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1. Introduction 

Landmasses cover a large portion of the northern hemisphere, and nearly one-half of Eurasia and 

North America are extensively covered with snow in the cold season (Dery and Brown, 2007). Snow-

covered land plays a key role in the climate system, owing to the snow radiative and thermodynamical 

properties, such as high albedo, high emissivity and low thermal conductivity, and its effect on surface 

fluxes of moisture and heat.  Snow covered land can hence impact climate in a variety of ways. The 

snow-albedo feedback plays an important role in the spring (e.g. Schlosser and Mocko, 2003) when an 

early seasonal retreat of the snow cover acts as a positive feedback on spring temperatures. However, 

the climate response to high-latitude snow cover could also involve thermodynamical feedbacks in the 

surface energy balance, as well as large-scale dynamical feedbacks.  Eastern Eurasia for example, is a 

region where the Asian jet establishes a near-zonal waveguide for propagating Rossby waves arising 

from thermal anomalies, and transient propagating eddies could also be influenced by the meridional 

extent of the snow cover (Corti et al., 1999). At high northern latitudes, the snow cover seasonal 

variability is also important for greenhouse gases emissions (e.g. methane), the carbon cycle as well as 

the river run-off. 

There are also indications from model and observational studies that snow cover also affects large-

scale atmospheric variability. The snow cover obviously depends strongly on the atmospheric 

circulation. Hence the weak, indirect feedback of snow cover on the atmospheric circulation is not 

easily derived from observational correlative studies, or from standard model studies. Dedicated model 

studies are more amenable to test such a weak coupling, as is the case for soil moisture feedback on 

precipitation and temperature (Koster et al., 2006). 

However, it is not obvious to design experiments to test the snow cover impact on circulation and 

especially on atmospheric predictability. Long simulations are needed to establish beyond doubt a skill 

increment resulting from improved representation of the snow variables. On the observational side, a 

reliable satellite record of snow cover extent from visible and infrared imagery dates only from the 

early seventies, and the retrieval of snow depth (or snow water equivalent) from satellite microwave 

passive measurements is even shorter (Grippa et al., 2004).  Despite these limitations, there is 

increased interest in tapping into the memory effect of surface conditions, such as soil moisture and 

snow, as a possible source of improved seasonal-to-decadal predictability. 
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Several links between Eurasian snow cover and the atmospheric general circulation have been studied. 

A linkage between the spring Eurasian snow cover and the summer Indian monsoon has been 

proposed but its stationarity is being revisited in light of more recent data (see Douville, this issue).  

On the other hand, there is a robust track of observational studies and modelling experiments 

indicating an Eurasian snow cover impact over the North Pacific, with extensive snow cover leading to 

a deeper than normal Aleutian low (Wash and Ross, 1988; Yasunari et al.,1991; Clark and Serreze, 

2000). In addition, a series of papers (Cohen et al., 2002; Gong et al., 2003; Saito et al., 2001; Fletcher 

et al., 2007;2009) provided evidence that the autumn Eurasian snow cover correlates with the North 

Atlantic Oscillation (NAO) during the following winter. The authors proposed that, through the albedo 

feedback, extensive Eurasian snow cover anomalies in early autumn induce diabatic cooling, amplify 

the Siberian High and augment the upward stationary wave activity flux above Siberia. In their view, 

the response to snow anomalies, far from being shallow, involves the propagation of stationary waves 

into the stratosphere.  

While there is a NAO / autumn Eurasian snow cover link in observations, many GCM simulations fail 

to reproduce this linkage, and Hardiman et al. (2008) indicated several possible cause for this 

deficiency. One first issue is that the inter-annual variability in many models is lesser than in the 

satellite observations during transition seasons. Another might be the longitudinal structure of the 

response to snow forcing, and Hardiman et al. (2008) showed the example of the GFDL model having 

a too zonally confined response, which hampers vertical propagation into the stratosphere. 

To correct model deficiencies, one approach consists of prescribing idealised or observed snow cover, 

and possibly depth, through nudging. In this category are the large-ensemble, nudging experiments 

using satellite observations (Cohen and Entekhabi, 1999; Gong et al., 2002), but these were often 

restricted to extreme winters. Also, Flechter et al. (2008) and Gong et al. (2004) used prescribed, 

idealized snow forcings in their studies, applying a constant depth throughout Eurasia. Most of the 

previous studies were either observational or else model studies for specific seasons, and it remains to 

be evaluated if inter-annual circulation anomalies could be attributed to the snow cover variability in 

climate model simulations spanning several decades, with realistically varying, satellite-derived snow 

cover. Kumar and Yang (2003) performed decadal simulations, comparing prognostic and prescribed 

climatological snow variables, but not satellite-derived varying snow cover.  

 

2. Simulation with the “Arpege Climat” model using  

prescribed snow cover 

To this end, we performed a suite of dedicated model ensemble simulations, spanning two decades 

(1979-2000). We did not perform rigorous data assimilation, but rather forced the observed snow 

cover extent from satellite observations onto the model, akin to a “data insertion” approach. Our 

ensemble simulations with the “Arpege Climat” AGCM (V3.0) (Deque et al., 1994) were made at 

horizontal resolution T63, with 31 vertical levels, a top at 10 hPa and with prescribed SSTs and sea-ice 

conditions. After a 5-year spin-up, simulations were analysed over the years 1979 to 2000.  

The “Arpege Climat” model comprises a land-surface scheme and a physically based snow hydrology 

model, as described by, e.g., Douville et al. (1995a,b). Snow observations consists of observed, 

gridded, 24-square-kms snow cover fraction, from the EASE dataset provided by the US National 

Snow and Ice Data Centre (NSIDC, Boulder, Colorado). The remotely sensed data is based on visible 
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and infrared satellite imagery.  In our main prescribed snow simulation, labelled SNS, the model snow 

cover is overwritten using year-round satellite snow cover fraction observations every 5 days. Snow 

cover is not a prognostic model variable, and the snow mass is adjusted using a model climatological 

value; more information about the treatment of snow variables is given in Orsolini and Kvamstø 

(2009). The control simulation is labelled PCL. Our analysis so far has focused on winter months 

(DJF). ECMWF ERA-40 re-analyses are used for verification. 

In Figure 1, the climatological annual cycle of the fractional snow cover area and its inter-annual 

variance are shown over Eastern Eurasia (80E-155E; 35-70N) in the forced and prognostic 

simulations, and in the satellite observations. The snow cover extent in SNS is more extensive than in 

PCL throughout the cold season (November to March), when it closely matches the satellite-derived 

extent. The inter-annual variance is enhanced in the two transition seasons: in the autumn-early winter, 

marking the beginning of the cold season snow build-up, and in the spring. These two seasonal 

maxima are better reproduced in SNS than in PCL simulation, albeit still weaker than in the 

observations.  Figure 2 shows the mean October-November-December (OND) fractional snow cover 

over Eastern Eurasia from 1979 to 2000. The year-to-year variability is much weaker in PCL than in 

the observations, but is augmented in the forced simulation, as could be inferred from Figure 1 as well. 

In SNS, the snow cover closely follows, but is not identical to, the observations. The mean snow cover 

is slightly more extensive than in the observations, and autumns with reduced snow cover are 

overestimated, due to imperfect nudging. 

The winter high-latitude circulation is characterised by two semi-permanent oceanic lows, the 

Aleutian Low (AL) and the Icelandic Low (IL). The two Lows fluctuate in unison in a seesaw, with a 

peak period in late winter, in a teleconnection termed the Aleutian Low-Icelandic Low Seesaw (AIS)  

(Honda et al., 2001). The AIS originates from early winter Pacific anomalies, which propagate 

downstream into the Atlantic sector over a time scale of 1-2 months, through the eastward extension of 

a PNA-like pattern. In the positive phase of the seesaw, the AL is weaker than normal. We now 

demonstrate that their year-to-year variability is more realistic in the ensemble-mean forced than in the 

control simulations. Variability of the AL and IL is examined using monthly AL and IL indices, 

obtained from averaging SLP over the regions where the SLP inter-annual variability is maximal. The 

AIS index is defined as the difference between the standardized AL and IL (Honda et al., 2001a,b). In 

our forced simulation (SNS), the AL/IL anti-correlation is 0.32 while it is –0.43 in ERA-40 re-

analyses. The AIS has been shown to be strongly influenced by the ENSO phenomenon, and to extend 

into the stratosphere  (Nakamura and Honda, 2002; Orsolini et al., 2008).  
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Figure 1. Climatological annual cycle of the fractional snow cover area over Eastern Eurasia 

(80E-155E; 35N-70N). The three curves refer to the forced (SNS, thick line) and prognostic (PCL, 

long dash thin line) simulations, and satellite observations (dot-dash line). Also shown is the inter-

annual variance of the same quantity. 

 
 

 
Figure 2. Fractional snow cover area of Eastern Eurasia (80E-155E; 35N-70N) in autumn-early 

winter (October-November-December, labelled as winter on x-axis), for the satellite observations 

(black line), the prognostic snow (PCL, thin blue line) and the forced snow (SNS, thick blue line) 

simulations.  
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The February ensemble-means of these 3 indices are shown in Fig. 3 over the period 1979-1999, for 

both simulations and for ERA-40 re-analyses. The (deterministic) skill score is defined as the 

correlation of the ensemble-mean index with the corresponding observed index, derived from ERA-40 

re-analyses. In the forced simulation, the ensemble-mean skill for the AIS is higher (0.66) than in the 

control simulation (0.38), hinting that the snow cover is indeed modulating the AIS in late winter.  

 
Figure 3. Ensemble-mean normalised indices for the Icelandic Low (IL), Aleutian Low (AL) and 

the Aleutian-Icelandic Low Seesaw (AIS, or AL minus IL) in February. Indices are shown for 

ERA40 re-analyses (black line), the forced (SNS, thick blue line) and prognostic (PCL, thin blue 

line). Although the AIS is calculated in February, the x-axis refers December in order to ease 

comparison with Figure 2.  (e.g. 1989 refers to winter 1989/90, and AIS index in February 1990).  

 

3. Discussion of the results 

Several findings of Cohen and Entekhabi (1999), Saito et al. (2001), Gong et al. (2004), and Hardiman 

et al. (2008), are consistent with our study: with extensive (lessened) Eurasian autumn snow cover, the 

late-winter AIS negative (positive) phase is indeed associated with enhanced upward wave activity 

flux across Eurasia in mid-latitudes.  On the other hand, we did not find an anti-correlation between 

autumn Eurasian snow indices and the winter NAO in our simulations, while such an anti-correlation 

exists between the satellite-derived Eurasian snow cover index and the ERA-40 based NAO index (-

0.51). One possible explanation is that, while Eurasian snow cover exerts an influence upon the North 

Pacific and the North Atlantic, the models might not capture the mid-latitude component of the NAO, 

that is, the Atlantic High variability. This issue needs further investigation. 

The stratospheric pathway proposed by these authors would in fact be consistent with the quasi-

horizontal propagation associated to the AIS discussed here: in the negative phase of the AIS, 

enhanced wave propagation into the stratosphere (Nakamura and Honda, 2002) would lead to a more 

disturbed polar vortex, and the downward propagation of stratospheric anomalies would reinforce the 

negative phase of the AIS, as well as the NAO, and increase heights over the Arctic. The ability of our 

model to demonstrate the occurrence of a stratospheric downward-propagating influence is limited by 

the fact that only monthly-mean fields have been retained, and that the model lid is at 10 hPa. 
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While other model or observational studies (cited in Introduction) had found a seasonal influence of 

the Eurasian snow cover onto the North Pacific circulation, our analysis of decadal simulations 

demonstrate that the autumn-early winter Eastern Eurasian snow cover distinctly influences the year-

to-year variability over the North Pacific from the surface to the stratosphere (extensive snow cover 

leading to a deepened Aleutian Low), even impacting the North Atlantic in late winter. This improves 

the hindcast of the Aleutian and Icelandic lows, and the Aleutian-Icelandic Low Seesaw 

teleconnection. The snow cover influences the stationary planetary waves and their upward 

propagation, as demonstrated in previous studies (eg. Saito et al., 2001), reinforcing the trough over 

Eastern Eurasia and the North Pacific.  

 

4. Future prospects 

In order to investigate the influence of snow conditions onto the surface and upper-air circulation, and 

especially the actual impact on predictive skill brought by improved snow initialisation, newer 

dedicated simulations are needed. One potential promising approach would be to follow the GLACE-2 

(see Koster, this issue) methodology used to investigate the local soil moisture impact on surface 

temperature and precipitation during the warm season. Simulations with most realistic snow initial 

conditions would be compared with simulations with randomised snow initialisation, but the two set of 

ensemble simulations would be identical in their initialisation of atmospheric conditions or of other 

surface variables. In such an approach, local “cool spots” of snow-atmosphere coupling would be 

better identified. Potential remote effects induced by the snow-induced cooling would also of great 

interest for seasonal forecasting.  A sufficient number of years would have to be simulated to establish 

the skill increment resulting from a better initialisation of snow variables.  
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