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ABSTRACT

Examples of diagnostics used to assess the performance of a variational data assimilation system for a global ocean
model are presented. Two classes of diagnostics are considered. The first class consists of assimilation statistics
based on information from innovations and analysis increments obtained from multi-cycle 3D-Var experiments.
In particular, these diagnostics are used to evaluate the performance of an ensemble version of the 3D-Var system.
The second class consists of diagnostics based on information from the minimization algorithm. These diagnostics
are used to evaluate the convergence characteristics of a single-cycle incremental 4D-Var experiment. While the
focus is on ocean data assimilation, most of the diagnostics presented here are applicable in atmospheric data
assimilation as well.

1 Introduction

Several diagnostics have been developed to assess the performance of a variational data assimilation
system (Weaver et al. 2003; Weaver et al. 2005; Daget et al. 2009) for a global version of the OPA
model (Madec et al. 1998). Two versions of the assimilation system have been developed. One version
produces an ensemble of multivariate 3D-Var analyses. This version of the system was developed and
applied for multi-year reanalysis as part of the ENSEMBLES project. The second version of the system
is based on an incremental 4D-Var method. This version of the system was developed mainly for short-
duration research applications.

Two classes of diagnostics are illustrated in this paper. The first class is designed to evaluate the statisti-
cal properties of the ensemble 3D-Var system. These diagnostics exploit information from innovations
and analysis increments obtained from multiple 3D-Var cycles. The second class of diagnostics exploits
information from the minimization algorithm and are used for assessing the convergence properties of
incremental 4D-Var system. A more comprehensive discussion of the diagnostics presented here can be
found in the recent articles by Daget et al. (2009) and Tshimanga et al. (2008).

2 Assimilation statistics from an ensemble 3D-Var FGAT system

The ensemble data assimilation system is based on a multivariate 3D-Var FGAT (Weaver et al. 2003,
2005; Daget et al. 2009). The 3D-Var analysis increment δwa is the minimizing solution of the quadratic
cost function

J[δw] =
1
2

δwT B−1
δw+

1
2
(Hδw−d)TR−1(Hδw−d) (1)
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where
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...
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=
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0−H0wb(t0)
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yo
i −Hiwb(ti)
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N−HNwb(tN)

 and H =


H0
...

Hi
...

HN

 . (2)

A separate 3D-Var analysis is performed for each ensemble member. Incremental Analysis Updates
(Bloom et al. 1996) is used to initialize the model with the analysis increment δwa. The observation
vector yo

i consists of temperature and salinity profiles from the ENSEMBLES quality-controlled data-set
EN3 (Ingleby and Huddleston 2007). A 10-day assimilation window is used. Perturbations are added to
these observations to construct the ensemble. The perturbations are drawn from a Gaussian distribution
with covariance matrix equal to the diagonal observation-error covariance matrix R used in the assim-
ilation system. For each ensemble member, the background state wb(ti) is obtained by integrating the
model from t0 to ti from the appropriate (perturbed) background initial state xb(t0). A different set of
surface forcing fields was used for each ensemble member. The observation operators Hi are 3D inter-
polation operators. The background-error covariance matrix is non-diagonal and modelled implicitly via
a preconditioning transformation (Weaver et al. 2005). In the ensemble system, the background-error
variances are updated on each 10-day assimilation cycle based on the spread of the background states
at that time. Nine ensemble members were computed on each assimilation cycle. In order to increase
the sample size for estimating the B variances, a sliding window was used to include the ensemble of
background states from the previous 9 cycles, thus giving an effective ensemble size of 81.

Diagnostics are presented from four experiments that were designed to test the sensitivity of the anal-
yses to different background- and observation-error standard deviation (σb and σo) formulations. The
test period covers the years 1993–2000. The control experiment (CTL) is one in which no data are as-
similated. Experiment B1R1 uses simple parameterized formulations of σb and σo. Experiment B1R2
uses the parameterized σb, and σo values estimated from the CTL experiment using the method of Fu
et al. (1993). Finally, experiment B2R2 uses the σb estimated from the ensemble, and the σo from
the Fu et al. method. The different ensemble members of B2R2 produced statistically similar results
and thus only the results from the unperturbed member B2R2 are presented. The diagnostics focus on
temperature.

2.1 The innovation “weights”

Figure 1 shows the ratio (σb)2[(σb)2 +(σo)2]−1 where (σo)2 and (σb)2 are the average observation-
and background-error variances for temperature. The spatial averaging has been performed over the
global region and within the vertical model grid cells, and the time averaging has been performed over
the 1994-2000 period. The background-error variances have been evaluated at observation points before
averaging. Ignoring correlations, this ratio indicates the average weight given to an innovation at a
particular depth in determining the analysis increment. For the ensemble-σb experiment (B2R2), the
weights are noticeably smaller and more uniform with depth compared to those from the parameterized-
σb experiments (B1R1 and B1R2). As a result, the analysis on each cycle of B2R2 will tend to remain
closer to the background state than it will in either B1R1 or B1R2 which will tend to pull it more to the
observations, especially in the upper 200 m.

2.2 Residual and innovation vector statistics

The innovation vector d and analysis increment δwa provide valuable information for assessing the
statistical performance and internal consistency of the assimilation system (Desroziers et al. 2005).
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Figure 1: Vertical profiles of the ratio (σb)2[(σb)2 +(σo)2]−1 for temperature in B1R1 (grey shaded
areas), B1R2 (solid curves) and B2R2 (dashed curves).

Figure 2 shows vertical profiles of the standard deviation (sd) of the innovation vector (d) and residual
vector (r = d−Hδwa):

sd(z) =
√

(z− z)2 (3)

where z = d or r, and the overbar indicates spatial average over the globe and within vertical model
grid cells, and temporal average over the 1994–2000 period. The standard deviation indicates how well
the model fits the observed temporal and spatial variability. Experiment CTL exhibits large temperature
errors, particularly in the upper 150 m where signals associated with seasonal and interannual variability
are largest. Relative to CTL, all assimilation experiments improve the fit to the observed temperature
variability at all depths. Differences between B1R1 and B1R2 are small (shaded and solid curves).
The differences arising from using the ensemble σb (B2R2; dashed curves) are larger, with sd(d) being
increased relative to those in B1R1 and B2R2, especially in the upper 100 m.
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(b) innovations

Figure 2: Vertical profiles of the standard deviation of the analysis residuals (r = d−Hδwa; left
panel) and innovations (d; right panel) for temperature for CTL (thin dotted curves), B1R1 (grey
shaded areas), B1R2 (solid curves) and B2R2 (dashed curves). Values have been averaged onto
model levels. For CTL the innovation and residual are identical (δwa = 0).
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2.3 An efficiency index

At first sight it appears that the use of the ensemble σb has slightly degraded the performance of the
assimilation system. Closer inspection of Fig. 2, however, reveals that while the innovations are larger
in B2R2, the difference between the residuals and innovations is smaller than in B1R1 and B1R2, par-
ticularly in the upper 100 m where the difference is 0.1oC smaller. This result indicates that the error
growth in a 10-day forecast cycle is smaller in B2R2 than in B1R1 and B1R2, which in turn suggests
that the analyses in B2R2 are better balanced. Since the error growth is compensated by the assimilation
increment, a smaller error growth in B2R2 should be indicative of smaller increments in B2R2. This
is confirmed by Fig. 3a which displays the vertical profiles of the root-mean-square (rms) of the tem-
perature analysis increments at observation points (rms(Hδwa)) from the different experiments. The
increments are smallest in B2R2 and largest in B1R1.

The smaller analysis increments in B2R2 could also be an indication that the assimilation system is
under-affected by the observations. It is instructive therefore to compare the rms of the analysis incre-
ments with the actual 10-day forecast improvement as measured by the innovations. To do so, we define
an “efficiency” (E) index,

E =
rms(dc)− rms(d)

rms(Hδwa)
, (4)

which measures the ratio of the difference between the rms of the 10-day forecast error from the control
and from the assimilation experiment, to the “work done” by the assimilation method (at observation
points) to reduce the forecast error. Small (large) innovations and increments will act to increase (de-
crease) the E index. For example, one system will be more efficent than another (have a larger E value)
if it can achieve, on average, a similar reduction in the innovations but with smaller increments. Positive
(negative) values of the E index imply that the assimilation is beneficial (detrimental) to the model. Note
that the index depends on the forecast lead-time (which influences the numerator in Eq. (4)) as well as
the width of the assimilation window (which influences the denominator in Eq. (4)). Therefore, the
E index cannot be used to compare experiments with different assimilation windows. Here, the forecast
lead-time and assimilation window width are both equal to ten days in all experiments. Note also that
the E index is defined for any assimilation experiment that is affected by observations at least once, so
the denominator is always non-zero. Vertical profiles of the E index for the three assimilation experi-
ments are shown in Fig. 3b. The E index is positive at all depths for all experiments, with highest values
obtained in B2R2 and lowest values in B1R1. The E index is largest at the mean level of the thermocline
(100 m). In all experiments, there is a decrease in the temperature E index near the surface. This is
related to the strong SST relaxation term used in both CTL and the assimilation experiments, which acts
to reduce the value of the numerator in Eq. (4).

2.4 Desroziers diagnostics

The difficulty in defining background- and observation-error statistics means that they are likely to be
incorrectly specified in a practical data assimilation system. Desroziers et al. (2005) discuss how the
innovations and analysis increments generated by a data assimilation system can be used to diagnose a
posteriori the covariances of observation error and background error in observation space. Assuming
that the background and observation errors are mutually uncorrelated, and that their covariance matrices
are good approximations to the true error covariance matrices, then

E[ddT] ≈ HBHT +R, (5)

E[d(Hδwa)T] ≈ HBHT, (6)

and E[d(d−Hδwa)T] ≈ R. (7)
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(a) Rms of the analysis increments
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(b) The efficiency index

Figure 3: Vertical profiles of the rms of the temperature assimilation increments at observation
points (rms(Hδwa); left panel) and of the efficiency index (Equation (4); right panel) for tempera-
ture in B1R1 (grey shaded areas), B1R2 (solid curves) and B2R2 (dashed curves). Values have been
averaged onto model levels.

The left-hand sides of Eqs. (6) and (7) can be estimated using statistics from the assimilation system,
while the right-hand sides of these equations are the specified covariance matrices presented earlier.
These expressions are used to check the consistency of the specified standard deviations (σb and σo)
with those diagnosed using assimilation statistics.

Figure 4 shows vertical profiles from B2R2 of the specified σb and σo (solid curves) and the diagnosed
σb and σo (dashed curves) estimated from Eqs. (6) and (7) using the innovation and analysis incre-
ments from all cycles between 1994–2000. In B2R2, the specified σb are everywhere underestimated
compared to the diagnosed values (Fig. 4a) whereas the specified σo are everywhere overestimated com-
pared to the diagnosed values. Compared to B2R2, there is better consistency between the diagnosed
and specified σb in B1R2 (figure not shown), although this seems to be achieved at the expense of de-
grading the consistency between the diagnosed and specified σo. The results in Fig. 4 suggest that the
ensemble 3D-Var system produces background (and analysis) perturbations with inadequate spread on
a global average. The apparent overestimation of σo, on the other hand, points to limitations in our
simple model of the observation-error covariances, which ignores spatial and temporal correlations and
employs flow-independent variance estimates derived from a method that is itself subject to assumptions
of questionable validity. Although Eq. (7) is used purely for diagnostic purposes in this study, it provides
the basis of an iterative algorithm for calibrating σo using the innovations and analysis increments gen-
erated by the assimilation system (Desroziers et al. 2005). In a similar way, the Desroziers diagnostics
can be used to calibrate observation-space values of σb. Unlike σo, however, these are not direct inputs
to the ensemble 3D-Var system. How best to use the Desroziers diagnostics to improve the estimates of
σb in the space of the analysis variables and how to combine this information effectively with ensemble
estimates of σb are open questions.

2.5 Temporal variability of ensemble and assimilation statistics

The results presented so far have highlighted time-averaged aspects of the assimilation performance.
Here some time-varying aspects will now be evaluated, focusing on results from the ensemble experi-
ment B2R2. Figures 5a and b show time-series of the 1993–2000 ensemble spread (the square root of
the ensemble variance) of the observation-space analysis Hiwa

l (ti) (light grey shade) and background
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(a) Specified and diagnosed σb
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(b) Specified and diagnosed σo

Figure 4: Vertical profiles of the temperature σb (left panel) and σo (right panel) in B2R2. Solid
curves correspond to the σb and σo that were specified in the assimilation experiment; dashed
curves correspond to the σb and σo that were diagnosed a posteriori using Eqs. (6) and (7).

Hiwb
l (ti) (black shade), computed with respect to all (L = 9) ensemble members:

spread{Hiwa,b} =

√√√√ 1
L−1

L−1

∑
l=0

(
Hiwa,b

l (ti)−
1
L

L−1

∑
l=0

Hiwa,b
l (ti)

)2

(8)

where the overbar indicates spatial average over the globe and within vertical model grid cells, and
temporal average over 30-day intervals. A well-defined ensemble should have a spread characteristic of
the actual uncertainty in the model state. Figure 5a shows that the temperature spread is systematically
smaller in the analysis than in the background, as one would expect. The spread appears to stabilize
around a mean value of 0.1◦C, after an initial increase during the first 6 months of the experiment. In
other words, there is no evidence of ensemble collapse. The decrease in the spread from mid-1993
onwards corresponds to the time when the parameterized σb are replaced with the ensemble σb.

Figure 5b shows corresponding time-series of the sd(r̃i) (light grey shade) and innovation sd(di) (black
shade) of the unperturbed ensemble member l = 0, as given by Eq. (3) but with the temporal averaging
operator defined as in Eq. (8). Both sd(r̃i) and sd(di) are about one order of magnitude larger than
the analysis spread of the (observation space) analysis and background (Fig. 5a). The spread of the
background state at observation points roughly corresponds to the prescribed values of σb at observation
points. The magnitude of sd(di) is at all times comparable to that of the mean σo (not shown), which
is consistent with Eq. (5) in view of the relatively small ensemble spread that defines σb. Despite the
small spread, sd(di) of B2R2 is consistently much smaller than sd(di) of CTL (dark grey shade).

3 Minimization diagnostics from an incremental 4D-Var system

This section presents diagnostics to assess the convergence properties of an incremental 4D-Var version
of the ocean assimilation system. The incremental algorithm approximately solves a (non-quadratic)
minimization problem with nonlinear constraints by minimizing a sequence (k = 1, . . . ,K) of quadratic
cost functions

J[δw(k)] =
1
2

(
δw(k)

)T
B−1

δw(k) +
1
2

(
H(k−1)

δw(k)−d(k−1)
)T

R−1
(

H(k−1)
δw(k)−d(k−1)

)
(9)
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Figure 5: Left panel: 1993–2000 time-series of the ensemble spread in temperature at observation
points (upper panels) for the background, Hiwb(ti) (black shaded area), and analysis, Hiwa(ti)
(light grey shaded area), in B2R2. Right panel: 1993–2000 time-series of the standard deviation
of the temperature innovation vector, sd(di) (black shaded area), and of the residuals, sd(r̃i) (light
grey shaded area), with r̃ = yo−Hwa, in B2R2. The standard deviation of the innovation in CTL
(dark grey shaded area) is also shown. Values have been been computed for the global region and
averaged into 30-day intervals.

where

d(k−1) =



d(k−1)
0

...
d(k−1)

i
...

d(k−1)
N


=


yo

0−H0w(k−1)(t0)
...

yo
i −Hiw(k−1)(ti)

...
yo

N−HNw(k−1)(tN)

 and H(k−1) =


H0
...

HiM(k−1)(t0, ti)
...

HNM(k−1)(t0, tN)

 .(10)

The observation matrix H(k−1) extends that of 3D-Var FGAT (Eq. (2)) by including a dynamical model
M(k−1) for propagating the increment from initial time to the observation times. Here M(k−1) is the
tangent-linear model with simplifications in the vertical and isopycnal mixing schemes. The superscript
(k− 1) indicates linearization with respect to the state estimate w(k−1)(ti) on outer iteration k, where
w(0)(ti) = wb(ti). The resolution used for the increment in the linearized model is identical to that
used for the state vector in the nonlinear model. The initial state is updated directly with the increment
after each quadratic minimization. The quadratic cost function is minimized using a conjugate gradient
(CG) algorithm based on a close variant of the CONGRAD software (Fisher 1998). The experimental
framework is similar to that of the 3D-Var experiment B1R1 described earlier. Here we focus on the
results from a single cycle minimization with a 10-day assimilation window. Three outer iterations were
used (K = 3), and ten CG (inner) iterations were used per outer iteration.

3.1 The cost function and gradient norm

Figure 6a shows the value of the quadratic (incremental) cost function on the inner loop as a function
of the inner iteration number for the three outer iterations of the 4D-Var experiment. No second-level
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preconditioning was used between outer iterations in this experiment (only the first-level B precondi-
tioning was used). The value of the nonquadratic (nonincremental) cost function at the end-points of
each outer iteration is also shown in Fig. 6a (open circles). These correspond to the linearization points
(k = 0,1,2 and 3) in the incremental algorithm. The discrepancy between the values of the quadratic
cost function and the nonquadratic cost function at the outer loop end-points gives an indication of the
accuracy of the linear approximation. As can be seen from Fig. 6a, the differences are small and only
distinguishable between the first and second outer iterations (k = 1) where the relative error is 4.5% (for
k = 2 the relative error is less than 0.1%). This suggests that the linear approximation is quite accurate
in this experiment.

(a) Cost function (b) Euclidean gradient norm

Figure 6: a) The values of the a) quadratic cost function (solid curve) and nonquadratic cost function
(open circles), and b) Euclidean norm of the gradient of the cost function, as a function of the
inner (CG) iteration number in each of the three outer iterations of the (unpreconditioned) 4D-Var
experiment. The curves are placed one after the other in sequence and the inner iterations are
cumulated.

The Euclidean norm of the gradient of the quadratic cost function on each inner iteration has been pro-
posed as a practical measure of convergence of CG minimization (Lawless and Nichols 2006). Figure 6b
shows the Euclidean gradient norm as a function of inner iteration for the three outer iterations. Contrary
to the quadratic cost function, the Euclidean gradient norm does not decrease smoothly and monoton-
ically with increasing inner iteration. The Euclidean gradient norm is therefore not a good measure of
convergence of the CG minimization for this experiment. Alternative convergence measures that de-
crease monotonically with CG iteration are available, such as the relative reduction in the quadratic cost
(Meurant 2006). Operational systems, however, tend to use, as in this experiment, a stopping criterion
based on a maximum number of inner iterations since it gives full control over the computational time
for the assimilation step.

3.2 Ritz values/vectors

Limited-memory preconditioners (LMPs) such as spectral (Fisher 1998), quasi-Newton (QN; Morales
and Nocedal 2000) and Ritz (Tshimanga et al. 2008) are constructed from scalar and vector information
gathered, at no extra computational cost, during the CG minimization on previous outer iterations. They
are based under the assumption that the Hessian matrix does not change significantly from one outer
iteration to the next. One way of analyzing the validity of this assumption is to examine, between each
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outer iteration, the variation of the Ritz values (approximate Hessian eigenvalues) which are available
from the CG minimization. Figure 7a shows that the Ritz values for the unpreconditioned experiment are
indeed similar in each of the three outer iterations. The maximum relative difference for the largest Ritz
value is 3% and occurs between the first and third outer iterations. This result then suggests that the Hes-
sian matrix associated with previous outer iterations provides relevant information for preconditioning
the minimization on subsequent outer iterations.

The practical implementation of the spectral LMP involves approximating exact eigenpairs by Ritz pairs.
The so-called backward error (Rigal and Gaches 1967) associated with this approximation is shown in
Fig. 7b. This figure shows that the information related to the two largest Ritz values (indices 9 and 10) is
the most accurate on all three outer iterations (cf. Figs. 7a and b), with the backward error being between
10−3 and 10−5. For the other Ritz values, the error is between 10−1 and 10−2, except for index 8 on the
second outer iteration where the error is nearer 10−3. Since the largest Ritz value is an accurate estimate
of the largest eigenvalue of the Hessian and since, with the B preconditioning, the smallest eigenvalue
of the Hessian is equal to one, the condition number κ can be estimated to a good approximation. For
this unpreconditioned experiment, the values of κ are 3099, 3300 and 3202 on the first, second and third
outer iterations, respectively.

(a) Ritz values (b) Backward error

Figure 7: a) The ten Ritz values and b) the associated backward error, evaluated at the end of each
of the three outer iterations of the (unpreconditioned) 4D-Var experiment.

The impact of different LMPs can be assessed by examining the inner-loop minimization after the first
outer iteration. Figure 8 illustrates the effect of increasing the number of preconditioning vectors (l)
used to construct the spectral and Ritz LMPs. For constructing these LMPs, the Ritz pairs with smallest
backward error were used (Fig. 7). Figure 8a shows the performance of the minimization with the
spectral LMP (approximated with Ritz information) tends to deteriorate when the number of vectors
increases. With l = 10, the preconditioned experiment actually degrades the minimization compared
to the unpreconditioned experiment. This can be explained by the fact that the Ritz pairs are not all
good approximations to eigenpairs of the Hessian matrix, and therefore inappropriate for use within the
spectral LMP. However, with accurate eigenpair information, which is the case when l = 2 and to a
lesser extent when l = 6, the spectral LMP is clearly beneficial to the minimization. Figure 8b shows
that, contrary to the spectral LMP, the Ritz LMP tends to improve the minimization when the number of
preconditioning vectors is increased. The amount gained by increasing l from 0 to 2 vectors and from 2
to 6 vectors is similar. There is only marginal impact, however, from using l = 10 compared to l = 6.
This behaviour is consistent with the changes in κ which is equal to 2378 when l = 2, 1290 when l = 6
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and 1247 when l = 10. The small impact from using 10 compared to 6 vectors suggests that it may
not be necessary to use the maximum number of preconditioning vectors to obtain near-optimal benefit
from the Ritz LMP, an important point if computer memory space is limited.

(a) Spectral LMP (b) Ritz LMP

Figure 8: The values of the quadratic cost function on the second and third outer iterations of
a 4D-Var experiment without preconditioning (green solid curve) and with preconditioning using
different numbers of preconditioning vectors: l = 2 (black dashed curve); l = 6 (red dotted curve);
and l = 10 (blue dashed-dotted curve). Displayed are the results for the a) spectral LMP and b) Ritz
LMP. Note that for the spectral LMP, the Ritz values/vectors are used as an approximation to exact
eigenvalues/eigenvectors.

3.3 Behaviour of the nonquadratic cost function

Figure 9 shows the behaviour of the quadratic and nonquadratic cost functions as a function of inner
iteration on the third outer iteration of the 4D-Var experiment employing the Ritz LMP with l = 10 pre-
conditioning vectors. In the incremental 4D-Var algorithm, the value of the nonquadratic cost function
is only computed at the outer loop end-points and is not readily available on intermediate inner itera-
tions as displayed in Fig. 6. Here, the intermediate values were computed by performing a sequence of
4D-Var experiments with a different number of inner iterations on the third outer iteration. This figure
illustrates a very different behaviour in the quadratic and nonquadratic cost functions on the third outer
iteration. While the quadratic cost function decreases monotonically during the entire inner-loop mini-
mization, the nonquadratic cost function, after an initial reduction during the first 5 or 6 inner iterations
(25 or 26 cumulated iterations), starts to diverge to the extent that by iteration 10 it has returned to a
value similar to that obtained after 4 inner iterations. In this experiment, it is clearly detrimental to the
global minimization to iterate the CG algorithm beyond 6 inner iterations on the third outer iteration. In
general, the appropriate number of inner iterations for each outer iteration will depend on the particular
LMP employed.

4 Conclusions

Assimilation diagnostics used to evaluate the ensemble ocean 3D-Var system have suggested that the
analyses produced with the ensemble-estimated background-error variances were in better balance than
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Figure 9: The values of the quadratic cost function (blue solid curve) and nonquadratic cost function
(red open circles) as a function of the cumulated inner (CG) iteration number on the third outer
iteration of the preconditioned 4D-Var experiment using the Ritz LMP with l = 10 vectors.

those produced with the parameterized background-error variances: there was reduced error growth
between cycles, the analysis increments were smaller, and the analyses were closer to independent
measurements of variables not directly constrained by the assimilated temperature and salinity profiles
(results not shown here; see Daget et al. (2009)). These positive results, however, were accompanied
by a slight worsening of the innovation statistics in the upper 100 m. In this region, the Desroziers
diagnostics indicated that the ensemble-estimated variances (and to a lesser extent the parameterized
variances) were underestimated. This apparent understimation of the ensemble spread points to the
need to improve the ensemble generation strategy.

The minimization diagnostics used to evaluate the convergence properties of the incremental ocean
4D-Var emphasized the importance of developing an appropriate stopping criterion for the inner-loop
minimization. The Euclidean gradient norm was shown not to be a robust measure of convergence of the
inner loop. Furthermore, full convergence of the inner loop was shown to be not necessarily desirable in
a nonlinear system. In particular, too many inner iterations could lead to divergence on the outer loop,
thus illustrating the importance of carefully monitoring the outer-loop convergence in addition to that of
the inner-loop.
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