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1. Introduction 
The global numerical models used for weather prediction and climate simulation purport to determine area-
averaged precipitation rates for each grid cell; naturally, some places in a grid cell get more precipitation that 
the predicted average, and others get less.  

For a variety of reasons, discussed below, the grid-cell average precipitation rate and other grid-cell statistics 
are intrinsically uncertain (e.g., Hohenegger and Schär, 2007). Although it is true that uncertainties arise 
from deficiencies of the models, and from lack of precision in the initial conditions and boundary conditions, 
there is a more fundamental, irreducible component of uncertainty that comes from the probabilistic 
character of the predicted cloud parameters, which are merely ‘expected values’. As explained in the next 
section, this problem is more severe in the emerging high-resolution global models, which begin to resolve 
the mesoscale.  

A second problem is that the classical assumptions about ‘quasi-equilibrium’ are never exact, and break 
down altogether when the time-scale for changes in the resolved-scale weather is comparable to or smaller 
than the convective adjustment time. Again, this problem is more severe in the emerging high-resolution 
global models, simply because convective systems with smaller spatial scales tend also to have shorter time 
scales. 

Finally, as the resolution of our models increases, we must eventually confront the scale-dependence of 
physical processes themselves. With grid spacings of 200 km, the ‘convective mass flux’ is a highly relevant 
concept; with a grid spacing of 20 km, it is problematic for the larger clouds; with a grid spacing of 2 km, it 
is virtually meaningless. With the finer grid spacing, microphysical processes and turbulence become 
dominant. 

These three problems have been recognized, to some extent, since the earliest days of cloud 
parameterization, but they are now becoming critical because of the increasingly urgent need for higher 
spatial resolution, for weather prediction and also to reveal regional detail in global climate simulations. 

2. Quasi-equilibrium on the edge 
2.1. Sample size and the required separation of spatial scales 

The cumulus parameterizations that are used in virtually all forecast models and climate models are designed 
to represent the statistical effects of large numbers of clouds in a model grid column (e.g., Arakawa and 
Schubert, 1974; hereafter AS). Cumulus parameterizations entail the assumption that the convective clouds 
are in statistical equilibrium or ‘quasi-equilibrium’ with the time-varying large-scale weather conditions. In 
order for the concept of statistical equilibrium to be applicable, the number of clouds included in the sample 
must be sufficiently large. For example, AS wrote: 
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 “Consider a horizontal area … large enough to contain an ensemble of cumulus clouds, but 
small enough to cover only a fraction of a large-scale disturbance. The existence of such an 
area is one of the basic assumptions of this paper.” 

 

 
Figure 1 Sketch taken from Arakawa and Schubert (1974), showing an ensemble of cumulus clouds of 
various sizes, in a shared ‘large-scale environment.’ 

See Fig. 1. Here we interpret the ‘horizontal area’ as the area of a grid column, although this is not necessary. 
The quote above poses two distinct requirements: 

1. The number of clouds in the grid column must be sufficiently large to yield robust statistics, and 

2. The grid column must be small enough to resolve a ‘large-scale disturbance.’ 

The first requirement is closely related to the assumption that there is a clear separation of spatial scales 
between the convective clouds and the grid spacing. The meaning of the second requirement varies, 
depending on the range of grid resolutions considered; with grid spacings on the order of 20 km, ‘large-
scale’ can really mean ‘mesoscale.’  

 Thermodynamics Cloud Parameterization 
Players Molecules Clouds 
Volume 1 cubic cm 1 model grid column 
Sample size Trillions of molecules Dozens to thousands of clouds 
Simplifying assumptions Point-like molecules;  

Inter-molecular collisions 
(usually negligible) 

Small updraft area;  
Uniform environment; 
No direct interactions among clouds 

Nonequilibrium effects Brownian motion, etc. TBD, possibly including mesoscale 
organization 

Table 1: An analogy between cloud parameterization and thermodynamics. See the text for discussion. 

The requirement of a sufficiently large sample of clouds suggests an analogy between cumulus 
parameterization and thermodynamics, which describes the statistical properties of a large number of 
molecules occupying a given volume, assumed to be small compared to the scale on which such statistics as 
temperature and pressure vary. Thinking about this analogy quickly raises concerns about the basic 
feasibility of cumulus parameterization (Table 1). To begin with, there is the alarming problem of sample 
size, already mentioned above. With typical large-scale model grid spacings, on the order of 100 km, the 
number of large cumulus clouds that can ‘fit’ simultaneously into a model grid column is only on the order 
of ten to a hundred. In fact, only a few thousand small cumulus clouds can fit into such a grid column. These 
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cloud population sizes are miniscule compared to the many trillions of molecules occupying a single cubic 
centimeter under tropospheric conditions. The cloud populations are not large enough to yield robust 
statistics for such key quantities as heating and drying rates, i.e., a well defined statistical equilibrium does 
not exist. It follows that heating and drying rates are parameterizable only with large error bars.  

Fig. 2 illustrates the problem of sample size for large clouds. The figure shows the instantaneous horizontal 
distribution of ice water path in a turbulence-resolving simulation of deep cumulus convection over the 
tropical oceans, under moderately disturbed conditions. Although the domain is about 200 km on a side, only 
a few large ice water patches are visible in the grid column.  

The problem of sample size obviously becomes worse as the grid spacing decreases to a 20-50 km, a grid 
spacing already used in some global weather prediction models. This fundamental issue is a focus of the 
proposed research. 

 
Figure 2: A snapshot of ice water path from a numerical simulation performed by M. Khairoutdinov. The 
domain size is 204.8 km square, and the horizontal grid spacing is 100 m. The specified forcing is loosely 
based on GATE Phase III. This image shows the state of the simulation almost 24 hours after 
initialization with random noise. 

Existing cumulus parameterizations also involve simplifying assumptions that break down as a model’s 
resolution increases. An important example is the assumption that the horizontal area covered by convective 
updrafts is small compared to the total area of the grid column. Obviously, this assumption must break down 
when the horizontal grid spacing is comparable to the size of a convective updraft. 
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2.2. Separation of time scales 

A second fundamental issue has to do with time scales. AS wrote: 

“When the time scale of the large-scale forcing, is sufficiently larger than the [convective] 
adjustment time, … the cumulus ensemble follows a sequence of quasi-equilibria with the 
current large-scale forcing. We call this … the quasi-equilibrium assumption…. The adjustment 
… will be toward an equilibrium state … characterized by … balance of the cloud and large-
scale terms…” 

In other words, AS assumed that the convection can adjust the large-scale state on a time scale short 
compared to the time scale for the change of the large-scale state, just as an ensemble molecules can 
equilibrate on a time scale short compared to the time on which such statistics as temperature and moisture 
vary significantly. Various lines of evidence suggest that the ‘adjustment time’ for deep cumulus clouds is on 
the order of several hours, while that for smaller clouds is somewhat shorter.  

When the grid-box-averaged weather changes on a time scale much longer than this cumulus adjustment 
time, the convection can stay close to statistical equilibrium, and the past history of the convection has little 
effect. The required separation of time scales is not adequate for the important case of the diurnal cycle, 
however, and may be marginal even for synoptic weather events.  

In quasi-equilibrium, the large-scale ‘forcing’ and the sounding strongly determine the convective heating 
and drying rates, which adjust ‘instantaneously’ to the evolving large-scale weather. The instantaneous 
forcing determines the instantaneous convective heating and drying rates. The past history of the convection 
does not matter. The expected value of the convective response closely approximates the value in almost all 
realizations, simply because the variance is small compared to the mean. This quasi-equilibrium regime is 
illustrated in Fig. 3. 

 

 
Figure 3: In the quasi-equilibrium regime, the convective response (vertical axis) is strongly determined 
by the time-varying large-scale forcing. The red line represents a simple and strong relationship between 
forcing and response. 

When the large-scale weather evolves so rapidly that the convection cannot keep up, the past history of the 
convection affects the instantaneous convective heating and drying rates. Although the convection is out of 
equilibrium, the convective heating and drying rates are still deterministic. The sequence of large-scale 
forcings strongly determines the sequence of convective heating and drying rates. This deterministic, non-
equilibrium regime is illustrated in Fig. 4. 
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Figure 4: In the non-equilibrium regime, the convection (blue curve) cannot keep up with the time-
varying large-scale forcing (red curve), because the convective adjustment time is too long. 

With smaller grid spacings, in the rage 20-50 km, the time scale for important changes in the grid-averaged 
weather can be relatively short. For example, a mesoscale convective system such as a squall line can fill or 
nearly fill such grid cells, and typically passes through in an hour or so. For this reason, the problem of the 
separation of time scales becomes more severe as the resolution of a model increases. 

When the sample size is too small to yield robust statistics, the convective heating and drying rates have a 
significant stochastic component, i.e., they are only partially predictable. Fig. 5 illustrates this non-
deterministic regime. This stochastic or non-deterministic convection is expected when the grid columns are 
too small to contain a statistically adequate sample of clouds. The uncertainty in the convective heating and 
drying rates introduces an uncertainty in the larger scales. This can be true even when the convective 
adjustment time is small compared to the time-scale for the variation of the large-scale circulation. This type 
of uncertainty is characteristic of the cloud system (e.g., Hohenegger and Schär, 2007); it is part of the 
‘answer,’ and cannot be eliminated by model refinements.  

 
Figure 5: In the non-deterministic regime, the convective response is uncertain even when the convective 
adjustment time is short compared to the time scale for variation of the large-scale forcing. This occurs 
when the sample size is small, e.g., because the grid columns are small. In the figure, the pink ‘fan’ 
represents the uncertainty in the convective response. In this example, the uncertainty has been assumed 
to be proportional to the expected value of the convective response. 
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For the reasons discussed above, an equilibrium theory of cumulus convection should not be expected to 
explain in detail the observed interactions between convection and larger-scale weather systems. 
Nevertheless, the meteorological community has been single-mindedly pursuing such equilibrium theories 
for the past four decades. Only recently has non-equilibrium convection begun to attract attention (e.g., Xu et 
al., 1992; Pan and Randall, 1998; Buizza et al., 1999; Randall et al., 2003; Arakawa, 2004; Shutts and 
Palmer, 2007; Cohen and Craig, 2007; Plant and Craig, 2008). 

2.3. An example with a cloud-resolving model 

It is also possible, of course, to see a combination of the non-equilibrium and non-deterministic regimes. 
This is illustrated in the numerical simulations performed by Xu et al. (1992). They ran a two-dimensional 
cloud-resolving model with a horizontal domain size of 512 km. Although the width of the domain is large, 
the model’s two-dimensionality sharply reduces the sample size, relative to a three-dimensional model with 
the same domain width. They specified a perfectly repeating time-varying large-scale forcing, with a period 
of 27 hours. This period is at most one order of magnitude longer than the adjustment time for the deep 
convective clouds.  

Because the forcing is periodic in time, it is very easy to ‘composite’ or average together multiple periods to 
obtain the average convective response to the time-varying forcing. The results are shown in Fig. 6, in terms 
of the domain-averaged precipitation rate as a function of time. The convective response lags the forcing by 
several hours. The response includes a significant non-deterministic component, as measured by the standard 
deviation of the response for a given phase of the forcing. Some of the individual realizations shown in the 
left panel of Fig. 6 have instantaneous area-averaged precipitation rates that are twice the expected value as 
seen in the ensemble mean. These strong positive fluctuations show that extreme precipitation events can 
occur as non-deterministic fluctuations.  

With a three-dimensional model, the sample size would increase for a given domain size, and so the ‘scatter’ 
in the composite plots would decrease, but the lag would remain unchanged. A larger domain would also 
increase the sample size, of course. 

 
Figure 6: Numerical results obtained by Xu et al. (1992). The left panel shows the results from three 
numerical experiments, arranged vertically. The dashed curves show the periodic forcing. Although the 
three experiments have the same forcing, they differ in the specified vertical shear of the large-scale 
wind; see Xu et al. (1992) for details. The solid curves in the left panel show the simulated precipitation 
rate. The right panel shows the corresponding ensemble-mean results (solid curves) and the variations 
about the means (shading). 

My student Todd Jones has performed simulations similar to those of Xu et al. (1992), but with a three-
dimensional model. He used an idealized GATE-like forcing, with an imposed temporal periodicity. Fig. 7 
shows how the cloud fraction and surface precipitation rate vary as functions of the strength of the forcing, in 
exploratory simulations with a 30-hour forcing period, and a domain width of 256 km. The left panel shows 
the surface precipitation rate, and the right panel shows the total cloud fraction. The surface precipitation rate 
lags the forcing by several hours. This can be interpreted as a consequence of the finite convective 
adjustment time. In contrast, the cloud amount actually leads the forcing, perhaps because the ‘environmental 
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subsidence’ associated with the onset of deep convection favors the destruction of a portion of the pre-
existing cloudiness. As seen in Fig. 8, a ‘hysteresis’ loop appears in the precipitation plot, because the 
precipitation rate increases somewhat slowly as the forcing increases with time. 

2.4. Scale-dependence of heating and drying rates 

A third fundamental issue involves the scale-dependence of the physical processes themselves. The area-
averaged non-radiative ‘apparent heat source’ and ‘apparent moisture sink’ defined by Yanai et al. (1973) are 
given by 
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Here the overbars are very important; they represent an area average, which we interpret as a horizontal 
average over a grid cell. The expressions given above for Q1 and Q2 remain valid regardless of how large or 
small the grid cells are; the grid spacing can be 100 km, or 100 m. The leading terms on the right-hand sides 
represent the effects of condensation, the next terms represent vertical divergences of the convective ‘eddy 
fluxes’ of dry static energy and water vapor, respectively; and the last terms represent the horizontal 
divergences of the convective eddy fluxes, which are normally (and justifiably) neglected in large-scale 
models.  

  
Figure 7: Results obtained in exploratory simulations using the three-dimensional cloud-resolving model 
of Jung and Arakawa (2008) with a 30-hour forcing period. The left panel shows the total cloud fraction 
(one minus the fraction of clear sky), and the right panel shows the surface precipitation rate . In each 
panel, the red curve shows the phase of the prescribed forcing. The calculations were performed by Todd 
Jones of Colorado State University. 

As pointed out by Jung and Arakawa (2004), the roles and relative magnitudes of the various terms 
systematically change as the grid spacing becomes smaller: 

• The vertical transport terms become less important. Later horizontal averaging does not alter this. 

• The horizontal transport terms become more important locally. Horizontal averaging over 
sufficiently many grid columns renders them negligible, however. 

• The phase-change terms become more important, and ultimately become dominant at high 
resolution. 
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Models intended for use with a coarse grid spacing, which includes all existing climate models, must use a 
parameterization that can represent the area-averaged effects of vertical eddy flux divergences due to 
cumulus clouds. ‘Mass-flux’ parameterizations (e.g., Arakawa and Schubert, 1974) are designed with this in 
mind. In contrast, models with much higher resolution appropriately focus on phase changes (as represented 
by microphysical processes), and place much less emphasis on the parameterization of eddy fluxes, which on 
fine scales are due only to turbulence. 

 
Figure 8: Simulated cloud fraction (left) and surface precipitation rate (right) as functions of forcing 
strength. These plots are based on the same results shown in Fig. 7. 

2.5. Summary 

Small sample sizes can lead to non-deterministic fluctuations of the convective heating and drying averaged 
over the grid column of a model. This problem becomes worse as a model’s resolution is increased, because 
the sample size diminishes. 

Finite ‘adjustment times’ cause cloud systems to lag sufficiently rapid changes in the weather, so that quasi-
equilibrium assumptions break down. This problem becomes worse as a model’s resolution is increased, 
because the time scales of the smaller-scale resolved circulations (e.g., mesoscale circulations) are shorter. 

The mechanisms that produce ‘subgrid-scale’ heating and drying systematically change as the grid spacing is 
refined, for a given cloud regime. Vertical eddy flux divergences are paramount when the grid spacing is 
large, but microphysics ultimately dominates as the grid spacing is refined. For this reason, convection 
parameterizations that are physically realistic for use in coarse-resolution models are physically wrong when 
applied in higher-resolution models. 

The three problems identified above are well known but rarely discussed. They are skeletons in our field’s 
closet. Model grid spacings are now increasing into the mesoscale range, so that all three problems become 
more severe. It is time to clean out the closet.  

3. GCMs and CRMs 
One solution to these three problems is to use a ‘cloud-resolving model’ (CRM), i.e., a model with a grid 
spacing that allows at least crude representation of individual large clouds. Such fine meshes have become 
routine in mesoscale models, but are only now becoming feasible in global models. To date, the only global 
cloud resolving model (GCRM) is that developed at the Frontier Research Center for Global Change, in 
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Japan (e.g., Tomita et al., 2005). Although numerical weather prediction with GCRMs may become possible 
within the coming decade, climate simulation with GCRMs is still several decades away, baring an 
unexpectedly dramatic advance in computing power (Wehner et al., 2008).  

A less expensive alternative is the multi-scale modeling framework (MMF), in which a CRM is used as a 
‘super-parameterization’ inside each grid column of an otherwise conventional GCM. This idea was first 
proposed by W. Grabowski (Grabowski,and P. K. Smolarkiewicz, 1999; Grabowski, 2001). It has been 
extended and applied by the Center for Multiscale Modeling of Atmospheric Processes 
(http://cmmap.colostate.edu/cmmap/index.html), as described in a series of papers (e.g., Khairoutdinov and 
Randall, 2001; Randall et al., 2003; Cole et al., 2005; DeMott et al., 2007; Khairoutdinov et al. 2005, 2008; 
Tao et al., 2008). The host GCM provides advective forcing to the CRM, as in a ‘single-column’ study based 
on field data, while the CRM provides heating and drying rates as feedback to the GCM.  

In each GCM grid column of the MMF, the embedded CRM produces a realization of the convective activity 
that is consistent with the large-scale weather regime simulated by the GCM. The chaotic dynamics of the 
CRM ensures that the domain-averaged heating and drying have a stochastic component, as discussed in the 
preceding sections of this paper. The ‘super-parameterization’ represented by the CRM component of the 
MMF is, therefore, an example of a stochastic parameterization. It is expensive, but it has the major 
advantage that it is based directly on the equations of motion and provides a natural framework for the 
incorporation of microphysics, radiative transfer, and turbulence parameterizations. We can hope that in the 
future less expensive stochastic parameterizations will give results as good or better than those produced by 
MMFs, but for now this is merely a hope. We cannot even be sure that it is possible. 

The MMF produces a robust simulation of the Madden-Julian Oscillation (MJO; e.g., Madden and Julian, 
1971, 1994). A forthcoming paper by Benedict and Randall (2009) presents a detailed comparison of the 
MMF-simulated MJO with observations, The main conclusion is that the simulated MJO is quite realistic, 
except that it is stronger than observed.  

A second forthcoming paper by Thayer-Calder and Randall (2009) analyzes particular physical processes 
that seem key to the MMF’s ability to generate an MJO. Emphasis is placed on the role of water vapor. The 
atmosphere is observed to gradually moisten during the weeks of ‘recharge’ (Bladé and Hartmann, 1993) 
preceding the heavy precipitation associated with the MJO. Grabowski (2003) has argued that this 
preconditioning of the humidity is a prerequisite for the growth of the numerous deep convective clouds that 
are characteristic of the disturbed phase of the MJO. On the other hand, Emanuel (1989) pointed out that 
convective downdrafts are inhibited in a very moist atmospheric column, because in the presence of high 
humidity the evaporation of falling rain cannot efficiently cool the air. Bony and Emanuel (2005) used a 
simple linear model to show that the inhibition of downdrafts by high humidity plays a role in the MJO. The 
results of Thayer-Calder and Randall (2009) support the idea that humidity preconditioning is an important 
process in the MJO, and are generally consistent with the theory of Bony and Emanuel (2005). 

4. Concluding discussion 
Cloud parameterizations represent relationships between the large-scale weather pattern and convective 
heating and drying rates. The relationships are by no means fully deterministic, nor are they purely 
diagnostic when the weather regime is rapidly changing. Emerging high-resolution global models must 
confront these issues, which are only now beginning to receive the attention that they require.  

One approach to non-deterministic, non-equilibrium parameterization is the ‘super-parameterization,’ in 
which a CRM is embedded in each grid column of a large-scale model to create a Multiscale Modeling 
Framework. Tests of this approach have produced encouraging results, especially in simulations of the 
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Madden-Julian Oscillation. Efforts are under way to use MMF results to understand the processes that give 
rise to the MJO in nature, and to use this improved understanding to create more realistic conventional 
parameterizations. 
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