scoring
matrix. These constraints can ensure that the score pessetber desirable properties. Imposing symmetry (as
well as equitability) on a 2-category scoring matrix, foeexle, is enough to completely constrain the matrix.
Hence it can readily be shown that the only symmetric, ebléta2-category scoring matrix (independent of
{Pvt}) is the one shown in Tabl&

Obs
Prob p1 p2

Y,
Cat 1 2

P2
Fcoftop 1
2 1 P
P2

Table 3: Symmetric scoring matrix for the Peirce Skill Score

For{p,} = {pv} andpi1+ P12 = P1 = p1, etc, the corresponding score can be written as

g_Pu_Pa A3)
pr P2

This is the Hit-Rate minus the False-Alarm-Rate (for largmple size) first defined biyeirce(1884). It is
called here the Peirce Skill Score, although it has been dalifferently over the years (such as the “Hanssen-
Kuipers Discriminant”, the “Kuipers’ Performance Indexidathe “True Skill Statistic”). Unlike the Hit-Rate
alone, the Peirce Skill Score does include a penalty foefalarms and cannot be artificially increased by
over-predicting the event.

If the two observed categories have equal climatologicababilities (1 = p,), then the diagonal elements of
the Peirce Skill scoring matrix satisfy what will be callegré the ‘strong perfect forecast constraints’:

Strong Perfect FC: sy =1 VYv | (4)

Technical Memorandum No. 615 9
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and the score for a perfect forecast will always be 1. Coimstf4) is stronger than the perfect forecast constraint
in (2), which states only that thexpectedscore should be 1. Satisfying)( even in situations of unequépy },
is found here to be a desirable attribute and will be disalfiseher.

Note that if the Peirce Skill Score is written in terms of themple distribution: S = P11/ P1 — P21/ P2, the
sample-mean score for a perfect forecast system would beeh, ie(4) is not satisfied. The disadvantage
of defining a score by the sample distribution is that theisgomatrix is undefined for small samples and
unstable unless the sample is sufficiently large. Therdfmeeuse of the climatological distribution will be
preferred here.

3.2.2 n-category scores

For a categorical score that assesses both the predictidny efeather and precipitation quantity, more than 2
categories are required. Here the attributes of some &dtalin-category scores are discussed.

A simple n-category score is the Heidke Skill Scdtdeidke 1926). This Score is based on the identity matrix,
In, and therefore rewards a hit on any category equally andipesall misses equally, regardless of the class
of category error. The Heidke Skill scoring matrix for the@egory score is shown in the forf8ls — 1)/2 in
Table4.

Obs
Prob p1 p2  ps
Y,
Cat 1 5 3
R
3 -3 -3 1

Table 4: Scoring matrix for 8-category Heidke Skill Score.

The Heidke Skill scoring matrix satisfies the strong perfecécast constrain4j and, for equi-probable cate-
gories fy = % Yvin the case of 3 categories), it also satisfies the equitgloitinstraints Z).

Barnston(1992 modified the Heidke Skill Score, for equi-probable climagical categories, so that the
penalty for an incorrect forecast was linearly dependenthenclass of the category error. Barnston then
made further adjustments to restore equitability. Thet8gmay scoring matrix is given in Tabk It's depen-
dence on the class of error is apparent although linearitlysgmmetry are compromised by the equitability
adjustment. Note that the scoring matrix does not satisfysttong perfect forecast constraidj. (

The LEPS approach of measuring error in ‘probability spa@éard and Folland1991) was introduced in
sectionl. The dotted lines in Fig2 show how the climatological cumulative distributid®,is used to calculate
this error. For example, if it rained 5.0mm at Balmoral, Beg in October (Fig2d) when the forecast was for
2.5mm, then the linear error in probability space wouldfbev = P(5.0) — P(2.5) = 0.82—0.73=0.09. In
general, the aim was a categorical score defined by the abdimlear error in probability space

‘i?f:|f_v| ) %)

wherev and f are the observed and forecast categories, respectivell egfdrs to ‘LEPS’. After subsequent
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Obs
Pob 1 1 %
Cat ;5 g
1 3 0 -3
A
3 -2 0o 3

Table 5: Scoring matrix for 8-category Barnston Skill Score with equi-probable climagical categories.

adjustments including those for equitability, the scorimagrix for the 3-category LEPS Skill Scoredtts et al.
1996 with equi-probable climatological categories is giverTable6. Notice that the final scoring matrix is
not entirely linear.

Obs
Pob {1 1 1
Cat 4 V2 3
R
R
s -1 -4 4

Table 6: Scoring matrix for 8-category LEPS Skill Score with equi-probable climatobtadjcategories.

It could be argued that the motivation behind the Barnstah S&ore was also to measure error in probability
space and the main difference between the two scores is imétleod by which equitability is achieved.
(Potts et al. 1996 note that the LEPS score is ‘doubly equitable’ in that theatign

Constant Obs: 3¢ pssyt =0 Vv (6)

is also satisfied. This means that the expected skill scorediostant observation is also 0. However, this is
only realised in general for a model with no skill, but whighl snanages to produce a perfect distribution of
categories{qs } = {pv})- The apparent benefit of ‘double equitability’ is that tHeERS scoring matrix is sym-
metric although it does not satisfy the strong perfect faseconstraint4). Note that, for daily precipitation, it

is not possible to make categories equi-probable if ‘dryather is to be defined as a category in itself.

Gerrity (1992 demonstrated how, for unequal probabilities, an equta®ymmetricn-category score could
be constructed from— 1 2-category scores of the form of the Peirce Skill Scorelgrap The method, which
involves taking the arithmetic mean of these Peirce scefésstively constrains all the remaining degrees of
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freedom in the scoring matrix. The 3-category scoring mdtf; } for any {p,} is given by

1-p1 ps3 P3
+ -1 2
pr  1-p3 1-ps3
1 Ps P1 P3 P
W=3) T ' Tplp Imoo( (7)
P1 pr | 1-p3
2 1 +
1-p 1-p1 ps

This score would allow ‘dry’ days to be defined as a singlegmte The scoring matrix in7) for variable
{pv} will be discussed later. Substituting = p, = p3 = % into (7) gives the 3-category scoring matrix for
equi-probable climatological categories (TalBle As with the Barnston and LEPS skill scores, the Gerrity
scoring matrix does not satisfy the strong perfect forecasstraint §).

Obs
Pob § % 1
\Y
Cat 1 5 3
1 2 -3 -1
2 -3 3 3
e

Table 7: Scoring matrix for 8-category Gerrity Skill Score with equi-probable climatgical categories.

4 Stable Equitable Error in Probability Space

The desirable attributes of a score are dependent on théepraid hand.Barnston(1992 was interested in
optimising comparability with the correlation score andréaucing sensitivity to the number of categories.
Neither of these aspects seem particularly useful for rmdni progress or aiding decision-making in NWP.
However, measuring error in probability space and enswgmgtability should help deliver some of the desir-
able attributes listed in sectidn To allow ‘dry’ weather to be a category in itself, the scorestraccommodate
categories with variable probabilities. To aid the detsttdf performance changes, a score’s sensitivity to
sampling uncertainty needs to be minimised, while maimgiits ability to differentiate between good and
bad forecasts. With the aim of minimising this sampling utaiaty, the stronger perfect forecast constraints
will also be imposed. This is the starting point for the depehent here of a new categorical equitable score for
verifying precipitation in NWP. Since the proposed scorigaised on error in probability space, it is formulated
as an ‘error score’ rather than a ‘skill score’.

The lack of complete linearity in the LEPS scoring matrixigades that it is not possible to derive a completely
linear score that is consistent with the equitability coaists. Hence a less constrained structure tfnis(
initially proposed for am-category error score. The first category represents ‘dgativer and the remaining
categories represent equally-likely bins with succe$giteavier precipitation. In order to ensure that the
score’s error matrix, for a given location and time of yearconstant and well-defined (even for a single
forecast) it is defined by thelimatological cumulative distribution for each month. The first categdryst
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has climatological probability;. The other categories have probabilitigs= (1—p;)/(n—1) Vi > 1. The
proposed structure is given by

[f—vla +&f(c—a) ifv>f
st=4 [f-v|b +3a(d-b) ifv<f | 8)
0 if v=f

whered; = 1if i = j and O otherwise. It > f, the error increases linearly by a valae- 0 for each extra
category separating the forecaktand verifying observatiorv. The error increases by the valbie- 0 if v < f.

It is not imposed thaa should be equal tb so this represents a form of ‘semi-linearity’ in probaliligpace.
Note that sincep; is not necessarily equal to the othar a different increment is used between categories 1
and 2. This incrementis> 0if v> f andd > 0 if v< f. Again,c andd are not specified to be equal. The
hope was that this less constrained error matrix may be stensiwith the equitability constraints. Note that
(8) is consistent with the strong perfect forecast constsdimtan error score,

Strong Perfect FC (error):s,y, =0 W . 9)

The equitability constraints for an error score (ignorihg tedundant random constraint) can be written as

Perfect FC (error): Sy pvSw=0 (10)
Constant FC (error): 5, pvsvs =1 Vf

The perfect forecast constraint ihQ) is automatically satisfied becaus® (s. However, it is not possible to
satisfy the constant forecast constraintslifi) (if n > 3. This is because the combination of constant forecast
constraints:(f = 2) — 2(f = 3) + (f = 4) implies that(a+ b) pz = 0 and this is not possible sinegb, p; > 0.

A 3-category score is possible (see below) and this will leefdlous of the study. The structure of the error ma-
trix for this score, consistent witl8), is given in Table8. The climatological probability for the (‘dry’) category,
p1 € (0,1), will be dependent on location and month of year. The two iem@ categories are termed here
‘light precipitation’ and ‘heavy precipitation’. Theiriohatological probabilitiesp, and ps3, respectively will
define the precipitation threshold (in mm) between theno(tbh application of the climatological cumulative
distribution function).

Obs
Prob p1 p ps
v
Cat 5 3
1 0 c cta
FC f 2 d 0 a
3 d+b b 0

Table 8: Error matrix for a new3-category score. Here 1pp2, ps represent the climatological probabilities of ‘dry
weather’, ‘light precipitation’ and ‘heavy precipitatioyrespectively, with p+ p2+ ps = 1.
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The 3 remaining (constant forecast) constraintsl) &re used to writé, c andd in terms ofa:

_ _Psa
1-ps
1-psa
C =—
1-p (11)
d — 1— P3a
P1

Notice that, in generabh # a andc # d. In addition, the initial concept of ‘semi linearity’ is longer evident
whenn = 3 although there is some clear consistency between errqurabdbility differences. For example, in
Table8, (s32—522) = (31— 1) = &, both of which relate to the same difference in probabiliigee between
observed categories 3 and 2. Similaflsis — S3) = (S12— S2) = d, both of which relate to the difference
in probability space between observed categories 1 and &eTis also consistency in terms of differences in
probability space between forecast categori@s; — S2) = (S31— S32) = cand(S13— S12) = (23— S2) = b.
Note that (in the case of 3 categories) this consistencytisamtingent on constraining, and ps to be equal,
and so this is no-longer required. By increasing the rpsitps (discussed later), the threshold between ‘light’
and ‘heavy’ precipitation can be raised. This has the adggnof setting a harder challenge for the forecasting
system but, in the limit, will lead to a 2-category score eattihan a 3-category score.

Sinceb, ¢ andd must all be greater than 011) requires 0< a < 1/ps. Which value ofa is it best to use?

It is worth examining the error matrices that would arisa i§ allowed to take its extreme values. Foe 0
(upper error matrix in Tabl@), a forecast for category 2 or 3 lead to the same score, regardf the observed
outcome. Moreover it is possible, with this error matrix; éoforecast system that only predicts categories 1
and 2 to obtain a perfect score. This means that there isl a $hit to how much the score can encourage
refinement{q: } — {pv}, Murphy and Winkler 1987). Similarly fora= 1/ps (lower error matrix in Tabl®),
there is no score difference whether category 1 or 2 is piedlidcHence a value fa strictly within the range
(0,1/p3) is required. Here, the optimal value f@fs found by defining a ‘refinement constraint’ that maximises
the lower-bound on the expected error for any forecast sysit@at never predicts category 1 or never predicts
category 3. Before deducing this valueapft is worth noting that it is unnecessary to penalise a fasesystem
for never predicting category 2. Such a system would eithetipt the discontinuous categories 1 and 3, which
is unrealistic for a dynamic model, or it would predict a $tngategory which is already heavily penalised by
equitability (10).

The lowest expected score for a system that never predittgarg 3 (1) is achieved when it always correctly
predicts the occurrence of categories 1 and 2 (2 and 3) additi@nally predicts category 2 on the fractipg
(p1) of times that category 3 (1) occurs. This leads to an expesttere ofpza  (p1d = 1— pza, by (11)). The
lower-bound for the expected error for a 2-category systethdarefore mifpsa, 1 — psa), which is maximised
at% whena = ﬁ. Choosing this value ad should rewarded a system for attempting to predict theréuige

of possible outcomes. Using this valueao&nd the corresponding valuestyfc andd (all at their mid-range
values) the final error matrix for the new scofej; }, is given by

0 t 1,1
1-p1 p3 1-p1
1 1 1
_ — - 0 -
{sit} =3 oL 0 : (12)
1 1 1
=+ 0
pr 1-p3 1-ps3 )
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Obs
Prob p; P2 P3
v
Cat 1 5 3
1 1
1 0
FC f . 1-pp 1-p
2 — 0 0
P1
1
3 — 0
P1
1 0 0 —
FC f Ps
1
2 0 0 —
P3
1
3 0
l1-p3 1-p3

Table 9: Error matrices for the two sets of extreme values bf a and d as a function ofipp, and g, the climatological
probabilities of ‘dry’ conditions, ‘light precipitationand ‘heavy precipitation’, respectively.

In anticipation of its reduced sensitivity to sampling eribis score will be called here ‘Stable Equitable Error
in Probability Space’ (SEEPS).

5 Comparison with other scores

Here a comparison is made with the skill scores revieweddtiae3.2.2 As with SEEPS, these scores will be
assumed here to be defined in terms of the climatologicailuision { p,} rather than the sample distribution.
The comparison requires a SEEPS ‘skill-score’. This cadilghe produced by calculatingASEEPS, which
clearly satisfies the equitability constraing.(For 3 equi-probable categories (as is the case for IsledbéeS
Fig. 2c, with pz/ps = 1, for example), the scoring matrix for the SEEPS Skill Saésmgiven in TablelO.

Obs
Pob 1 1 %
Cat ;5 4
r1 4 3
FCf, 1 g
3 -2 7 1

Table 10: Error matrix for a3-category SEEPS Skill Score with equi-probable climatizialgcategories.
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5.1 Refinement

The maximum skill possible for a forecast system that nexedlipts category 1 or never predicts category 3 can
readily be calculated for the (equi-probable categoryjiaganatrices in tableg, 5, 6, 7 and10). Interestingly,
this maximum is the same}l for all scores. As with SEEPS, the 3-category Gerrity SRitlore has this
maximum value for all p, }.

5.2 Uncertainty

If a score remains sensitive to sampling uncertainty as xpeated skill score of the system approaches its
upper-bound, then it will become increasingly difficult teteict further operational performance gains. Since
SEEPS satisfies the strong perfect forecast constr@jnit(is insensitive to sampling uncertainty for a hy-
pothetical perfect forecast system (unlike the Barnstoerri€§ and LEPS skill scores). Here the aim is to
determine whether the strong perfect forecast constraitkesia material difference to sampling uncertainty
for a less-than-perfect system. To do this, the standaraiil@v of each score is calculated as a function of
expected skill.

To obtain a forecast system with variable skill, a condiodistribution p,;¢, the probability of verifying
observation categorygiven a forecast for category, is defined by

Pyt =(1=y)py+yds (13)

wherey is a ‘forecast system performance’ parameter (see belownje that the forecast distributiofiqs } is
assumed to be the same as that of the observed climatdlpglyand thus written agps }. The definition of
Py ¢ In (13) is consistent with this assumption since

SiPePyr =3¢ Pr((1—Y)pv+ ydur)
= (1= y)pv3 1 Pr) +YPy (14)
=Py

The range of/in (13) is 0< y < 1. It can be seen that, for=0, pys = py V(v, f) so that the forecast system
is completely unskillful urphy and Winkler 1987). Fory=1, p,;s = 1if v= f andp,s = 0 otherwise. This
corresponds to a perfect forecast system.

Scores for this forecast system can be compared for the ¢&sedqui-probable categories (Tabléss, 6, 7
and 10). With the conditional distribution defined 1), the expected skill for all these scores (indeed any
equitable skill score satisfyin@)) is simply y:

S =73yt Puiset
= Yvf PrPyfSuf
=3ur Pt (L—y)pv+ Yot)Sui
=(1=Y) Tt (Pt Ty PvSut) +VIy S
(1-Y)3r(prx0)+yx1
y

(15)

16 Technical Memorandum No. 615



A New Equitable Score Suitable for Verifying PrecipitationNWP ECMWF
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0.8
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0.4 Heidke (1926)
—— Barnston (1992)
—— LEPS Skill (Potts et al. 1996)

Standard Deviation of Score

0.2 Gerrity (1992)
—— SEEPS Skill
0-0 1 1 1 1 2
0.0 0.2 0.4 0.6 0.8 1.0

Expected Skill (y)

Figure 3: Expected standard deviation of a range3afategory forecast scores as a function of expected gkilEqui-
probable categories are used for each score indicated irkdye The dashed line indicates the skill of a perfect forecas
system that takes into account observation error and thle td@ grid-box’s representativity of a point observatiors (a
discussed in sectiohl).

where the equitability constraint®)(have been invoked in the penultimate line. The expectetlata devia-
tion of a equitable score with scoring matfig, } can thus be written as

a(y)= \/Z({S\/f}_ V)2 Puepr - (16)

Figure 3 showso(y) for each score. (To obtain the standard deviation, and thofidence intervals, of a
sample-mean with sample-sinesimply divide g by \/n). The standard deviation of SEEPS is less than the
standard deviation of the Gerrity Skill Score fpr- % Itis less than that of LEPS for> 5—1, and less than that

of the Barnston Skill Score far > %. It is never less than that of the Heidke Skill Score but tbftects the fact
that the Heidke Skill Score does not differentiate betwdagsel and class-2 category errors. Since the Gerrity
Skill Score is the only other score defined and equitablelfof®}, it is the comparison with this score that is
most relevant. Since present forecast skill is aIread;ebﬁn’an% at short lead-times (see later), SEEPS must
be considered preferable. The higher standard deviati@E&PS fory < % is less relevant and will become
even more so in future.

The standard deviations of the SEEPS and Gerrity skill scare plotting in Fig4 as a function of y, p;) for
p2/ps = 1. As the system’s performance improves, it can be seenhibaberrity Skill Score becomes even
more sensitive to sampling uncertainty whandiverges from%. Hence the Gerrity Skill Score is likely to be
unstable for skillful systems and less able to detect ojperalttrends.
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(a) Standard Deviation of SEEPS for p2/p3= 1
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Figure 4: Standard deviation of scores as a functiorfyofp; ) for p2/ps = 1. (a) SEEPS. (b) Gerrity Skill Score.
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5.2.1 Relationship between SEEPS and Gerrity scores

Comparing table§ and 10, it can be seen that the columns of the Gerrity and SEEPSsskites, for equi-
probable categories, differ only by a constant (dependelyt@n v). By comparing 7) and (2) it can readily
be shown that this is true in general (for &fi, }) so that

o= (A-s) + Av) wwuf
£ =& +  SvBA(VY) (17)
S + A{B})

whereS® andS® are sample-mean Gerrity and SEEPS skill scores, respgctiguation (7) implies that both
skill scores respond identically to the forecast systerai§ggmance and only differ by a terfiy, dependent on
the observed sample distributidi, }. For a perfect forecast systei®® = 1 andoS = 0 so the Gerrity Skill
Score includes all the sampling uncertainty associateldAf f, } ). Consistent with the result above for equi-
probable categories, it can be shown that, for &py}, the Gerrity Skill Score is more sensitive to sampling
uncertainty than SEEPS when assessing systems which haeeted skill> % SEEPS is more sensitive when
the expected skill is< 1.

Itis interesting to discover that the derivation here of 8BEthat addresses key requirements for the monitoring
of precipitation forecasts, produces a score so similahéoréther elegantly constructed Gerrity Skill Score.
Indeed, both skill scores have identical expected valuas€#\({p,}) = 0). Their only difference, however,

is important and renders SEEPS more stable for assessepfirsystems with sufficient expected skill.

The SEEPS error matrix can (also) be derived as the mean d-wabegory error matrices of the form shown
in Table11. If defined by the sample distribution, the sample-meanrdrased on this matrix is identical to
(1-) the sample-mean Peirce Skill Score. Hence both taébéesl (1-) 11 can be considered as valid choices
for representing the linear equitable scoring matrix fax Beirce Skill Score. After imposing equitability,
Gerrity (1992 constrained the last degree of freedom by requiring symymidere it has be demonstrated that
symmetry is not a useful attribute for the scoring matrix #rellast degree of freedom is, instead, constrained
by requiring that all perfect forecasts have zero error.s passible that the error matrix in Takld could

be used to define a seriesmetategory scores with reduced sensitivity to sampling taggy, although not
possessing the structure originally proposedjf@r n > 3.

Obs
Prob p1 p2
v
Cat 1 5
1
e b0 P2
2 i 0
P1

Table 11: The 2-category equitable error matrix for a scdrattSEEPS can be built from.

The comparison of uncertainty in sectibr® is valid for comparing the scores’ abilities to detect ofiersal
performance trends, but not for assessing their abilitedetect performance differences when two forecast
systems are used to predict the same set of observatiorsisidiear from {7) since taking a difference will
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eliminate the\({py}) term. For equi-probable categories, the Barnston Skilk&bas a similar relationship
to SEEPS as inl(7). LEPS, however, is more uncertain than these scores fgr all

5.3 Hedging

Hedging is said to have occurred whenever a forecastergejuent and forecast diffeMurphy, 1978. In the
context of system development, the prevention of hedgimgilshmean that there is always a physical basis
for any change in a forecasting system - so that ‘judgemertt’farecast both change in unison. Changes in
a forecast system alter the joint distributi¢py+} (= {pyrQr}). A score will inhibit hedging if it cannot be
improved by making changes {@y} in the absence of additional physical insight. Changeigte} can be
broken-down into a number of steps in which a fraction of dasds for one given categoriy, are changed to
another categoryf,. Hence, to determine if a score can be hedged, it is only sapgto assess whether it can
be improved by making a single such step. Fundamental toetigihg assessment is the recognition that, in
the absence of physical insight, it is not possible to chedseh forecasts for categorf will be changed and
so those changed must have the distribution of the origiystesn;{py s, }. Using (12), the change in SEEPS
error that occurs when a fracti@m/q; (> 0) of the forecasts for category 1 are changed to category-2%'}

is given by

SSEEPS =30y, Pvjt-1(S2 — Su)
_9q <DV—1|f—1 _ Pu=gt=at pv—3|f—1>

2 p1 1-p1

_9q <pv—1|f—l 1= pv—1|f—1> (18)
2 P1 1-p

_ o9

- zpl(l_ pl) (pV:].‘f:l pl) ;

Hence SEEPS is reduced onlygf_yt—; < p1, and thus only if the original forecast system is very poor in
terms of its prediction of category 1. Indeed, the likelilaw dry weather, given that dry weather is forecast,
would have to be less than the climatological chance of drathaex. Using similar mathematics, the change
2—1 only decreases the SEEP$E 1t > p1. Again, this would only be true for a particularly bad forsta
system for which it were more likely to be dry when the forégagdicted light rain than the climatological
chance of dry weather. Similarly,32 only reduces the SEEPSp{_31_3 < ps and 2-3 only reduces the
SEEPS ifp,_31—2» > ps. Changes between non-adjacent categoriesyhnd 3-1) are less plausible for a
dynamical forecast model. Ignoring this possibility, ishaerefore been shown that SEEPS can only be hedged
if the forecast system is very poor in the first place. Noté thia result is true for al{ p,}. The result is also
independent of the refinement constraint (similar mathexmablds for anya with 0 < a < 1/ps).

The relationships, present in the SEEPS error matex, — $2) = (Ss1 — Ss2) and (S13 — S12) = (S23 — S22)

are sufficient for this inhibition of hedging. For the samasen, the 3-category Gerrity Skill Score cannot be
hedged for any py} and, forps = p, = p3 = % neither can the Barnston Skill Score. (These results are al
clear from the equivalence of expected SEEPS, Gerrity amdsBan skill scores). Numerical experimentation
(for pr=p2=ps = %) shows that SEEPS and these two scores cannot be hedgedykeemon-adjacent
changes are included, if the conditional distribution isisteained byp,, > py Vv and pyt < py Vf # v.
However, LEPS can be hedged even under these constraints.
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Standard Deviation of SEEPS for P,/P,=2
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Figure 5: As Fig.4a but for p/ps = 2.

6 SEEPS parameter settings

Equation (2) shows that, as the probability of ‘dry’ weathei (or ‘wet’ weather 1— p;) gets close to O,
elements of the SEEPS error matrix become extreme (bedaeg@tolve reciprocals o, and 1— p;). This
necessitates the need for bounds on the acceptable rapge Tere is also a need to defipg/ps. Figure2
shows how the threshold between ‘light’ and ‘heavy’ preeitidon rises wherp,/ ps is increased from 1 to 2.
For Grenoble, France in June (FRg), for example, the threshold increases from 2.4 to 6.0 mhe Higher
thresholds would set a more challenging task for a foremgstystem if they do not greatly increase sensitivity
to sampling uncertainty.

Using the conditional distribution1@), Fig. 4(a) showed the standard deviation of SEEPS as a function of
(y,p1) for p2/ps = 1. Uncertainty increases sharply for extreme valuep;oénd the limiting rangep; €
[0.10,0.85 is suggested. Precipitation in more arid climates is dffelst considered as ‘extreme weather’
and neglected to reduce uncertainty in area-mean scorete thiat no (trustworthy) SYNOP station has a
climatology with p; < 0.10. The benefits of,/ps = 2 are considered important enough to sacrifice a small
increase in uncertaintyc(f. Fig. 4a and Fig5). Unless otherwise specified, these are the settings used.be
Sectionl10.1tabulates real forecast results that tend to confirm thesieeh

7 SEEPS: Summary of the score

Table 12 shows SEEPS error matrices for a set of climate regimes wherprobability of a ‘dry’ day 1)
varies within its desired range [0.10,0.85] and ‘light’ gipgtation is defined to occur twice as often as ‘heavy’

precipitation @,/ps = 2).

These error matrices are asymmetric. In particular, a &stefor a climatologically likely category which
turns out to be incorrect is penalised more heavily than ectst for an unlikely category which turns out
to be incorrect. This is a desirable attribute since it sthdoiprove a system’s ‘discrimination’{ pry },
Murphy and Winkler 1987 Murphy, 1993 by encouraging developments that allow the model (physas
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Obs
dry light heavy
prob 0.10 0.60 0.30

dy 000 056 222
FC light 5.00 0.00 1.67

heavy 5.71 0.71  0.00

prob 0.33 044 0.22

dry 0.00 0.75 3.00
FC light 150 0.00 2.25

heavy 2.14 0.64 0.00

prob 050 0.33 0.17

dry 0.00 1.00 4.00
FC light 1.00 0.00 3.00
heavy 1.60 0.60 0.00
prob 0.67 0.22 0.11

dry 0.00 150 6.00
FC light 0.75 0.00 4.50
heavy 1.31 0.56 0.00
prob 0.85 0.10 0.05

dry 0.00 3.33 13.33
FC light 0.59 0.00 10.00
heavy 1.11 0.53 0.00

Table 12: SEEPS error matrices for a range of dry day proliiéd (indicated in bold type) and with the probability of
‘light precipitation’ being double that of ‘heavy preciption’.

represent all categories, whatever their climatologicegdiency.

For European stationg; is shown in Fig6(a) and (b) for January and July, respectively. As would lpeeted,
summer has more ‘dry’ days than winter. Northwestern Eulgsethe fewest ‘dry’ days throughout the year.
Southern Europe in high summer (July and August) is pagitularid with probabilities of a ‘dry’ day in
excess of 0.85.

The threshold (in mm) between the ‘light’ and ‘heavy’ prétEpon categories is shown in Fig(c) and (d)

for January and July, respectively. For Europe, the thidshetween the ‘light’ and ‘heavy’ precipitation
categories is generally between 3mm and 10mm, but can bermaler mountainous regions such as the
Alps. Hence the category known as ‘heavy precipitationd agorporates what may be considered to be more
‘moderate’ events.

By adapting to the underlying climate, SEEPS assesses ttingmd aspects of the local weather. By encour-
aging refinement and inhibiting hedging, it should provideful guidance for development decisions.
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(a) Dry Probability, JAN (b) Dry Probability, JUL

0.1 0.4 0.5 0.6 07 085 09 1 0.1 04 0.5 0.6 07 085 09 1

Figure 6: (a) Probability of a ‘dry’ day for January (b) As (dut for July. (c) Precipitation amount (in mm) marking the
threshold between ‘light’ and ‘heavy’ precipitation fordaary. (d) As (c) but for July. By definition, ‘light precigtton’
occurs twice as often as ‘heavy precipitation’. Results laased on 24-hour precipitation accumulations (12UTC—
12UTC) from the 1980-2008 climatology.

8 Case studies: Precipitation errors identified by SEEPS

Before attempting to diagnose trends in area-mean SEERS&ssdbis worth demonstrating some of the pre-
cipitation errors that the SEEPS score can identify. Impnoents in such errors will, therefore, be reflected in
reductions in the SEEPS score.

Fig. 7(a) shows observed 24-hour accumulated precipitation ¢m) iwn 16 December 2008, and Fig(b)
shows the corresponding D+4 forecast precipitation. (Bhbsen because of ECMWF's mandate to improve
medium-range forecasts). Notice that large parts of nontBirope were predicted to have drizzle but were
actually ‘dry’ (pink). In this case, recorded values wer@ndm, rather than 0.1 or 0.2 mm. Since this region
is generally wet in December (Figc) and an incorrect forecast for a likely category is strgmgnalised, the
differences in precipitation categoriesf( Fig. 7d and e) lead to relatively large SEEPS scores (Fig. This
partly explains why the mean European score for this foteeas one of the worst in 2008. Verification at
the dry/wet boundary has important physical significanceabse of the existence of positive feedbacks with
latent heating. From the users’ perspective, of coursezldris also of great relevance. Hence it is desirable
that SEEPS can highlight this error.

Note that the station scores in Figff) are plotted with variable sizes to indicate their relativeight within an
area-mean score. These weights, which depend on the latianshetwork density, are explained in section
9.1

Another poor European-mean SEEPS score occurred on 23 ARQ08. This is the situation presented in
Fig. 1. The SYNOP observations (Fi§a) show northeast Europe received over 10mm, and up to 57ifhm, o
precipitation associated with a Low centred over Germarlye D+4 forecast (Fig8b) had less than 5mm
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(a) Observation (b) Forecast (c) Probability Dry
. ! .
04 0.5 0.6 07 085 09 1

0 0.2 1 2 5 10 20 89 0 0.2 1 2 5 10 20 96.8 0.1

(f) SEEPS

[} 0 03 0.6 0.9 1.2 1.5 10.8

Figure 7: (a) Observed precipitation accumulated over 2411s2008/12/15 12UTC to 2008/12/16 12UTC. (b) Forecast
precipitation accumulated over leadtimes 72 to 96 hours\aiidl for the same period as the observations. (c) Probspbili
of a ‘dry’ day in December, based on the 1980-2008 climatplo@) Observed precipitation category. (e) Forecast
precipitation category. (f) SEEPS. Units in (a) and (b) amnnSquares in (f) are plotted with areas proportional to the
weight given to each station in the area-mean score.
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(a) Observation (b) Forecast (c) Probability Dry
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0

Figure 8: As Fig.7 but for the prediction of precipitation accumulated oves 24 hours 2008/08/22 12UTC to 2008/08/23
12UTC.

(often less than 1mm) in this region and, instead, predicewective out-breaks along a front to the south.
SEEPS identifies these errors (F8f). but, since even northern Europe is generally dry in Auglg}. 8c), itis
the category differences.{. Fig. 8c and d) indicating under-prediction that lead to the largesres (Fig8f).

Note that no SEEPS scores are plotted in Bi@) for the southern Iberian peninsular, northern Africada
Turkey. This is the unfortunate consequence of avoiding @iinates by insisting that € [0.10,0.85.

The final example of a particularly poor European-mean SE&f®e is that of 9 June 2008 (Fig). This
case demonstrates that SEEPS can highlight the mis-locatsummertime convection over southern Europe.
Although it will be difficult to improve such errors at D+4, nhay be possible at shorter lead-times through
better forecast initialisation, better model physics aigghér resolution.

9 Area-mean scores

9.1 Taking account of station network density

SYNOP stations are not evenly spaced-out over the globe n\itea-mean scores are required, it is useful to
take the station network density into account in order togmesub-regions with high station density dominat-

ing the score. Following a methodology used in other areasetéorology and elsewhere, the station density,
P, in the vicinity of statiork is calculated by applying a Gaussian kernel to the network:

Py w9
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(a) Observation (b) Forecast (c) Probability Dry
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Figure 9: As Fig.7 but for the prediction of precipitation accumulated oves 24 hours 2008/06/08 12UTC to 2008/06/09
12UTC.

wherey is over all the stations used in the score (on the particudgria question) oy is the angle subtended
at the centre of the Earth between statitrend|, and oy is a reference angle. (For eakhstations,|, for
which ay > 4ag have negligible contribution and are disregarded). Simge= 0, we have thapy > 1Vk.
The value ofag = 0.75° (83km) is chosen because it is the smallest possible thatenapproximate equal
representation of all sub-regions of Europe.

Writing & for the (unweighted) SEEPS score for statiorthen the weighting applied to this statiom, and
the weighted area-mean sco&are defined by:

Wk = &
< S WiSe (20)
> kWi

As discussed in sectio®, the areas of the squares in Fitff), Fig. 8(f) and Fig.9(f) are proportional to the
weights applied to each station. The fact that Europe isoredsy evenly covered with colour demonstrates
that, with this density weighting, no sub-region is favaloxer any other. Density weighting also ensures that
Europe will not dominate so heavily a score of the Extratspn general. The methodology is currently being
developed to conglomerate observations reported at adistiof the day. This will mean that, for example,
eastern Europe will be much better represented in area-seaes than indicated ie.Q) Fig. 7(f).

Weighting could also help reduce sampling uncertainty feaamean scores associated with the spatial corre-
lation of precipitation (and thus scores) in high netwognsity areas.

By construction, there is an upper limit to the weight anynittlial station can have. This ensures, for example,
that island and coastal stations do not have undue influemteecscore.
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9.2 The Extratropics

Area-mean scores have been produced, taking the statimmetensity into account, for the period 1995-
2008. Plots for the Extratropics (north of®0andsouth of 30S), based oa-2000 stations per day, are shown
in Fig. 10. Figure10(a) shows the annual mean scores based on the 12UTC opatdticetasts as a function
of leadtime. The colours indicate the years. There is a gépeogression to lower errors over these 14 years.
The black curve shows the most recent year (2008).

The 70% confidence intervals plotted in Fit)(a) show the degree of uncertainty in the annual means.
They are deduced from the daily scores taking autocoroelatito account following the methodology of
von Storch and Zwier€001). If one mean lies within the confidence interval of anotlieen there is no sig-
nificant difference. If confidence intervals just touch,rtheean scores are significantly different at the 14%
level, assuming equal variances. It can be seen that it isrghiyr not possible in yeay to demonstrate that
forecasts are better than in the previous yeal.: it takes a few years for improvements to become unequiivoca

Although there have been clear improvements, forecaststiflriar from perfect. At D+1 (which is the score
for the precipitation accumulated over the first day of theedast), errors are above 0.4 (skill below 0.6),
even for 2008. The poor scores at D+1 indicate that shogedarecasts (like that shown in Fifia) cannot
be considered as reliable observations at present. Nelesth current SEEPS skill scores for D+1 and D+2
are greater than the critical value %)frequired for SEEPS’ sensitivity to sampling uncertaintyoéoless than
that of the Gerrity Skill Score (see Fig.and Fig.4) and for the refinement constraint (sectignso benefit
development decisions.

It can be seen that by D+10, the SEEPS score is tending towardehis is one of the desirable features
associated with equitability: by construction, expect&EBS scores for all stations and all months of the year
lie between 0 and 1 and this makes the aggregation of all &tieiss within an area a meaningful and useful
concept (despite sub-regions having very different clasat

Fig. 10(b) shows (light green) daily SEEPS scores at D+4 for the sapeeational forecasts. The general

improvement over the years is clearly apparent when a 3g5wdaming mean is applied (black). The 31-day

running mean (dark green) highlights a seasonal cycle inPsE&cores. This feature is common to many
precipitation scores and reflects the fact that large-quadeipitation (in winter) is generally easier to predict

than convective precipitation (in summer). (Note that thetyvmajority of the stations used each day are in
the Northern Hemisphere and weighting is not sufficient tmeat equal influence to the southern extratropical
observations).

Fig. 10(c) shows the annual-mean of the leadtime at which the SEE®S #r each daily forecast first reaches
a value of 0.6. The value of 0.6 was chosen because it comdsppproximately to the present score at D+4.
The red curve relates to the operational forecast data sholig. 10(a) and (b). The gains in leadtime amount
to ~2 days over the 14-year period. The graph is annotated to siin@m the model’s (spectral) resolution was
changed during this period and also to show when one key nuydéd (25R4) was introduced. This model
cycle had many updates that could have directly affectedatteeast of precipitation. However, there were 40
packages of updates applied to the operational data assoniland forecasting system over this period and
many of these will have contributed to the improvement.

The blue curve in Figl0(c) shows comparable results for forecasts made within Ra-Eterim re-analysis
project. ERA-Interim is based on a single model cycle (31&%) a single model resolution (T255). The date
that this cycle was first used in the operational forecasieayg12 December 2006) is also indicated on the
graph. The differences between the red and blue curvessat#té highlight the impact of resolution. The
flatness of the ERA-Interim SEEPS curve is striking. It imdés that inevitable changes over the years to the
network of SYNOP stations has not had a major impact on scbtese controversially, it also indicates that the
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increase in available sources and volume of data used imlisgtthe forecast (a 100increase over this period)
has had almost no lasting impact on the prediction of pretipn. Instead, the lasting improvements in the
extratropical operational scores must be due to improvésrtermodel physics, increases in model resolution,
and to the way the data assimilation system has improvedtterhese the available observations. New data
sources will target more directly the hydrological cycletlse conclusions from the 1995-2008 period may not
hold in future.

9.3 Europe

The SEEPS timeseries for Europe [1206-42.5E, 3N-75°N] at D+4 (Figurella) show a similar improve-
ment to that of the Extratropics, but with more variabilitgr(comparison, the plot has the same axes aslly.
and thus daily scores often extend outside the region shoWfr@re is an oscillation in the 1-year running-mean
score around 2003. This is also apparent, but less promiimetite extratropical timeseries (Figj0b). Since
ERA-Interim results display also this oscillation (not &hm), it is not associated with changes in model cycle
or resolution. Instead it is an artifact of the flow itself.oRT close inspection of Fidl1(a), it would appear
that the dry weather during European summer heatwave of @@83anomalously easy to predict and that the
precipitation in the preceeding year was anomalously fapmtddict.

9.4 South America

The SEEPS scores for the South American regioS\\#B5°W, 40°S—10N] at D+4 (Fig.11b) show an im-
proving trend although with a lot of variability. Close iresgion of the data reveals an alarming seasonal cycle
in the number of precipitation observations used in theescoip to 200 observations are used during the wet
season but as few as 50 are used during the dry season. Isiblpdhat this is due to non-reporting of zero
rain. The small sample size leads to more uncertainty ardstiould be taken into account when making
development decisions.

10 Detecting improvements

10.1 Trends in operational forecasts: Sensitivity to SEEP$arameter settings

The confidence intervals in Fig0(a) indicate that a few years are required before improvésrame detectable
above the level of sampling uncertainty. Here the choiceoafids forp; and the value of,/ps are assessed in
relation to SEEPS’ ability to detect improvements. Sinaeithproving trends in FigslO(b) and11(a) appear

to be quite linear, this ability-to-detect is estimated fwiding the linear trend by the standard deviation of
departures (of the 1-year mean curve) from it. Tal8eshows ‘Trend/StDev’ at D+4 for the Extratropics and
Europe. The smaller sampling uncertainty associated Wwéharger, extratropical, region makes trends easier
to detect.

The results tend to confirm the choices made in sedi¢hown in bold in Table&l3). The higher threshold
between ‘light’ and ‘heavy’ precipitation usefully sets artler forecasting challenge with only a slight deteri-
oration in ability to detect extratropical trends. Additally increasing the upper-bound @a to 0.90 permits
the use of very few extra stations in arid climates (for Eerdbose coloured orange in Figa and b) with a
more marked deterioration in ability-to-detect extraicaptrends.
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Figure 10: Extratropical-mean SEEPS results. (a) Annualmof daily operational scores as a function of lead-time.
70% confidence intervals for these annual means are indicgly Timeseries of operational scores at D+4 with running
means as indicated. (c) Annual-mean lead-time at whichd¢beesises to 0.6 based on the operational forecasts and on
the forecasts made during the production of the ERA-Integianalysis, as indicated. The extratropical average isrov
the combined region north of 88 and south of 3%, taking account of observation density.
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(a) Europe SEEPS at D+4
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Figure 11: As Fig.10(b) but for (a) Europe, [12.9N-42.8E, 33°N-7%N] and (b) South America, [FW-35W, 40°S—
10°N].
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Probabilities Trend/StDev (yF)

Light

Dry Heavy ExTrop  Europe
[0.10,0.85] 1 -1.31 -0.88
[0.10,0.85] 2 -1.25 -0.70
[0.10,0.90] 1 -1.23 -0.80
[0.10,0.90] 2 -1.10 -0.65
[0.10,0.95] 1 -1.13 -0.63
[0.10,0.95] 2 -0.95 -0.52

Table 13: Ability to detect trends in operational perforncanand its sensitivity to SEEPS parameter settings. Valtees
based on daily forecasts for the years 1995-2008.

ExTrop SEEPS

—— 35R2
------ 35R3
o 5%

Pop. 320

0.8 stns 1901

(=]

SEEPS

0.6

1 2 3 4 5 6 7 8 9 10
Leadtime (Days)

Figure 12: Mean extratropical SEEPS scores for two cycleébeECMWEF forecasting system as a function of lead-time:
35R2 (solid) and 35R3 (dashed). A filled circle on a given eundicates that the mean score for that model cycle is
statistically significantly better than that of the othects; at the 5% level using a 2-sided, paired Student’s t-taking
autocorrelation into account. Results for both cycles aasdul on all 320 forecasts initiated at 0 and 12UTC between
2009/04/01 at 12UTC and 2009/09/08 at OUTC. On average, #3tratropical station observations are used in the score
on any given day. The Extratropics are defined as everywhath of 3°N combined with everywhere south 030

10.2 Differences between forecast system cycles

When an experimental forecast suite (or ‘cycle’) is beingeased, a set of forecasts are compared with those
of the operational system, using the same set of start d&&spling uncertainty is greatly reduced by using
the same start dates but it is not completely eliminated. celehe optimisation of SEEPS parameters is still
relevant. Figurel2 shows a comparison of extratropical SEEPS scores for tweeoutive ECMWEF forecast
cycles (35R2 and 35R3) based on 320 start dates. The newer(dgshed) is better than the older cycle (solid)
at all lead-times. It is statistically significantly bettatr the 5% level (indicated by the filled circles) for six
of these lead-times. Clearly it is much easier to deteceimental improvements to the forecast system using
these parallel experimental suite tests than from the tipaed forecasts alone. With these tests, SEEPS should
provide useful information on which to make developmentadisions.
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11 Observation error and representativeness

The SYNOP precipitation observations contain errors aeg tre also not necessarily representative of any
grid-box average produced by a forecast model. These issymse a non-zero lower limit on the SEEPS
score, that even a perfect forecasting system can nevexssurphe impact is likely to be ameliorated by verify-
ing 24-hour accumulations, using the nearest grid-pointfatching model data to observations, and measuring
forecast error in probability space. However, the magitoithe remaining problem remains to be determined.
An achievable lower limit for SEEPS is estimated here by tidgpthe method oGGdber et al(2008. Gridded
(6-6UTC) accumulations from the European high-densityenlaion network Ghelli and Lalaurette2000

are used as truth (to represent the output from a perfeatdstiag system) and scored against the correspond-
ing SYNOP observations. Scores are produced for a rangeanféthresolutions.

For the high-density data to represent the truth at a giveslugon, there need to be sufficient observations in
each grid-box. For the grid resolutions-080, 40 and 25km assessed here, minima of 40, 18 and 6, reghgcti
are specified (see Tahld). Groisman and Legat€$994) point-out that area-mean precipitation can be biased
in mountainous regions as most (U.S.) stations are locatlavaelevations. This possibility is not addressed
here, although averages of scores over the whole of Eurapédsheduce any impact.

The implied lower bound for SEEPS is remarkably small forraliolutions. It is the value at the highest
resolution (T799), converted to a skill score of 0.042= 0.958, which is indicated by the vertical dotted line
in Fig. 3. Hence observation error and lack of representativity imf-gox averages does not impose any strong
limit on the upper bound of SEEPS.

Resolution  Min  Mean SEEPS
. High SYNOP 70%
Spec.  Grid Density used Mean Conf.
T255 80km 40 228 0.068 0.004
T511 40km 18 220 0.058 0.003

T799 25km 6 189 0.042 0.002

Table 14: Mean SEEPS scores and their 70% confidence intefoala ‘perfect model’. Results are based on the
daily verification of gridded high-density observationgagt SYNOP observations. The gridded data are considered t
represent a perfect model forecast. Results are shown fange of ‘model’ resolutions.

12 Discussion and Conclusions

The aim of this study has been to develop a tailor-made ptatign score for monitoring progress in NWP
and accurately comparing one model (cycle) with anothee diitcome is an error score called here ‘Stable
Equitable Error in Probability Space’ (SEEPS). It is a thcategory error score that incorporates four key
principles:

1. Error measured in ‘probability spac&Vard and Folland1991). The climatological cumulative distribu-
tion function (Fig.2) is used to transform errors into probability space. THisned the difficult distribu-
tion of precipitation to be accommodated in a natural way r@oldices sampling uncertainty associated
with extreme (possibly erroneous) data.

2. Equitability Gandin and Murphy1992. By applying the equitability constraint&@), a forecast system
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with skill will have a better expected score than a randonoastant forecast system. In addition, scores
from different climate regions can be readily combined.

3. Refinement Nlurphy and Winkler 1987). A constraint is devised to encourage a forecast system to
predict all possible outcomes; thereby promoting a beiribution of forecast categories.

4. Reduction of sensitivity to sampling uncertainty by gpmd a ‘strong perfect forecast’ constrair)(
This constraint differentiates SEEPS from the skill scaré@errity, 1992 Fig. 4) - rendering scores
more stable for forecasts (such as current ECMWF D+1 and Drezésts) that have SEEPS er{o%.

The categorical approach permits a strong link betweendtesind model error. The first category represents
‘dry weather’. Here, ‘dry’ is defined with reference to WMOQidelines in order to be as compatible as possible
with the varying reporting practices over the World and witbdel output. The other two categories, repre-
senting ‘light’ and ‘heavy’ precipitation, are defined inrtes of climatological probabilities and are therefore
dependent on the location and time of the year. Here, it igestgd that ‘light’ precipitation should be defined
to occur twice as often as ‘heavy’ precipitation (F&).

The SEEPS error matrix naturally adapts to the climate ofidb@&tion in question so that it can assess the salient
aspects of the local weather. Asymmetries in the matrix lmnenost heavily forecasts for a climatologically
likely category that turn-out to be incorrect, and thus agtromote ‘discrimination’ in forecast systems. The
hope is that this should accelerate forecast system imprentby encouraging developments that permit the
model to represent all categories of local weather.

Except for very poor forecast systems, some physical utadeiig of forecast error is required to improve the
SEEPS. Randomly changing a forecast category can onlyiaketier the score. In this sense, SEEPS cannot be
‘hedged’.

Verification is against point data (here ‘SYNOP’ data is Qssmmlthat it is possible to continuously monitor a
system whose resolution is changing with time. With thisipgerification, the last remaining requirement in
the list of desirable attributes (secti@jis satisfied.

Case-studies demonstrate that SEEPS is sensitive to kegafimg errors including the over-prediction of
drizzle (Fig.7), failure to predict heavy large-scale precipitation (RByand incorrectly locating convective
cells (Fig.7).

The density of the observation network is taken into accaurén calculating area-mean scores. This implies,
for example, that each sub-region of Europe will contritaggproximately equally to the European-mean score.
Area-mean results show an improving trend over the last Bsy@-igs.10, Figs.11). For the Extratropics,
this amounts te-2 days gain in forecast skill at lead-times of 3—-9 days. B tbng-term trend is maintained,
SEEPS will have a good chance of detecting improvementsvinfagecast cycles when compared over the
same observational periods (Fid®).

By using gridded high-density observations for Europe fwresent a ‘perfect forecast’, it has been shown
that SYNOP observation error and lack of representativity grid-box average have minimal impact on the
score. This is probably because 24-hour accumulationseding berified, the nearest grid-point is used when
matching model output to point observations (rather théindar interpolation), and because forecast error is
measured in probability space.

Experiments are underway to investigate if 6-hour accutiaia can be verified for higher-resolution, limited-

area model output. If feasible, this would partially resothe important diurnal cycle in precipitation. It is

possible that limited area model scores could be used t@akstic targets for global NWP. Separate experi-
ments will apply SEEPS to ECMWF's probabilistic (ensemipiediction system.
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SEEPS scores for forecasts made within ‘ERA-Interim’ (viahianlike the operational system, uses a fixed
model cycle and resolution) show almost no trend over thellhyears (Figl0c). This indicates, strikingly,
that the~100-fold increase in observations assimilated over thimgdias had no lasting impact on the oper-
ational forecast scores for precipitation. However, negeobations that directly target the hydrological cycle
may have more success. Future forecast system improveowritsalso arise from the better assimilation of
existing observationse(g. ‘cloud-affected’ radiances), with a more prognostic tneeit of precipitation and
with increasing model resolution.

Detailed and multi-facetted precipitation verificatioreybnd the abilities of SEEPS, will continue to be re-

quired but it is hoped that SEEPS can play a useful role in taong overall progress and in guiding develop-

ments in the right direction. Further, it is possible thaEBES could be more widely applicable, and especially
useful whenever the verification parameter has a difficudtiepr temporal distribution.
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