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ABSTRACT

Here, some insight is given into the strategies and recerk afc¢he Diagnostics Group at ECMWF. Diagnostics
within the context of operational NWP must be targeted prilpat understanding forecast error. Hence the
function of the Diagnostics Group lies somewhere betweesckst verification and model development. Three
examples that highlight both strategy and work are preseméee. The first example is the use of the ‘initial
tendencies’ approach that could enable model developédrarttess the power of data assimilation to identify
errors and test solutions. The second example highligktshth need to quantify forecast error as a function of
spatial scale with, in particular, more attention given noafier scales than currently done. The final example
emphasises and addresses the need to better monitor amdskatpe prediction of weather parameters such as
precipitation.

1 Introduction

Figure 1 shows the spatial anomaly correlation coefficient (ACC)Narthern Hemispheric 500 hPa
geopotential height (Z500) over the period 1980-mid 2008e Blue circles show monthly-means of
daily values at a forecast lead-time of 1-day (D+1). Thersoisie variability in these values but close
inspection indicates that it is associated with the annyelecrather than more random fluctuations.
Indeed, the 12-month running-mean values (red) displayrly mooth upward trend. This implies
that the remaining error is getting smaller although theiksye is not the absolute size of the error but
rather its magnitude relative to its uncertainty. For exemgpoincident with the improving trends has
been an astronomic (literally) increase in observatioa.d&ince 1996 there was a 100-fold increase in
the volume of satellite data assimilated at ECMWF. Has #std a better estimation of the ‘truth’ and
thus a more precise estimation of forecast error?

The green squares show monthly-mean ACC at D+5. There isvadability in scores than at D+1 and
this has a strong ‘random’ component as well as an annuag ciidcie 12-month running-mean values
(pink) still show an upward trend but it is less smooth thaDal. Although the ultimate achievable
level of skill at D+5, in the presence of chaos, is unlikelyo®o100%, it would appear that larger future
reductions in error are possible at D+5 than at D+1. Hencelocertainty in the truth is less of an issue
at longer lead-times. However, sampling uncertainty dasedt with the flow-dependence of potential
skill, the growth of interactions between the resolved flovd parametrized diabatic processes, and
general chaos are more important at D+5. Again, therefbeeissue of optimising ‘signal-to-noise’ is
relevant.

Two important questions arise from this discussion

e Is there an optimal lead-time for the diagnosis of modelrérro

e Can sensitivity to sampling uncertainty be minimised?

The key deterministic forecast target at ECMWF is a one day ger decade in the lead-time at which
the ACC of extratropical Z500 falls to 60%. It is interestitagsee what spatial scales are associated with
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Figure 1: Northern Hemisphere monthly-mean spatial angnoatrelation coefficientsx 100) and
12-month running means of 500 hPa geopotential heightsaak-temes of 1 and 5 days.

error in Z500. The power spectra in F@show annual-mean temporal variance of D+1 Z500 error as
a function of total wavenumber. The maximisation of errowavenumbers 5-15 reflects the dominant
spatial scales of Z500. In the past, much diagnostic workalesfocused on these large-scales. With
ECMWF's deterministic forecast resolution recently beiaged to T1279, it is clear that

e More verification and diagnosis of error at smaller scalesdgiired.

This could involve explicit separation of scales in a vaeads in Fig.2 or it could involve the use of
parameters (such as precipitation for example) that rigturave smaller spatial scales.

Figure3 shows how Northern Hemisphere winter ‘blocking’ frequebyanged for two recent updates
to the forecast model. Results are based on model integsainitiated on 1 November for the years
1963-2002 and run at resolution 159, with prescribed sea-surface temperature, over theegulent
December—February season. FHfn) shows that updates incorporated into model cycle 33&&ased
Euro-Atlantic and Pacific blocking frequency so that it isgeally within the bounds of observed uncer-
tainty, as deduced from ERA-40 re-analyses (grey shadifigis was a welcome result since blocking
has traditionally been a difficult flow-type to represent indals.

Quantities such as blocking frequency and many othersdivdenergy flow diagrams, tropical wavenumber-
frequency diagrams, extratropical synoptic activity, riregnitude and timescale of ENSO or the Madden-
Julian Oscillation represent useful metrics with which ¢onpare models or model cycles but they do

not indicate why one model is better than another or, indedny, a subsequent model cycle (35R3)
apparently became worse in terms of blocking frequendy Fig. 3b). While the Diagnostics Group at
ECMWF does calculate metrics such as blocking frequencyciear that

e Further diagnostics are required that delve deeper, amdiperfuller understanding of the root-
causes of forecast error.

Much of the strategy of the Diagnostics Group at ECMWEF is ted around the questions and state-
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Figure 2: Temporal variance of D+1 error in 500 hPa geopoiahheights as a function of total
wavenumber. Modified from plot of Adrian Simmons.

ments itemised above. It will be clear from the above intatidun that Diagnosis, in the context of
operational NWP, lies between forecast verification aneédast system development. The dividing
lines between these tasks can be blurred and here | will gitayboth areas in order to highlight the
continuity (or ‘seamlessness’) of work that is required¢hiave more accurate forecasts.

2 The ‘Diagnostics Explorer’

The Diagnostics Group at ECMWF has developed a web-baseayridstics Explorer’ to help re-
searchers identify and investigate forecast errors. Theigito present, as seamlessly as possible,
diagnostics of the entire data assimilation and weathercmsting system, and metrics of the model
climate. Other sections within ECMWF produce diagnostitated to their specific field of interest but
the diagnostics in the Explorer are unique in giving the axiew of the entire system. The contents
of the Diagnostics Explorer are listed in Talllend documented further Rodwell and Jung20083.
Figure3 is based on plots available on the Diagnostics Explorerhérsubsequent sections, present or
future content of the Explorer are discussed.

3 Forecast error

Figure 4 shows 500 hPa temperature errors averaged over all opahtioUTC forecasts made at
ECMWEF for the season December—February 2008/9. The fots fde-d) show these mean errors for
the forecast lead-times of 1, 2, 5, and 10 days, respectively

At Day 1 (Fig.4a), there is a uniform and statistically significant warnoeover much of the tropics.
(5% significance is indicated by the use of the bold colomsighificance by the use of the pale colours
in the ‘dual colour pallet’). Generally there is also a combe over the northern mid-latitudes. By Day
2 (Fig. 4b), the mean errors have got stronger (note the change irnghaderval) although there is
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Figure 3: Frequency of Northern Hemisphere blocking durbgcember—February 1963-2002
based on analyses and climate simulations with model cgsl@sdicated. Analysis are from ERA40
for the period 1963-2002 and operational analyses theezafiThe grey shading indicates the 95%
confidence interval about the observed-mean frequency.

no visible increase in the area that is statistically sigaiit. Through Days 5 and 10 (Fidc,d), the
maximum values of mean errors continue to grow but the umifpattern of tropical error seen at day 1
is replaced by a more complex pattern with a decreasing aeranhich the mean error is statistically
significant.

An interpretation of these results is that by days 5 and 16raktions, teleconnections and loss of pre-
dictability have confused a simple investigation of thetimauses for the mean forecast error. Statistical
significance actually increases as the lead-titeereasesTaken to the ultimate extreme, one might ex-
pect that the optimal lead-time to use when searching fosiphlparametrization deficiencies (relevant
to NWP) would be at timestep 1 of the forecast. (see edinker and Sardeshmukii992. In fact,
timestep 1 introduces other problems associated with sagible diurnal cycle so here the focus will
be on the first few timestep&Ro6dwell and Palmer2007). Since the ‘first few timesteps’ occur within
the data assimilation window, it is appropriate to next déscdata assimilation.
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IFS Component Diagnostics

Observation space — observation usage

e Many data sources including radiosonde and satellite
e Data count, first-guess departures (mean, rms), bias tiomec

Data Assimilation .
Model space — analysis increments

e Prognostic and other parameters
e Mean, standard deviation, rms
e 21 pressure levels and zonal means

Forecast error

e Prognostic and other parameters
e Mean, standard deviation, rms
Weather Forecast e 21 pressure levels and zonal means

Scale-dependent error and activity

e Several parameters, levels and regions
e All spatial scales and selected spatial scales

Seasonal-means of error

e Several diagnostics including geopotential height, winatocity
potential, Hadley and Walker circulations, ocean waves

Climate of atmospheric Seasonal-means of variability

model and coupled model e Blocking
e ENSO teleconnections
e Empirical Orthogonal Functions
e Planetary and synoptic activity
e Power spectra
e Tropical waves (including Madden-Julian Oscillation)

http://intra.ecmwf.int/plots/d/inspectir_diagnostics/Diagnostics/

Table 1: Products within the on-line ‘Diagnostics Expldrek 5D view of the IFS. All diagnostics
are produced for operational forecasts (seasonal meandeaperimental cycles (‘E-suites’). Some
diagnostics are produced for research experiments. dhitendency’ diagnostics will be added. The
aim is a seamless and efficient diagnosis of the entire fetégpand data assimilation system for
the purpose of monitoring progress and informing develagtrdecisions. Other ECMWF Sections
produce more detailed diagnostics for their particular IE@mponent.

4 Data assimilation: Observations and analysis increments

In the data assimilation process, the aim is to produce aalysis’ that is as close to the observations
as possible but also being (approximately) a valid modé¢ stahis analysis is then used as the initial
conditions for a weather forecast. The data assimilatiaristvith a ‘first guess’ forecast initiated from

a previous analysis. The ‘analysis increments’ are whatliged to this first guess in the process of
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Figure 4: Mean forecast error for temperature at 500 hPa aggd over all forecasts initiated at
0 UTC and verifying within the season December—February8200 The panels show the mean
forecast error for a selection of forecast lead-times. (&pAead-time of one day (D+1). (b) D+2.
(c) D+5. (d) D+10. Bold colours indicate that the mean forstarror is statistically significantly
different from zero at a significance level of 5%. Contours ased to extend the colour shading
scheme where necessary. The contour interval is the sanhe abading interval.

arriving at the analysis. If the model used to make this fitgtsg forecast has a bias (but that the
observations are initially assumed to be unbiased; sa@,ldten the analysis increments (averaged over
sufficient data assimilation cycles) will be in the sense afecting this model bias. Fidga shows
the operational analysis increments for 500 hPa temperdburthe same December—February 2008/9
season as used for the forecast error results @ig.n the tropics, where the Day 1 forecast error
indicated an erroneous warming by the model (Baj, the analysis increment shows a compensating
cooling increment. Similar correspondence is appareritarektratropical regions too.

Such temperature increments will only occur if there ar@pmrting’ observations. These observations
do not need to be direct observations of temperature singelgervable quantity that can also be
derived from the model state has the potential to influeneatfalysis. For example, one could consider
as such a quantity the brightness temperature as obseribe MRS’ infrared satellite channel 215.
This brightness temperature represents a weighted meamgieratures between about 700 hPa and
300 hPa; with the weight maximising at around 500 hPa. Udiegd weights, it is possible to derive
the brightness temperature from the model state and thug malomparison between the observed
value and that predicted in the first guess forecast. In esséime data assimilation process iteratively
modifies the model state in order to minimise the observatnamus first guess difference for all such
derived (and underived) quantities (subject to other caitgs). Fig.5b shows the mean observation-
minus-first-guess for this brightness temperature. Thepaagreement between the analysis-minus-
first-guess (Figba) and the observation-minus-first-guess (Blg). indicates that AIRS channel 215 is
one source of observations that support the increments.

The average volume of AIRS channel 215 observations asdedilduring a data assimilation cycle
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Figure 5: (a) Mean analysis increment of temperature at 5B8.Hb) Mean "first guess departure”
(observation minus first guess forecast) for the "AIRS” agechannel 215. The weighting function
for this channel maximises at about 500 hPa. (c) The meandmna®ction applied to the AIRS
observations. (d) The mean number of AIRS observationSpgid2box per assimilation cycle. The
plotted means are based on all 0 and 12 UTC data assimilatyoites within the season December—
February 2008/9. The bold and pale colours in (a) have theesenterpretation as in Fig4.

is indicated in Fig.5(d). Note the lack of data usage over land areas and reducapk ws/er the
cloud-affected Indonesian warm-pool region. Other olzt@ms fill these gaps. For example ‘AM-
SUA microwave channel 5 and radiosondes also provide mébion on 500 hPa temperatures and are
not affected by clouds.

Figure 5(c) shows the bias correction applied to this AIRS data byddwa assimilation system. The
correction is deduced through a large-spatial-scalenjttof the observations to the first guess forecast
and is known as variational bias correction, ‘VarBC'. It sgible that VarBC could mis-attribute some
systematic model error to observation bias. However, thifficult in practice since some data (AM-
SUA microwave channel 14, radiosonde and ‘radio occultatitata) are considered accurate enough
to not need bias correction and, in addition, th@ million observations assimilated during each cycle
of the data assimilation system are thought to prowi@® independent vertical modes of information.
While it is vital to diagnose observation usage, FEh) demonstrates that VarBC does not remove all
systematic differences between the first guess and thewaltieers — and the remaining differences are
more likely to be attributable to model error.

Hence it can be argued that model error is optimally diagthagithin the data assimilation system
and that data assimilation should be used as a tool withirehyatysics development. This proposed
strategy is consistent with the fact that data assimilagatself beginning to explicitly represent model
error (see, e.glrémolet 2007, on developments in ‘weak constraint 4D variational dasinaigation’).

It is clear that there are synergies here that could be hegdds advance the performance of forecasting
systems.
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Figure 6: Temporal and zonal-mean initial temperature temcies for processes as indicated. Av-
erage is over December 2008, 4 forecasts per day, with teneeaccumulated between T+1 and
T+7 hr. Based on model cycle is 33R1 run atlh9 L91. Values are accumulated on model levels.
The y-axis shows approximate pressure in hPa. Bold and mdt¢eics have the same interpretation
as in Fig.4.

5 Initial tendencies

It has been argued that analysis increments are indicativeodel error but how can this error be at-
tributed to a particular process within the model? Here smaelts are presented that are based on 4D
variational data assimilation experiments using a 6-hinakgion window for the month of December
2008. From the resulting analyses, short forecasts haveibitiated. Figures shows zonal-mean tem-
perature tendencies integrated over leadtimes 1-7 hr ardioe four consecutive forecasts made each
day and then averaged over the month of December. F&lref) show these ‘initial tendencies’ for in-
dividual physical process (and the dynamics). The balarteden individual processes highlights, for
example, how the radiation, Fig(d), (and its impact on the vertical diffusion of surface sible heat
fluxes, Fig.6(f)) destabilises the vertical profile, while the conventi&ig. 6(b), acts to restore equilib-
rium. The balance between all processes is not completestawsince Fig6(a) indicates a residual,
net (total) tendency with, for example, a warming in the izapmid troposphere and a warming/cooling
dipole above. There is also an interesting cooling on theagwipical upper troposphere.

Figure 7(a) shows the zonal mean analysis increment of temperaagedbon the corresponding set
of the 6-hr window data assimilations. Notice how similastis to (minus) the total initial tendency,
Fig. 6(a). If the upper-tropospheric dipole does represent medel, then the individual process ten-
dencies suggest that it is likely to be associated with octiwe, dynamics and/or radiation since these
are the processes that have strong magnitude at this @lev&tonsistent with this reasoning, Fi¢(b)
shows how the analysis increment is changed with the irartugf the new ‘MclICA radiation scheme
(which incorporates a Monte Carlo approach to cloud ovérldape change acts to reduce mean incre-
ments €.f. Fig. 6a and b) and also reduces the root-mean-square of increinethts mid and upper
troposphere, Figs(c).

Initial tendencies have been applied in a number of othetestsincluding the assessment of climate
models Rodwell and Palme007), the impacts of model aerosol changBedwell and Jung20081),
the over-active Asian Monsoon in the ECMWF forecast mo&aldwell and Jung20083 and, more
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Figure 7: Temporal and zonal-mean analysis incrementsroptrature. Average is over December
2008, 4 data assimilation cycles per day. (a) Total increni@nmodel cycle is 33R1. (b) Change in
mean increment when the MclICA radiation scheme is introdu@ Change in RMS of increments
when the McICA radiation scheme is introduced. Data asaitoih (outer-loop) uses resolution
T 159 L91. Values are accumulated on model levels. The y-ariwsapproximate pressure in
hPa. Bold and pale colours have the same interpretation &gn4.

recently, the physics of the Madden-Julian Oscillation.

6 Scale dependent error

Figure 8(a) shows (solid) mean-square-error in Z500 for the nornthard-latitudes (35-6%N) for
March—May 2008 (blue) and 2009 (red). It is clear that 2008 Wwetter predicted than 2009 at all
lead-times. Moreover (as indicated by the 5% significanm®easd), the difference was sufficiently large
that it could not be accounted for simply by uncertaintiesampling (from the same distribution). This
suggests that there was either a degradation in the forsgst&m or that the circulation in 2009 was
different (sampled from a different distribution). If th&aulation was different, it could have been
inherently harder to predict (perhaps with more synopttovig) or it could have involved flow-types
that the forecast system has particular problems with. riyiétais degradation in error could have rep-
resented a serious issue for ECMWF.

The dotted and dashed curves in BB(p) show ‘activity’ in the forecast and analysis, respesyivThe
activity is quantified as (twice) the mean-squared anomalyfclimatology. It can be seen that 2009
was actually less active than 2008. As an aside note thdte dintit of no predictability, the error curve
should match the activity curves; hence there is substakilaremaining in the forecasts even at D+10.

It is possible to linearly decompose mean-squared errcactivity) into different spatial scales (based
on total wavenumber for the case of the globe, or zonal wawben for the case of latitudinal bands).
Figure 8(b) shows the contribution to the total error and activity fiee zonal wavenumber bands 0-
3 (thick; representing planetary waves) and 4-14 (thinresgnting synoptic scales). It can be seen
that 2009 did have more synoptic activity than 2008 and thakagbly explains the increased synoptic
error in 2009 (as indicated by the solid thin curves). Howelee striking observation is that there was
much less planetary-scale activity in 2009 and yet plageteale error was significantly larger. It is this
planetary-scale contribution that is statistically sfipaint and that dominates the total changes seen in
Fig. 8(a).

Fig. 8(c) shows the same errors and activity based on the ERAHInt&analyses. Since ERA-Interim
uses a fixed (older) forecast cycle (31R2) and fixed modelutsp (T, 255), it is evident that this issue
with the planetary waves is not the result of recent systedaigs.

The ECMWEF forecast system would appear, therefore, to hiffieutties with the planetary wave
pattern experienced in 2009. Fig®@) and (b) show March—May Z500 anomalies for 2008 and 2009,
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Figure 8: Mean-squared error (solid), analysis ‘activitfdashed) and forecast ‘activity’ (dotted)
in northern mid-latitude (35—6%™) Z500 for March—May, 2008 (blue) and 2009 (red). ‘Activigy
defined in the text. (a) Zonal wavenumbers 0—63 from operatimnalyses and forecasts. (b) Zonal
wavenumbers 0-3 (thick) and 4-14 (thin) from operationallgses and forecasts. (c) as (b) but
using re-analyses and re-forecasts made within the ERéyimtre-analyses project. Dots highlight
the year that is statistically significantly best at the 5%ele All data are normalised by the largest
value represented.
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Figure 9: March—May mean 500 hPa geopotential height angmalhtive to ‘ERA-40’ 1962—-2001
climatology. (a) 2008. (b) 2009. The contour interval is 20m

respectively. It can be seen that large-scale circulatrmmelies were different for the two years with
a ‘filled-in’ Aleutian Low and a strengthened North Atlant@scillation in 2009. Further diagnostic
work is required to understand why the forecast system Hésullies with this large-scale anomaly
circulation pattern.

7 SEEPS: A new score for the verification and diagnosis of pragitation

Contours in Figl10 show (a) observed.€. analysed) and (b) D+4 forecast 2500 verifying at 12 UTC
on 23 August 2008. The correspondence is indicative of th@omements in large-scale skill over
recent years. However, it is clear that Z500 is not sufficierdharacterise the entire flow. Precipitation
(shaded), for example, is rather poorly predicted over geiio this example. This emphasises the need
to monitor other aspects of the forecast; for example aspgdlirect relevance to the user community
and aspects representative of diabatic processes. Siecipifation is user-relevant and a consequence
of diabatic processes, it would appear to be a natural chdReeent work in the Diagnostics Group
(Rodwell et al, 2010 has focused on developing a new approach to the verificafiprecipitation that
should be particularly useful for monitoring progress amdguiding development decisions, as well as
for the initial diagnosis of forecast error. The approaahsamre, is called here ‘Stable Equitable Error
in Probability Space’ (SEEPS). It is a three-category esoare that incorporates four key principles:

1. Error measured in ‘probability spacéVard and Folland1991). The climatological cumulative
distribution function (see later) is used to transform extiato probability space. This allows the
difficult distribution of precipitation to be accommodateda natural way and reduces sampling
uncertainty associated with extreme (possibly erronedats.

2. Equitability Gandin and Murphy1992). By applying the equitability constraints, a forecast-sys
tem with skill will have a better expected score than a randoroonstant forecast system. In
addition, scores from different climate regions can beitg@dmbined.

3. RefinementNlurphy and Winkler 1987). A constraint is devised to encourage a forecast system
to predict all possible outcomes; thereby promoting a beligtribution of forecast categories.
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Figure 10: 500 hPa geopotential height field (Z500, contdusgth interval 50m) and 24-hour ac-
cumulated precipitation (shaded, mm). (a) ‘Observatioasialysed Z500 and short-range (D+0—
D+1) forecast precipitation centred at time 12 UTC on 23 Asie008. (b) Forecast: D+4 forecast
Z500 and D+C§“—D+4% forecast precipitation verifying at the same time.

4. Reduction of sensitivity to sampling uncertainty, foffisiently skillful systems, by ensuring that
all perfect forecasts are accorded zero error.

Figure11shows the cumulative distribution function (cdf) based atiraatology of station observation
data for Balmoral, Belgium in October. It can be seen thattimeatological probability of dry weather
at this location and in this month g = 0.45. In SEEPS, the three categories (‘dry’, ‘light precifiia’
and ‘heavy precipitation’) are defined by the climatologjseobabilities p1, p2, ps. Experimentation
suggests thap,/ps = 2 is a good way to define ‘light’ and ‘heavy’ precipitation. riBalmoral in Octo-
ber, this gives a probability for light precipitation pp = %(1— p1) = 0.37. The precipitation amount
corresponding to the probability; + p, = 0.45+ 0.37 = 0.82 is 5mm. Hence heavy precipitation is
defined as (24 hour) accumulations greater than 5mm. Siecealhes ofp:, p2, p3 are dependent on
location and month of the year, the definitions of ‘light’ ghdavy’ precipitation also vary. In this way,
the SEEPS score adapts to the local climate and assessedi¢he aspects of local weather.

The SEEPS error matriXsy+ }, is given in Table, wheref is the forecast category ands the verifying
observation category. The sample-mean SEEPS s8arethen calculated using

é: f)\/fsvf P (1)
%
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Balmoral, Belgium ( 50.5°N, 5.9°E, Oct)
1.00 T T

0.82

0.45

Probability to not exceed

0.00 i
0.0 5.0 16.1
Precipitation (mm/24h)

Figure 11: Cumulative distribution of 24-hour precipitati (12—12UTC) for Balmoral, Belgium in
October based on 1980-2008 observations. The extremeaighé graph corresponds to the'95
percentile of the distribution. Dotted lines indicate thibadivision of the wet days in the ratio 2:1.

Obs

Prob p1 P2 P3

v
Cat 1 2 3

A S
FC f . 1-p1 ps i-— P1

2 — 0 —
P1 P3

1 1 1
— 0

+
pr 1-ps 1-p3

Table 2: Error matrix for SEEPS error score. f is the forecaategory and v is the verifying
observation category. 1p p. and s are the climatological probabilities of ‘dry’ conditiondjght
precipitation’ and ‘heavy precipitation’, respectively.

where{py:} is the sample joint distribution.

The Gerrity sequence of skill scores€rrity, 1992) is derived by taking the meanof-1  2-category
skill scores that are asymptotically equivalené.( for large sample size) to the ‘Peirce Skill Score’
(Peirce 1884). In a similar way, the SEEPS error score can also be wrikgheamean of two 2-category
error scores of the form shown in Taldéwherep andg are the climatological probabilities of categories
1 and 2, respectively. The first 2-category score in the meas category 1 as dry weattigr= p;) and
category 2 as ‘lightor ‘heavy’ precipitation(q = p2 + p3). The second 2-category score uses category
1 as dry weatheor ‘light’ precipitation (p = p1 + p2) and category 2 as ‘heavy’ precipitati¢g = ps).
Interesting, the 2-category score defined by the error miatiTable3 is also asymptotically equivalent
to (1-) the Peirce Skill Score. The only difference betwe&EBS and (1-) the Gerrity Skill Score is
that SEEPS is less sensitive to sampling uncertainty fdicgeritly skillful forecast systems. However,
this difference is important because it enables sampleirB&EPS scores to reflect more precisely the
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Obs
Prob p ¢
%
Cat12
1
rcfl 0y
2 1o
p

Table 3: Error matrix for a 2-category score from which SEERS be constructed. f is the forecast
category and v is the verifying observation category. p, € te climatological probabilities of
categories 1 and 2, respectively.

true skill of the forecast system.

Other desirable attributes, common to both SEEPS and tleeary Gerrity score, are penalties for
‘hedging’ (whereby forecasts for 1 category are alteredhtuitzer category with no physical insight) and
the promotion of refinement and discrimination.

7.1 Precipitation errors identified by SEEPS

SEEPS can be used as a first step in the diagnosis of forecast €ig. 12(a) shows observed 24-
hour accumulated precipitation (in mm) on 16 December 2808,Fig.12(b) shows the corresponding
D+4 forecast precipitation. (D+4 is chosen because of ECRéWifandate to improve medium-range
forecasts). Notice that large parts of northern Europe \wezdicted to have drizzle but were actually
‘dry’ (pink). Since this region is generally wet in Decemi§Eig. 12c) and an incorrect forecast for a
likely category is strongly penalised by SEEPS, the difiees in precipitation categories.f; Fig. 12d
and e) lead to relatively large SEEPS scores (E&f). This partly explains why the mean European
score for this forecast was one of the worst in 2008. Verificaat the dry/wet boundary has important
physical significance because of the existence of posigigdifacks with latent heating. From the users’
perspective, of course, drizzle is also of great relevahigmnce it is desirable that SEEPS can highlight
this error.

Clearly, SEEPS can also identify other forecast errors ssch failure to predict heavy large-scale
precipitation and the incorrect positioning of convectbedis.

Note that the scores in Fig2(f) are plotted with variable sizes to indicate their relativeight within
an area-mean score — deduced to take account of the hetecugenbservation density.

7.2 Extratropical-mean SEEPS scores

Area-mean scores have been produced, taking the statiaonketiensity into account, for the period
1995-2008. Plots for the Extratropics (north of°B0and south of 30S), based on-2000 station
observations per day, are shown in FI§. Figurel3(a) shows the annual mean scores based on the
12UTC operational forecasts as a function of leadtime. Thaucs indicate the years. There is a general
progression to lower errors over these 14 years. The blasle alnows the most recent year (2008).

The 70% confidence intervals plotted in Figg(a) show the degree of uncertainty in the annual means.
They are deduced from the daily scores taking autocoroglatito account following the methodology
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(a) Observation (b) Forecast (c) Probability Dry

0 0.2 1 2 5 10 20 89 0 0.2 1 2 5 10 20 96.8 0.1 0.4 0.5 0.6 07 085 09 1

(d) Observed Category (e) Forecast Category

Dry Light Heavy Dry Light Heavy

Figure 12: (a) Observed precipitation accumulated over 2difs 2008/12/15 12UTC to 2008/12/16
12UTC. (b) Forecast precipitation accumulated over leaddts 72 to 96 hours and valid for the same
period as the observations. (c) Probability of a ‘dry’ dayrecember, based on the 1980-2008
climatology. (d) Observed precipitation category. (e)d@ast precipitation category. (f) SEEPS.
Units in (a) and (b) are mm. Squares in (f) are plotted withaar@roportional to the weight given
to each station in the area-mean score.

of von Storch and Zwier@001). If one mean lies within the confidence interval of anottteen there is
no significant difference. If confidence intervals just touthen mean scores are significantly different
at the 14% level, assuming equal variances. It can be seeit th@generally not possible in yegrto
demonstrate that forecasts are better than in the prevearg y 1: it takes a few years for improvements
to become unequivocal.

It can be seen that by D+10, the SEEPS score is tending toamss is one of the desirable features
associated with equitability: by construction, expect&dEBS scores for all stations and all months of
the year lie between 0 and 1 and this makes the aggregatidiritu# atations within an area a meaningful

and useful concept (despite sub-regions having very difteclimates).

Fig. 13(b) shows (light green) daily SEEPS scores at D+4 for the sgramtional forecasts. The general

improvement over the years is clearly apparent when a 3g¢5tofming mean is applied (black). The 31-

day running mean (dark green) highlights a seasonal cy@&BPS scores. This feature is common to
many precipitation scores and reflects the fact that lacgéegprecipitation is generally easier to predict
than convective precipitation.

Fig. 13(c) shows the annual-mean of the leadtime at which the SEE®S &r each daily forecast first
reaches a value of 0.6. The value of 0.6 was chosen becausecisjgonds approximately to the present
annual-mean score at D+4. The red curve relates to the apehforecast data shown in Fig3(a)
and (b). The gains in leadtime amount+@ days over the 14-year period. The graph is annotated to
show when the model’s resolution was changed during thisghand also to show when one key model
cycle (25R4) was introduced. This model cycle had many wsd#iat could have directly affected
the forecast of precipitation. However, there were 40 pge&eof updates applied to the operational
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Figure 13: Extratropical-mean SEEPS results. (a) Annuabm of daily operational scores as a

function of lead-time. 70% confidence intervals for theseuah means are indicated. (b) Time-

series of operational scores at D+4 with running means ascatgd. (c) Annual-mean lead-time

at which the score rises to 0.6 based on the operational &stscand on the forecasts made during
the production of the ERA-Interim re-analysis, as indicat&he extratropical average is over the
combined region north of 30! and south of 3T8, taking account of observation density.
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data assimilation and forecasting system over this permoldaany of these will have contributed to the
improvement.

The blue curve in Figl3(c) shows comparable results for re-forecasts made witlerERA-Interim
re-analysis project. ERA-Interim is based on a single mogele (31R2) and a single model resolution
(T255). The date that this cycle was first used in the oparatiforecast system (12 December 2006)
is also indicated on the graph. The differences betweenetthe@nd blue curves at this date highlight
the impact of resolution. The flatness of the ERA-Interim 85Eurve is striking. It indicates that the
increase in available sources and volume of data used talisgt the forecast (a 180increase over
this period) has had almost no lasting impact on the praxdtictif precipitation. Instead, the lasting
improvements in the extratropical operational scores rhasdue to improvements to model physics,
increases in model resolution, and to the way the data dasioni system has improved to better use
the available observations. New data sources will targaendaectly the hydrological cycle so the
conclusions from the 1995-2008 period may not hold in future

8 Discussion

In order for Diagnostics to continue to promote forecastesysdevelopment, it must adapt to the new
reality; of ever more skilful large-scale medium-rangedirgon, higher model resolution and an in-
creased emphasis on weather parameters and severe weather.

The issue of uncertainty in diagnosis is increasingly ingro Examples of how two different sources
of uncertainty can be reduced have been discussed.

e By diagnosing error earlier-on in the forecast, beforerattons between the physical processes
and the resolved flow have had time complicate the picture.

e By designing scores that are less sensitive to samplingriaiaees.

It is also important to benefit from the synergies that defieen a more seamless diagnosis of the
forecast system. In this context, the benefits of diagnosiadel error at short lead-times (using ‘initial
tendencies’) will be enhanced when model error is explicitpresented in data assimilation.

Recent efforts have focused on the development of an edpiipebcipitation score that can be used to
monitor and guide system development and also be used a$ i tthe diagnosis of forecast error.
The scope for opening-up new avenues of diagnostic resedthlthis score is becoming apparent.
For example, systematic precipitation score differenceseaphasising the need to predict particular
synoptic situations better — such as depressions over tldviznnean.
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