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1 Introduction

During the last several years, the adjoint of a data assimilation system has emerged as an accurate and efficient
tool for estimating observation impacts on short-range weather forecasts (Langland and Baker 2004, Gelaro et
al. 2007, Cardinali 2009). With this tool, the impacts of anyor all observations can be computed simultaneously
based on a single execution of the adjoint system. In addition, the results can be easily aggregated by data type,
location, channel, etc., making this technique especiallyattractive for regular, even near-real time, monitoring
of the entire observing system. Currently the adjoint approach is used at several forecast centers either for
experimentation or routine monitoring of observation impacts on short-range forecasts. Also, a coordinated
experiment is being conducted to compare adjoint-based estimates of observation impacts produced in different
forecast systems.

In this paper we review recent developments in the use of the adjoint technique for estimating observation
impact and interpretation of the results obtained. Resultsfrom the aforementioned comparison project are
shown for the forecast systems used at the Naval Research Laboratory (NRL) and NASA Global Modeling
and Assimilation Office (GMAO). In addition, we review key findings from ongoing research with the adjoint
method, including the need for and implications of greater-than-first-order estimates of impact, extension of the
method to nonlinear analysis problems, and the comparison of adjoint-based estimates of observation impact
with those derived from traditional observing system experiments (OSEs).

2 Estimation of observation impact

A technique for using the adjoint of a data assimilation system to measure observation impact was proposed by
Langland and Baker (2004, hereafter LB04). It efficiently estimates the impact of individual observations on
an energy-based measure of forecast error

e= (x f −xt)TPTCP(x f −xt) , (1)

wherex f is a forecast state,xt is a verification state (considered ‘truth’),C is a diagonal matrix of weights that
gives (1) units of energy per unit mass (J/kg),P is a spatial projection operator that measurese only within a
specified region of interest and the superscript T denotes the transpose operation. The measure of observation
impact is taken to be the difference ine between forecasts initialized from an analysisxa and corresponding
background statexb, where this difference is due entirely to the assimilation of the observations. It can be
expressed in the form

δe= 〈KTg,d〉 , (2)
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whereKT is the adjoint of the analysis scheme,g is a vector in model space (described below) that includes
sensitivity information produced by the adjoint of the forecast model andd is the vector of observation-minus-
background departures (innovations) used to produce the analysis

xa = xb + Kd . (3)

In general, computation of the innovations requires an observation operator,H, that relates the model state to
the observations,y, such thatd = y−H(x). In (2) and (3), it is assumed thatH is either linear or a function of
only xb, although this is not necessarily true in general. This is discussed further in section 2.2.

The expression (2) represents a weighted sum of the innovations for all assimilated observations. The impact
of a particular subset of observations may be quantified by summing only those terms in (2) involving the
corresponding elements ofd. The computation ofKTg is done only once, however, based on the complete
set of observations. Thus, the impact of a given subset of observations is determined with respect to all other
observationssimultaneously. This contrasts with traditional OSEs that estimate the forecast impact for subsets
of observations that are withheld from (or added to) the analysis in a series of separate experiments. The
computational cost of producing the observation impact information using the adjoint system is about the same
as re-runnning the (forward) analysis and forecast model, although this can be reduced depending on the method
used to computeKT (Trémolet 2008).

2.1 Orders of approximation of δe

As derived by LB04,g has the form

g = MT
bPTCP(x f

b −xt)+ MT
aPTCP(x f

a −xt) , (4)

wherex f
b andx f

a are forecasts initialized fromxb andxa, andMT
b andMT

a represent the adjoint of the forecast
model evaluated along those trajectories. Errico (2007) placed (2) in the context of various-order Taylor series
approximation ofδe in terms ofd, whose order depends on the form ofg. The expression in (4), is that of a
non-linear (essentially third-order) approximation ofδe.

Owing to the quadratic nature of (1), an approximation beyond first order is indeed required to obtain a suf-
ficiently accurate estimate ofδe (Gelaro et al. 2007). Fig. 1 compares the first-, second- and third-order
approximations ofδe with the “actual” difference,e(x f

a)−e(x f
b), computed in physical space from a series of

24-hour forecasts and verifying analyses at 00 UTC for each day during July 2005. The results were produced
using forward and adjoint versions of the NASA GEOS-5 atmospheric data assimilation system, including all
conventional observations and satellite radiances assimilated operationally at the time. Note first thatδe is
negative for all days, indicating that the assimilation of the complete set of observations consistently results in
a more accurate 24-hour forecast. The first-order approximation clearly overestimates the beneficial impact of
the observations, by roughly a factor of two. This is an expected result providedxa is close to the minimum
of e (Trémolet 2007). The second- and third-order approximations are much more accurate; they lie within
approximately 15% of the actual values overall. The fact that the higher-order approximations still slightly
underestimate the beneficial impact of the observations is mostly likely due to deficiencies associated with
the adjoint forecast model, including the absence of moist physical processes present in the nonlinear forecast
model.

Whereas (4) is a function of bothxb andxa, its first-order counterpart is a function ofxb only (not shown).
Consequently, the former generally depends on all the elements ofd throughxa, as implied by (3). As pointed
out by Errico (2007), the necessity of using greater-than-first-order approximations ofδe to obtain accurate
estimates of observation impact means that partial sums used to quantify the impact of a particular subset of
observations may be somewhat ambiguous since such sums involve cross-products with innovations outside the
set in question. Gelaro et al. (2007) found this effect to be apparently small when measuring the impacts of
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Figure 1: Time series of forecast error reduction,δe, due to assimilation of observations in GEOS-5 dur-
ing July 2005 computed from the model fields directly (thick solid), and estimated using the adjoint-based
first-order approximation,δe1 (dash), second-order approximation,δe2 (thin solid) and third-order approx-
imation,δe3 (dotted) (Gelaro et al. 2007).

large subsets of observations on global-scale measures ofe. It has not been shown that this effect is negligible
in general.

2.2 Nonlinear analysis problems

In variational data assimilation systems such as those usedat most operational forecast centers, the analysis
cost function is nonlinear and difficult to minimize. Typically, a Gauss-Newton procedure is used to minimize
an approximate quadratic cost function defined by linearizing H around the current state estimate, where the
analysis increment is the control variable of the problem. The process is repeated until a satisfactory solution
is found, and these repeated minimizations define the so-called outer loops of an incremental variational data
assimilation scheme (Courtier et al. 1994). In such a scheme, the analysis increment is notxa− xb = Kd as
given by (3), but rather, after loopj,

x j −xb = K jd j + K jH j(x j−1−xb) , (5)

whered j = y−H(x j−1) andH j is the observation operator linearized around the (previous) state estimatex j−1.

Trmolet (2008) examined the computation of observation impact in an incremental data assimilation system
with multiple outer loops. He showed that, while the second-order adjoint of the assimilation system is required
to account fully for the impact of the outer loops (which is not practical in a realistic system), a partial treatment
of their effects is possible with certain approximations. These include neglecting second-order terms that
contain information about the sensitivity of the operatorsin (5) with respect to the state estimate, which may
be important, especially in four-dimensional variational(4D-Var) assimilation. Nonetheless, by applying (5)
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Figure 2: Daily average impact of various observing systemson 24-h forecasts from 00+06UTC in GEOS-5
(left) and NOGAPS (right) during January 2007. Negative values indicate forecast error reduction.

recursively, the total increment can be written as a linear combination of the observation departures from the
various intermediate state estimates, and the impact of observations (on the measuree) can be estimated by the
scalar product

I =
m

∑
j=1

〈KT
j LT

j g,d j〉 , (6)

whereL j = KmHm. . .K j+1H j+1, Lm = I andm is the total number of outer loops.

In the following section we present observation impact results for a system withm= 2 outer loops which, based
on (6), is computed as

I = 〈KT
1HT

2KT
2g,d1〉+ 〈KT

2g,d2〉 . (7)

Note that the departures in the last (second) outer loop are weighted only by the corresponding operators for
this loop. This term is similar in form to that in (2) for the linear analysis problem, or equivalently an analysis
produced using a single outer loop. In contrast, the departures in the preceding (first) outer loop are weighted
by the operators corresponding to that loop, as well as thosein successive outer loops.

3 Results from a recent inter-comparison project

An experiment is being conducted to directly compare observation impacts in different forecast systems using
the adjoint method. Here, we present results for a baseline set of observations used by two global forecast
systems for the month of January 2007. The systems are NAVDAS-NOGAPS (NRL-Monterey) and GEOS-5
(NASA). It is anticipated that the final set of results will also include contributions from the ECMWF and
Canadian global models.

The baseline set of observations is defined as those observation types used in common by all forecast systems
of the participating institutions during January 2007. It includes AMSU-A radiances in addition to conventional
observations and satellite atmospheric motion vectors (AMVs), but does not include more recent observation
types such as AIRS and IASI. The latter will be included in future comparisons. For some observation types
there are differences in the number and exact criteria for how data are selected for each forecast system. For
example, NOGAPS uses a larger number of AMVs, while GEOS-5 uses a larger number of AMSU-A radiances.

The measuree is defined as the dry total energy of the 24-h forecast error between the surface and about 150
hPa over the global domain. The adjoint versions of the forecast models in this experiment are run in dry mode
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Figure 3: Impact of NOAA-18 AMSU-A channel 7 brightness temperatures on 24-h forecasts from
00+06UTC in GEOS-5 (top) and NOGAPS (bottom) during January2007. The units are J/kg. Negative
values indicate forecast error reduction.

with no moist physics. The NOGAPS adjoint is run at T239L30 resolution (identical to the forecast model),
and the GEOS-5 forecast model adjoint is run at 1.0-degree resolution (half that of the forecast model).

Both NAVDAS and the GEOS-5 data assimilation system adjoints are 3D-Var schemes with roughly 0.5-degree
resolution. NAVDAS is an observation-space, linear analysis algorithm, so that observation impact is computed
as in (2). GEOS-5 uses a model-space, incremental variational analysis algorithm with two outer loops based
on the Gridpoint Statistical Interpolation scheme (GSI, Wuet al. 2002). Observation impact in GEOS-5 is thus
computed as in (7).

In the baseline experiment, we have calculated adjoint-based observation impact at every analysis time (00, 06,
12, 18UTC) for the month of January 2007, which provides 124 sets of results. We show here three figures to
illustrate results. Fig. 2 displays the daily average observation impact (00+06UTC) in GEOS-5 and NOGAPS
for nine categories of observations. In both GEOS-5 and NOGAPS, the largest total impact for this baseline
set of observations is provided by AMSU-A radiances. Large impacts in both systems are also provided by
AMVs, radiosondes, and commercial aircraft. It can be notedthat the impact of these four observation types
(radiances, AMVs, radiosondes, and commercial aircraft) also provide the largest observation impacts in the
operational NOGAPS-NAVDAS, which is monitored on a routinebasis in both 3d-VAR and 4d-VAR versions.
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Figure 4: Scatter diagram of observation impact versus innovation (departure) for NOAA-18 AMSU-A
channel 7 brightness temperatures for the 24-h forecast initialized 00UTC 21 January 2007 in GEOS-5
(left) and NOGAPS (right).

The dominance of these four observation types is therefore avery robust result, confirming that they were the
backbone of the global atmospheric observing network during this time. The impact of AMVs is substantially
larger in NOGAPS, which assimilates considerably more of this observation type. The remaining observation
types—ship and land surface, MODIS, and QuikScat—provide smaller impacts individually, but their combined
impact is significant. There is a small error reduction from SSMI wind speeds in NOGAPS and a moderate
error increase from this observation type in GEOS-5.

Fig. 3 illustrates the capability of the adjoint method to quantify the impact of specific instrument observation
subsets, in this case for NOAA-18 AMSU-A radiance channel 7,which provides large forecast error reduction
in both GEOS-5 and NOGAPS. Similar maps can be made for any selected instrument or satellite channel. Note
in Fig. 3 the large error reductions provided over the southern hemisphere, and the northern hemisphere oceans.
Interestingly, non-beneficial impact from these radiancesoccurs over parts of India and central Canada in both
GEOS-5 and NOGAPS. This could be caused by land or ice-surface contamination of the processed radiance
observations, and indicates the utility of this method for identifying possible problems with observation quality
or data assimilation procedures.

Fig. 4 shows how the adjoint method allows observation impact to be diagnosed in the context of other funda-
mental aspects of the assimilation scheme such as the distribution of the innovations (or departures). Here we
show scatter diagrams of the impacts of channel 7 brightnesstemperatures from NOAA-18 AMSU-A as a func-
tion of the departures for the forecast initiated at 00UTC on21 January. Two aspects are revealed that appear
to be fundamental to both (and most likely all) forecast systems. The first is that the numbers of observations
providing beneficial (negative ordinate values) and non-beneficial (positive ordinate values) impact are both
large. In fact, it turns out that only a small majority of the total number of observations of all types—roughly
50-54% on average—are beneficial, although this small majority provides the overall benefit provided by the
assimilation as revealed for example in Fig. 2. The second aspect revealed by close inspection of Fig. 4 is that
most of the total forecast error reduction comes from observations with moderate-size innovations providing
moderate-size reductions, and not from outliers with very large positive or negative innovations. Both aspects
may help inform future strategies for data selection and other aspects of optimizing the use of observations.
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Figure 5: Adjoint- and OSE-based fractional impacts of various observing systems on the change in 24-h
forecast error over the globe (upper left), NH (upper right), SH (lower left) and tropics (lower right) during
January 2006 (Gelaro and Zhu 2009).

4 Comparison of adjoint-based observation impact with OSEs

The impact of observations on (1) can also be assessed using OSEs, by computing differences in e between
a control forecast including all observation types assimilated routinely and forecasts in which selected obser-
vations have been removed from the data assimilation system. Gelaro and Zhu (2009) conduced a detailed
comparison of adjoint-based observation impacts with those obtained from OSEs using a version of the GEOS-
5 forecast system. Examples of their results are reproducedhere.

To compare the methods, these authors defined for each approach a measure of the fractional impact of an
observing systemj to the total error reduction obtained from the complete set observations assimilated. For the
adjoint method, the fractional impact is defined as

Fj(ADJ) = δej/δe, (8)

whereδej is the partial sum ofδecorresponding to observing systemj. For the OSEs, the fractional impact is
defined as

Fj(OSE) = (ej∗−ectl)/ectl , (9)

whereej∗ is the error measure of the 24-h forecast from the analyzed statewithoutobserving systemj andectl

is the error measure of the 24-h forecast control forecast including all observations.

Fig. 5 compares the values ofFj(ADJ) andFj(OSE) for January 2006 for eight observing systems tested in
the OSEs. The observing systems are identified along the abscissa; the suffixes 1, 2 and 3 for AMSU-A
denote impacts of one, two and three AMSU-A instruments. Over the globe and extratropics, we see fairly
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Figure 6: Adjoint-based fractional impacts of various observing systems on the change in 24-h forecast error
during July 2005 for different OSEs. Results include only contributions from observations in the tropics to
the reduction in global forecast error (Gelaro and Zhu 2009).

good quantitative agreement between the two measures for most observing systems, with the exception of
the satellite winds globally. In the NH there is good agreement for all observing systems. In the SH we see
somewhat larger impacts for AMSU-A in the adjoint results, as well as the larger impact of satellite winds in
the OSE results seen globally.

In the tropics, there is greater disagreement overall between adjoint and OSE results. Values ofFj(OSE)
are much larger than those ofFj(ADJ) for all observing systems, with the former exceeding 50% forseveral
observing systems. In the adjoint results, it is impossibleto have such large fractional contributions from
several observing systems simultaneously since the sum fractional impact for all observing systems must equal
one. There is no such constraint on the fractional impacts inthe OSEs, which are based on a series of separate
experiments. Nonetheless, the relative magnitudes of the various observing system contributions are consistent
in the two sets of results. This can be seen more clearly by normalizing the results in the tropics for each method
(not shown).

Thecombineduse of OSEs and adjoints provides insights into how (changesin) the mix of observations in a
data assimilation system affects their impacts. This can bemeasured by applying the adjoint method to the
perturbed OSE members and comparing the impacts of the remaining observing systems with those in the
control experiment. Fig. 6 compares the fractional impactsin the control experiment with those in theno
amsua3, no raob and no satwindexperiments during July 2005. In this case, we show contributions from
observations in the tropics to the reduction of the global error norm. There are large variations in the impacts
of several observing systems. Removal of the satellite winds increases the impact of rawinsondes by more
than two thirds compared with the control, from 28% to 47%. There is a reciprocal response in the impact of
satellite winds to the removal of rawinsondes, which more than doubles with respect to the control experiment,
increasing from 15% to more than 30%.

The response of AIRS is more complex. The removal of AMSU-A radiances nearly doubles the fractional
impact of AIRS from 19% to 37% with respect to the control. In sharp contrast to this, however, the removal of
the satellite winds results in AIRS having an overall detrimental impact on the forecast. This results suggests
that, in the absence (or substantial reduction) of direct observations of the wind, the wind increments induced
by AIRS through the balance relationship alone are detrimental at these latitudes.
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5 Conclusions

Adjoint-based estimates of observation impact have becomeincreasingly popular as an alternative or comple-
ment to traditional observing system experiments (OSEs). The adjoint technique is currently used at several
forecast centers for experimentation or routine monitoring of the observing system. Interest in the adjoint
method has motivated an inter-comparison project between centers to directly compare observation impacts in
different operational forecast systems. Initial results comparing observation impacts in the US Navy NOGAPS
and NASA GEOS-5 forecast systems were presented. Results sofar reveal overall consistency between the
impacts of most major observing systems in the NASA and Navy systems, despite basic differences in the
respective analysis algorithms, radiative transfer models and observation counts for some observation types.

For linear analysis problems, observation impact is closely related to (is an extension of) observation sensitiv-
ity. For nonlinear analysis problems, such as those solved using an incremental variational data assimilation
scheme, computation of observation impact is more complicated. A simplified treatment of the outer loop
contributions is possible, however, providing useful estimates of observation impact for these systems.

Comparisons so far between observation impacts derived from OSEs and the adjoint method reveal overall con-
sistent estimates of the “importance” of most of the major observing systems, despite fundamental differences
in their underlying assumptions and methodologies. Information gleaned from OSEs and adjoints should be
viewed as complementary since both address relevant questions about how observations influence the quality
of weather forecasts. It is important to keep in mind that theadjoint measures the impact of observations in
each analysis cycle separately and against the control background containing all previous information, while
the OSEs measure the impact of removing observational information from both the background and analy-
sis in a cumulative manner. This distinction can be significant, especially if an observing system contributes
disproportionately to the quality of the analysis and subsequent background state.

Thecombineduse of OSEs and adjoints provides insights into how (changesin) the mix of observations in a
data assimilation system affects their impacts. Information about these dependencies may be useful for making
intelligent data selection decisions and possibly identifying needs for future observation types.
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