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ABSTRACT

In the first part of this paper, we report on a proposition discussed during the EU PRISM project for a revised physical
interface linking the main model components of present-day Earth System models (ESMs), i.e. the atmosphere, the
ocean, the sea-ice and the land surface. One main difference with current ad-hoc interfaces is the introduction of two
new modules: the Surface Layer Turbulence (SLT) and the ocean surface (OS) modules. This added modularity allows
physically consistent interpolations from grid to grid, ensures that the exchanges between the model components are
“process-based”, and helps controlling unstable computations by distinguishing fast and slow processes.

In the second part, we present different technical approaches that can be followed to couple ocean and atmosphere models.
We describe in more detail the OASIS coupling software, and in particular the different remapping algorithms offered by
OASIS that can be used to transform the coupling fields and to tackle specific coupling problems at the ocean-atmosphere
interface such as the need to recreate subgrid variability when going from low to high resolution grids, incoherent coast-
lines in the ocean and in the atmosphere, or the treatment of vector coupling fields.

1 A revised ocean-atmosphere physical coupling interface

1.1 Introduction

For historical and practical reasons, present-day physical interfaces between Earth System component models
are very often the result of an ad-hoc approach, even if much progress has been achieved over the last years
to identify the physical, numerical and algorithmic constraints of Earth System Models (ESMs) as a whole
and each component individually, including laws of conservation. Because of the diversity of Earth System
component models, the design of a physical interface clearly does not have a single optimal solution and any
proposition is a compromise between those constraints.

Following the PILPS experience (Polcher et al. 1998), a revised physical coupling interface between the atmo-
sphere, the ocean, the sea-ice and the land surface was discussed during the EU PRISM project (http://prism.enes.org)
based on the following guiding principles but considering also historical and practical constraints not likely to
evolve in the next few years:

• identify physically based interfaces across which the conservation of energy, mass and momentum can
be ensured;

• identify which process needs to be computed by which component/module and ensure that there is no
duplication or inconsistency in these computations;

• take into account numerical constraints (stability, impact of different component and coupling time steps,
...) and interpolation constraints (subgrid scale heterogeneity issues, local conservation,...).
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Figure 1: A proposition for a revised physical coupling interface between atmosphere, ocean, sea ice and
land surface component models

1.2 The revised physical interface

Following those guidelines, the interfaces described in Figure 1 are proposed for atmosphere, ocean, sea ice
and land surface components. The exchanges are represented by groups of fields attached to solid coloured
arrows and numbered from©1 to©8 . In the remainder of the text, each field is identified with a code I.J where
I in the exchange number and J the field number. For example field 2.6 is the evaporation.

The introduction of new modules allows 1) to clearly identify where the computation of some physical pro-
cesses happens, 2) to easily control unstable computations by distinguishing where fast and slow processes are
computed and 3) to allow physically consistent interpolations from grid to grid. Increasing the modularity is a
long term goal for most components but we restricted ourselves to these key modules for practical reasons.

1.2.1 The Surface Layer Turbulence module

The Surface Layer Turbulence module (SLT module) contains the description of the turbulence inducing dif-
fusion in the surface layer of the atmosphere (above the ocean+sea ice+land surface system). It computes the
surface layer turbulent coefficients (exchange ©4 ) from the surface boundary conditions (exchange ©5 pro-
vided by the Ocean Surface module and the land surface component) and the atmosphere prognostic variables
at lowest level (exchange©3 ). It also provides the atmospheric variables of exchange©3 to the Ocean Surface
module and the land surface component (see next section). As it is non physical to interpolate the turbulent
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exchange coefficients, they need to be computed on the finer grid. The Surface Layer Turbulence module needs
then to be run on the finer grid.

1.2.2 The Ocean Surface module

The Ocean Surface (OS) module is introduced to help separate the fast ocean and sea ice surface processes,
involving heat, water and momentum exchanges with the atmosphere from the slower deeper processes. It sends
surface boundary conditions (exchange©5 ) to the SLT module, receives turbulent coefficients (exchanges©4 )
and atmosphere prognostic variables at lowest level (exchange ©3 ) from this module, and computes a number
of surface fields (wind stress, sensible heat flux,...) with bulk formulas. In addition, it receives fields from and
sends field to the atmosphere (respectively©1 and©2 ) and to the ocean (exchanges©6 and©7 ). A wave model
can be included in the OS module to provide sea surface roughness (field 5.2) to the SLT module.

1.2.3 Energy fluxes and conservation

Between Ocean Surface module and ocean component:

The OS module, via the sea ice model, provides the ocean model with the net solar radiation (6.2) and non-
solar heat flux (6.1) entering the ocean surface. In return, the ocean model provides the OS module with: the
temperature at the sea-ice base (7.1) used by the sea-ice model to compute the oceanic heat flux at the ice-ocean
interface, the sea surface temperature (7.3) required for the calculation of the atmospheric turbulent heat fluxes,
the sea surface radiative temperature (7.4) required for the calculation of the long-wave radiation over leads,
the surface height (7.7) further transferred to the SLT module, and the fraction of solar radiation absorbed with
the first oceanic layer (7.8) needed for the computation of the energy budget of leads by the sea-ice model.

Between Ocean Surface module, SLT module and atmosphere component:

The atmosphere component provides the OS module with the incoming solar radiation possibly for different
spectral intervals (1.3), the solar zenith angle (1.4), the fraction of diffuse solar radiation (1.5) and the downward
infrared radiation (1.6). In return, the OS module provides the emissivity (2.2), the albedo for direct and diffuse
radiation (2.3 and 2.4), possibly for different spectral intervals consistently with the partitioning of incoming
solar radiation, and the surface radiative temperature (2.5); these fields are calculated while solving the surface
radiation budget either over free ocean or over sea-ice.

In order to evaluate the surface turbulent fluxes, the atmosphere component provides the Surface Layer Tur-
bulence module and the OS module with surface pressure (3.1), air temperature (3.2), specific humidity (3.3),
wind components (3.4) and mean scalar wind speed (possibly including gustiness effects due to free convection
in boundary layer or due to deep convection, 3.5), and the height of the level where all these variables are
calculated (3.6). The atmosphere also provides the Ocean Surface Module with the sensitivity of atmosphere
temperature and humidity to surface fluxes (1.7). The OS module provides the surface temperature (5.1), the
surface roughness (5.2), the displacement height (5.3), and the surface velocity (5.4) to the Surface Layer
Turbulence module. With fields received through exchanges ©3 and ©5 , the SLT module can compute the ex-
change coefficient for sensible heat (4.2) and for moisture (4.3) which are passed to the OS module. With this
information, the OS module calculates the sensible heat flux (2.1) which is then transferred to the atmosphere
component (the latent heat flux can be obtained from the evaporation 2.6, see next section).

These exchanges©1 ,©2 ,©3 , and©4 allow an implicit calculation of the energy fluxes over the whole column
from the base of the sea ice to the top of the atmosphere.
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1.2.4 Mass fluxes and associated energy conservation

The atmospheric model provides the OS module with rainfall (1.1) and snowfall (1.2), and associated inter-
nal energies, both used by the sea ice model and the ocean model. In return, the OS module provides the
atmospheric model with the evaporation/sublimation (2.6), based on the exchange coefficient for moisture
(4.3). This field is needed for the calculation of the hydrological cycle in the atmosphere. If the atmosphere
model requires an average value (i.e. it cannot distinguish subgrid-scale values, see next section) the aver-
age latent heat flux must also be provided (due to the non-linearities in its computation). The OS module
transfers to the ocean model the net fresh water flux (6.3), the net salt flux (6.4) and the total mass of snow
and ice (6.7). The net freshwater flux (6.3) results, on one hand, from the net atmospheric water flux over
open ocean (Rainfall+Snowfall-Evaporation) and, on the other hand, from snow melting on top of sea ice, ice
growth/melting, snow-ice formation, runoff of rainfall through sea ice into the ocean, snowfall and rainfall over
leads, and evaporation over leads. The net salt flux (6.4) is provided by the sea ice component and results from
ice growth/melting and snow-ice formation. In return, the ocean component provides the salinity at the sea ice
base (7.2), which is used by the sea ice model to compute the freezing point of sea water and, in the future, the
salinity of newly-formed sea ice and snow ice, and the sea surface salinity (7.6). The total mass of snow and
ice (6.7) is provided to the ocean model to compute the depression of ice below the water level. Finally, the
land surface model provides the continental run-off to the ocean (8.1) and the associated internal energy.

1.2.5 Momentum fluxes computations

The surface turbulent wind stress is computed by the Ocean Surface module. The computation uses the drag
coefficient (4.1) provided by the SLT module, the wind at the lowest level (3.4), its module (3.5) and its height
(3.6) provided by the atmosphere via the SLT module, and the surface ocean currents (7.5) provided by the
ocean. The OS module then transfers the wind stress to the atmosphere (2.7) and to the ocean (6.5). The OS
module also compute the “wind work” U3 (6.6) and provides it to the ocean.

1.3 Subgrid scale computations

Subgrid scale issues are central in Earth System models and must be properly taken into account by physical
interfaces. They can either be computed by a component parameterization and exchanged as such (as for
example wind gustiness, 3.5), or occur because of different grid resolutions or multiple sea ice or surface
categories into one grid cell. In this second case, two options are available: either the coarser grid component
can accommodate subgrid scale information (like ’tiling’ in atmosphere) or it can only handle an average value.
In the later case, the averaging should be done on the finer grid (i.e. in the Ocean Surface module or land surface
component in the present proposal); in the former case, each subgrid flux together with the corresponding
subgrid fraction are passed from the finer to the coarser grid. In the present proposal, we assumed that the
ocean and sea ice grid is finer than that of the atmosphere component (note that method described here can
apply to the reverse configuration, although not often seen in climate studies). Hence, fields of exchanges ©2 ,
©5 and©6 can become arrays. In that case, subgrid fractions of the different sea ice or surface categories (2.8)
are passed from the OS module to the atmosphere (which will blend the information either in its boundary
layer, up to a blending height or even all the way up in the atmospheric column - e.g. delocalized physics -
depending on the complexity of the tiling scheme in the atmosphere) and subgrid fractions of different sea ice
categories including open ocean (6.8) are passed from the sea ice model to the ocean model.

1.4 Time sequence

A schematic possible time sequence for ocean/atmosphere/sea ice coupling via the Surface Layer Turbulence
and Ocean Surface modules is presented on Figure 2. This sequence ensures that the atmosphere time integra-
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Figure 2: A possible time sequence for ocean/atmosphere/sea ice coupling exchanges via the Surface Layer
Turbulence and ocean surface modules

tion of fluxes remains implicit. A classification of the different components involved in the ocean-atmosphere
exchanges in terms of speed of processes gives (going from the slowest to the fastest): the (deep) ocean model,
the sea ice model (excluding energy flux calculation), the ocean surface module (for energy flux calculation),
the Surface Layer Turbulence module, the atmosphere model. Therefore, the coupling exchanges should follow
(with Fx being the frequency of exchange ©x ): F7 = F6 ≤ F5 = F3 = F1 = F4 = F2 . The coupling exchanges
©1 ,©2 ,©3 ,©4 and©5 can be performed many times while only one©6 and one©7 exchanges take place, as
illustrated on Figure 2.

2 About technical coupling software

Although some of the concepts described above are starting to make their way in coupled ocean-atmosphere
modelling, the proposed revised physical interface is currently not fully implemented in existing ESMs, that
result of an ad-hoc assemblage of existing component models developed and used independently by different
research groups.

In this section, we present the different techniques available to assemble existing model codes, and in particular
the OASIS coupler and the different algorithms offered by this software to transform the coupling field and to
answer specific coupling problems at the ocean-atmosphere interface.

2.1 Different technical approaches to assemble component model codes

Coupling component model codes means managing synchronised exchange of information (“coupling fields”)
between those codes, and transforming the coupling information provided by one code to ensure that it can be
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“ingested” by the other code. Ideally, the technical solution chosen should be easy to implement with existing
codes, flexible, efficient and portable. Different technical approaches exist to assemble component model codes.

2.1.1 Merging of the codes

The most natural approach is to merge the existing codes into one new application, which means that one code
remains a main program and calls the other code as a subroutine. The coupling information can be exchanged
by argument passing or by sharing a common module. This approach ensures efficient memory exchanges
and portability (in as much as the original codes were themselves portable). However this approach is not
flexible, as the coupling algorithm and the coupling exchanges must be hard-coded while merging the codes,
and supposes that the user implements and uses in the source or in the target code his own transformations and
interpolations. Other disadvantages of this approach are that many conflicts in namespaces, I/O, etc. are likely
to appear and that the memory requested by the resulting code may be very large, depending of course on how
the original codes are programmed. This first approach is in general not recommended.

2.1.2 Direct use of existing communication protocols

The second approach is to keep the original component models separate but implement the coupling exchanges
directly where needed in the codes using an existing protocol such as MPI, CORBA, Unix pipes, or files.
Compared to the first one, the advantage of this approach is that no conflict will appear but it is not either
flexible as the coupling exchanges, specific to each coupling configuration, will also be hard-coded in the codes.
It also requires that the scientist masters the communication protocol and implements his own transformations
and interpolations. Finally, its portability depends on the portability of the chosen communication protocol.

2.1.3 Use of a coupling framework

The third solution is to use a coupling framework, such as ESMF (http://www.esmf.ucar.edu) or FMS (http:
//www.gfdl.noaa.gov/ fms/). This approach supposes that the user splits the original codes into elemental units
(at least in initialisation, main, and termination units), adapt the units to the framework standard data structure
and calling interface, and finally uses the framework to build and control a hierarchical merged application
integrating the different units. This approach is fully flexible (the different units can be easily reused in different
applications), allows the user to use the different tools offered by the framework (parallelisation, regridding,
time management, etc.) and ensure efficient coupling exchanges within the merged application. But it requires
a deeper level of interference in the codes and imposes strict coding rules in order to take full advantage of
the framework functionalities. This approach is therefore probably the most recommended one in a controlled
top-down development environment.

2.1.4 Use of a coupler

In many cases though, the different component models chosen to form an ESM come from different research
groups that also use these components independently in stand-alone mode for other research purposes and that
are not likely to follow strict coding rules imposed by external constraints. In this case, a less intrusive ap-
proach based on the use of a coupler and associated coupling library, such as MpCCI (http://www.mpcci.de),
MCT (http://www.mcs.anl.gov/mct), PALM (http://www.cerfacs.fr/globc/PALM WEB/index.html) or OASIS
(https://oasistrac.cerfacs.fr/) is probably the best trade-off that can be chosen. In particular, it ensures that
the original codes will run as separate executables with main characteristics (e.g. internal parallelisation) un-
changed with respect to the uncoupled mode. The drawback is that the execution of the resulting coupled model
may in some cases be less efficient than a more integrated one-executable approach. This approach is flexible
as the coupling exchanges generally follow the principle of “end-point” data exchange (see section 2.2.2). The
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portability of the coupling depends on the portability of the coupler, criteria usually of great importance for the
coupler development teams. This approach also allows the user to take advantage of the different transformation
and regridding routines offered with the coupler.

2.2 The OASIS coupler

We describe here in more detail the OASIS coupler which represents one implementation of the approach
presented in 2.1.4.

2.2.1 Historic and community

In 1991, CERFACS was commissioned to develop a software interface to couple existing numerical General
Circulation Models of the ocean and of the atmosphere. Today, both the widely used OASIS3 version (Valcke
2006), which is the result of more than 15 years of evolution, and the newer fully parallel OASIS4 version
(Valcke & Redler, 2006), which writing started during the PRISM EU project and which is presently developed
thanks to an active collaboration between NEC Laboratories Europe IT Research Division in Germany, the
Centre National de la Recherche Scientifique (CNRS) and CERFACS, are available.

The OASIS community has steadily grown since its first release. The OASIS coupler is currently used by about
25 modelling groups in Europe, Australia, Asia and North America, on the different computing platforms used
by the climate modelling community.

2.2.2 Data exchanges with OASIS

To exchange coupling information with other components, a component model needs to call few specific rou-
tines of the OASIS coupling library for its initialisation, grid and partition definition, field declaration, field Get
and Put actions (to receive or send a field by respectively) and termination.

In OASIS, the communication follows the “end-point” principle, i.e. there is no reference in the component
model code to the origin of a Get action or to the destination of a Put action; the source and target component
models (coupling exchange) or the input or output file (I/O) are set externally by the user. This ensures an
easy transition between different coupling configurations, in particular from the coupled mode (Get/Put actions
leading to a coupling exchange performed using MPI) to the forced mode (Get/Put action leading to read-
ing/writing from/to a file using the GFDL mpp io library, Balaji 2001), totally transparent for the component
model itself. Furthermore, the Get/Put routines can be called at each time step in the component model code but
the receiving/sending actions will effectively be performed only at appropriate times from/to the appropriate
source/target following the configuration externally defined by the user.

2.2.3 Regridding algorithms available in OASIS

For each coupling exchange, OASIS performs the transformations and regridding needed to express the source
field on the grid of the target model. The following 2D regridding algorithms based on the SCRIP library (Jones
1999) are available in OASIS3 and OASIS4, with 3D extensions in OASIS4 only (for more details, the reader
is referred to the SCRIP User Guide available at http://climate.lanl.gov/Software/SCRIP/):

• N nearest-neighbour: the N closest source neighbours are used. The weight of each neighbour is inversely
proportional to d, its Great Circle distance to the target point, or to exp(−1/2 · d2/σ2) where σ2 is the
variance of a Gaussian function.

• bilinear: the 4 enclosing source neighbour points are used and their respective weight is evaluated using
a general bilinear iteration in a continuous local coordinate system.

• bicubic: the value of the source field, its gradients and cross gradient with respect to the local directions i
and j at the 4 enclosing source neighbour points are used. For Reduced Gaussian grid, a standard bicubic
algorithm with the 16 enclosing source neighbours is used.
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• 1st order conservative remapping: the weight of a source cell is proportional to area of the source cell
intersected by target cell. Using the divergence theorem, the SCRIP library evaluates this area with the
line integral along the cell borders enclosing the area. As the real shape of the borders is not known
(only the location of the 4 corners of each cell is known), the library assumes that the borders are linear
in latitude and longitude between two corners. In general, this assumption becomes less valid closer to
the pole and in that region, the library evaluates the intersection between two border segments using a
Lambert equivalent azimuthal projection. One limitation of the SCRIP algorithm is that is also supposes,
for line integral calculation, that sin(latitude) is linear in longitude on the cell borders which again is in
general not valid close to the pole. A projection or at least a normalization by the true area of the cells
(i.e. by the areas as considered by the component models) is needed. Another step that could improve
the precision of the calculation would be to use a border middle point i.e. describe the cell with 8 points.

2.2.4 The SUBGRID transformation

One problem with the 1st order conservative remapping when going from a low resolution source grid to a
high resolution target grids is that all (small) target grid cells located entirely under the same (big) source cell
will receive the same value; the shape of the source cells will therefore be “visible” on the coupling field after
the remapping. One way to circumvent this problem is to use a 2nd order conservative remapping that allows
to recreate sub source grid variability while conserving the surface integral of the field. The SCRIP library
proposes such a 2nd order conservative algorithm which uses the derivative of the field with respect to the
latitude and the derivative of the field with respect to the longitude. This algorithm is available in OASIS3 but
has not been fully validated. One has to note here that the derivative of the field with respect to the latitude or
the longitude cannot be easily computed for grids other than logically rectangular ones.

Another possibility is to use the SUBGRID transformation available in OASIS3.

SUBGRID can be used to interpolate a field from a coarse grid to a finer target grid. A first-order Taylor
expansion of the field on the fine grid relatively to a state variable is performed (for instance, an expansion of
the heat flux relatively to the SST):

Qi
o = Qa +

∂Qa

∂Ta
(T i

o −Ta)

where Qi
o (Qa) is the flux on the fine (coarse) grid, T i

o (Ta) an auxiliary field on the fine (coarse) grid (e.g. the
SST) and ∂Qa/∂Ta the derivative of the flux versus the auxiliary field on the coarse grid. It can be shown that
the transformation is conservative if Ta corresponds to a 1st order conservative remapping of T i

o from the fine to
the coarse grid.

2.2.5 Problems caused by ocean and atmosphere non-matching coastline

A traditional issue in ocean-atmosphere coupled modelling is the one of non matching coastlines due to different
sea-land masks in the ocean and atmosphere models. The only way to solve this issue is to support subsurfaces
for each cell in the atmosphere (i.e. “tiling”) and let the fraction of sea and land in each cell to be dictated by
the ocean model sea-land mask.

In models where subsurfaces are not supported, workarounds have to be applied when possible. In the fol-
lowing, we suppose that both in the ocean and atmosphere models land cells are masked and sea cells are non
masked. When an atmospheric non masked cell covers masked and non masked ocean cells, the flux corre-
sponding to the part of the atmospheric cell intersecting masked ocean cells will be lost. The only workaround
in OASIS to correct this lost is to impose global conservation: the area integral of the flux is calculated on
both the source grid before interpolation and the target grid after interpolation, without considering values of
masked points, and the difference is uniformly distributed over the non masked target grid points. This solution
is obviously not ideal as all non masked ocean cell flux will be modified but at least ensures that the total energy
of the coupled system does not drift.

When the opposite situation occurs, i.e. a non masked ocean cell is covered by masked and non masked
atmosphere cells, two normalisation options are available in the SCRIP library implemented in OASIS. The
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flux received from the non masked atmospheric cell can be normalized either by 1) the total ocean cell area
(DESTAREA option), or by 2) the ocean intersected cell area (FRACAREA option). With option 1), local (and
therefore global) flux conservation is ensured, but unreasonable flux values may result. With option 2), the
flux is not locally conserved, but the value of the flux itself is reasonable. With option 2), it is even possible in
OASIS, to assign the nearest-neighbour value to sea ocean cells that would be covered only by land atmospheric
cells (FRACNNEI option). Of course, with option 2) the user can decide to impose global conservation with
the technique described in the previous paragraph.

2.2.6 Interpolation of vectors

At the ocean-atmosphere interface, vector fields such as the wind stress or the ocean currents have to be in-
terpolated. The vector components of these fields are usually expressed in a local referential or in the Earth
spherical referential. The interpolation of vectors component per component given in a local referential is not
exact, especially where the referential changes rapidly, i.e. near the poles in our case.

The OASIS coupler allows an exact interpolation of vector field thanks to the following procedure. If the
vector components are provided in a local referential, they are first projected onto the spherical referential.
The resulting vector is then projected in a cartesian referential, into which the 3 resulting components are
interpolated separately. The interpolated components are then projected back in the spherical referential. It
is then verified that the resulting vertical component in the spherical referential is zero. Finally, the resulting
zonal and meridional components are projected to the target grid local referential if needed.

This procedure allows an exact interpolation of the vector fields expressed in the local referential.

3 Conclusions
In the first part of this paper, we have presented a proposition for a revised physical interface between the atmo-
sphere, the ocean, the sea-ice and land surface ESM components. Compared with current ad-hoc approaches,
increased modularity is proposed with the introduction of a Surface Layer Turbulence (SLT) and an Ocean
Surface (OS) modules, which ensure that computation of surface fluxes are physically based, consistent inter-
polations are performed from grid to grid, and unstable computations are controlled by distinguishing fast and
slow processes. The SLT module runs on the finer grid and computes the surface layer turbulent coefficients
from the surface boundary conditions and the atmosphere prognostic variables at lowest level. The OS module
computes the surface fluxes at the surface. The exchanges between the OS module, the SLT module and the
atmosphere model allow a calculation of the surface fluxes at the resolution of the finer grid while ensuring an
implicit calculation of the energy fluxes over the whole column from the base of the sea ice to the top of the
atmosphere.

In the second part, we have presented different techniques technical approaches that can be used to assemble
component model codes. The approaches based on the use of a coupling framework (2.1.3) or on the use of
a coupler (2.1.4) both offer the benefits of shared software developmemt and seem to be the most appropriate,
respectively in a controlled development environment or to couple independently developed components. The
OASIS coupler and some of its regridding algorithms have been then described. In particular, the SUBGRID
transformation to reproduce subgrid variability when going from a coarse to a fine grid was presented. The
workarounds available in OASIS to address the problem of non matching coastlines between ocean and atmo-
sphere models needed when subsurfaces are not supported in the atmosphere were then explained; this ill-posed
problem cannot be fully resolved even if global conservation can at least be ensured. Finally, It has been de-
scribed how the interpolation of vector fields must be done on the vector components projected in a cartesian
space in order to be exact.
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