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ABSTRACT

Snow is an important component of the land surface, and thieetof products for assimilation or verification
can have a large impact on the surface analysis. This papedites the many sources of snow data that are
currently available, both in situ and from remote sensingifspace, along with some recent developments. Snow
extent products are derived from the biggest range of semsat are the most widely used, while information on
snow mass from space is still too error-prone to be used ssftdy in assimilation schemes.

1 Introduction

Snow provides important energy and moisture boundary tiondito the atmosphere at the land surface,
and long time series of snow extent and mass from reanalysiiie useful for many hydrological and
climate applications. For operational use, observatidssaowv must be available in real time and would
ideally be global in extent and come with error estimategabat suitable for operational assimilation
could be important independent verification of operatidostcasts, or for reanalysis.

Ground-based snow measurements have been made at meymalogtations in many parts of the
world, butChang et al(2005 suggest that to obtain an error of less than 5cm in a 1 degréedbgree
grid cell, ten measurements are required. This density aSomements is unlikely to be achieved over
a wide area. Remote sensing using satellites emerged iretomd half of the twentieth century as a
means of gathering spatially and temporally continuouas#s of both snow extent and mass, or snow
water equivalent (SWE). Snow extent datasets are derieed & range of different instruments and re-
quire differing amounts of manual processing. SWE datalig @trieved from microwave instruments.
Spaceborne scatterometers are also now being used to memiwmelt, while other snow parameters
such as albedo and grain size are also beginning to be edrfesn measured reflectances.

2 Current productsused at ECMWF

Prior to 2004, and for the ERA40 reanalysis, the analysedvsmas relaxed to the Foster and Davy
climatology (988, which used synoptic stations, literature searches a@nwhtdlogical records to re-
construct manually a gridded hemispheric snow depth ctitngy. However, the authors themselves
acknowledge low confidence in data at high latitudes, ansyaic biases have been identified, which
are particularly problematic over EurasBréwn and Frei2007). The ERA40 reanalysis also assim-
ilated in situ data from the former USSR snow surveys betwi6 and 1990 and Canadian snow
depths from 1946-1995. There is a problem in the ERA40 sndevlaketween 1989 and 1994 and these
data should be discardedgpala et al.2005 Clifford et al., 2009).

Since 2004, the operational scheme uses the Northern Heenesgnow cover product from NOAA/
NESDIS which provides daily data in near real time. The impEchis change in data use can be
seen by comparing the snow fields from the ERA Interim reaislpefore and after 2004 (figug.
Pre-2004, the snow analysis resembles that from ERA40gvdfier 2004 the distribution of snow is
very different.
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Figure 1: Snow water equivalent (mm), from ERA Interim for February 2002 and 2003 (pre use of
NESDIS extent data), and February 2004 and 2005 (with NESDISextent data assimilated).

3 Ground-based measurements

A number of in situ snow monitoring networks and intensivédfisampaigns exist that could provide
input to or verification for operational snow fields and rdgsia. Since 1980, a network of snow sensors
called SNOTEL has been recording data at 730 sites in 11 meldi@ states. Most of the stations are in
remote, high-mountain locations, which means the data teekd used carefully to avoid, for instance,
elevation biases. Instruments include a pressure sensiy gillow, a storage precipitation gauge,
and air temperature sensors. Soil temperature and moisteasurements are also available at some
sites. The network reports in near real time at sub-dailgleéi®n, and longer-term average products
are also provided. Information about and access to the siéand at the United States Department of
Agriculture’s Natural Resources Conservation Servicesitebhttp://www.wcc.nrcs.usda.gov/snow/.

The Cold Land Processes Experiment (CLPX) consisted ofi@ssef intensive multi-sensor field cam-
paigns over winter and spring 2002 and 2003 in Colorado, ated Alaska (for CLPX-2). The field sites
ranged in size from 1 ha to 160,000 km2 in a nested arranges@iitat the scaling of measurements
and processes in cold environments could be investigatedur@, airborne and spaceborne observa-
tions of meteorological and land surface variables werkec@d, making this dataset a useful resource
for the development of techniques to combine data at maldpales. A journal special issue focussing
on the results of the campaign was published in 2@&z{er and Melloh2008), and data is held at the
National Snow and Ice Data Center (NSIDC).

A further technique that may be developed in future is usiRSGeceivers to infer snow variability.
Reflections of GPS signals from snow-covered ground ardelgliely minimised, buLarson et al.
(2009 showed that there remains a correlation with snow depthctiad be exploited. Advantages of
this method include an existing network of GPS receiversnfna high latitudes), and a much larger
representative area for each measurement than, for imstarsmiow pillow (10,000Aws 10 n¥).
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4 Remote sensing products

4.1 Snow extent and duration

Snow extent data is usually provided by visible band insamnits, as snow has high albedo in the visible
part of the spectrum so shows up clearly next to the (low apedow-free surface. Careful discrim-
ination is required between snow cover and cloud cover, aisdestimated that more than a third of
the northern parts of both continents is obscured by cloudisigl the winter months. The data is also
affected by low solar illumination in winter, making the aliite pictures harder to interprefiei et al,
2003. Masking of the snow due to vegetation can also be a probdewigible band sensors.

Active instruments such as NSCAT and QuikSCAT have been tesddtect melting snow through the
change in radar backscatter and hence derive a snowNigki€m and Tsai2001). Snow onset and
melt datasets have also been derived from these scattensydang et al.(2008 found significant
correlations with snow-off dates derived from station ddtaough melt was difficult to detect in dense
forest or where snow cover is very shallow, such as acrossitttea. A dataset of snow-off dates has
been compiled by the Canadian Centre for Remote Sensin@8&2-2004 Zhao and Fernande2009.

It is based on the daily 5km Equal Area Scalable Extent (EASHE{) product from AVHRR and uses
a new snow cover fraction algorithm that takes account aictloover. Snow-off date is defined as the
date when a pixel has no snow for at least three continuous dlayng the spring melting season.

A widley-used snow extent product is that from the Nationaé&nic and Atmospheric Administration
(NOAA)/National Environmental Satellite, Data, and Infaation Service (NESDIS). Weekly snow ex-
tent data goes back to 1966, but from 1997 onwards a dailyuptdchown as the Interactive Multisensor
Snow and Ice Mapping System (IMS) became operational. Sweerds interpreted by analysts using
primarily data from Polar Operational Environmental Sdesl (POES) and Geostationary Orbiting En-
vironmental Satellites (GOES), but also other visible androwvave imagers, with a pixel designated
as snow-covered when more than 50% is covered with snow.

The MODIS instrument, launched in 2000, has a fully autochatgorithm for determining snow extent,
unlike the IMS, and daily products at 500m resolution arelabke. The MODIS snow products also
make use of an automatic cloud mask, which is conservatieegtikely to identify clear sky as clouds
than vice versa). Masking by vegetation can be a probldatl;et al.(2001) assess errors in the MODIS
snow cover retrieval due to land cover type by assigninggrgege errors for each of seven land cover
classes, plus additional errors due to mixed pixel effe€tey estimate that the Northern hemisphere
show extent mapping error is 8%, largely due to the amountrafst cover north of the snowline.

Other large scale snow extent products include a North Azaarnly 1km dataset from the National Op-
erational Hydrologic Remote Sensing Center (NOHRSC), bés®ed on AVHRR and GOES data, and
products derived from microwave radiometers such as thei@pgensor Microwave/Imager (SSM/I)
and the Scanning Multichannel Microwave Radiometer (SMMRE detection of snow cover using mi-
crowave frequencies has a number of advantages over usildgvband imagery. Data can be obtained
during darkness or when the sky is overcast, as clouds alg ti@nsparent at microwave frequencies.
However, the microwave measurements are not sensitivartasiiow, so will underestimate the total
extent.

A number of large-scale comparisons of snow extent data beee performed. A comparison of data
from MODIS, NOHRSC and SSM/I was undertakentbgll et al.(2002). They found that MODIS and

NOHRSC often agree well, although MODIS nearly always mafmger area as snow-covered. As
expected, SSM/I shows the lowest snow-covered area althagigeement between MODIS and SSM/I
increases as the snow season progreggesstrong and Brodzik2001) found that data from visible and

passive microwave sensors showed similar interannuabitity, but that the microwave measurements
underestimated the extent by up to eight million squarenkdtres, compared to the visible data. The
largest differences were found in autumn with some impram@nn winter and the most agreement in
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spring. A comparison of snow-off dates from QuikSCAT, MORIRI the IMS shows agreement is good
over Siberia but in the Canadian Arctic the IMS shows snovsésteral days longer than the other data
sources. It is suggested that the high concentration afdvered lakes in the Canadian Arctic hinders
the manual determination of the snowline in the IMS prod@ttr{s Derksen, pers comm 2009).

The different snow covered area datasets see different@sofisnow, but the interannual variability
in extent show good agreement once datasets are normdhisadich the same way as ensemble means
of climate forecasts, the average snow cover anomaly froftipleudatasets seems to do better than any
one dataset. Interestingly, the multi-dataset mean mean saver extent anomaly series was almost
identical to the snow cover anomaly series derived from ERANow depths (manuscript in prep, Ross
Brown 2009).

MODIS reflectance measurements have also been used to darfaee grain size and albedo using a
variety of methods. Most recentlainter et al(2009 demonstrate the simultaneous retrieval of the
snow fraction, albedo and grain size of each MODIS pixel gidiimear spectral mixture analysis. The

retrieval is physically-based and because both the gram and snow covered fraction are retrieved
simultaneously, neither relies on an assumed value of tiex.othe method can also estimate the pixel-
by-pixel uncertainty in snow fraction, which would be of fiaular use in data assimilation schemes.

4.2 Snow water equivalent

Snow water equivalent (or mass, or depth) is derived fromsoreenents at microwave frequencies, al-
though to date no instrument has been flown specifically fertihirpose. Microwave imagers with chan-
nels that have been used for snow measurements include SK®MR1987), SSM/I (1987-present) and
AMSR-E (2003-present). Retrievals are generally basedhenvork of Chang et al(1987), where the
linearized difference between two frequency channelsed ts infer the mass of snow on the ground:

SWE (mm)=c(Tg18H — Tg37H) @

whereH refers to the horizontally polarized channg,is brightness temperature in degrees Kelvin and
the gradient of the linear fit, is generally derived from radiative transfer models basedn assumed
grain size. This regression-based retrieval method isitsen$o this grain size assumption, and the
frequency difference saturates in deep snowpacks anddesiise to very shallow ones. The Tibetan
plateau is a problematic area for microwave imagers: thesgpimere is very dry so the area is often
snow-free, although it is often misclassified by passiveroweave brightness temperatures as snow-
covered as it is so coldAfmstrong et al.2004). Most operational retrievals, including that described
above, use a ‘static’ approach, where the algorithm usesstat linear coefficiert both spatially and
throughout the season.

The longest-term global SWE product based entirely on easiens is the Global Snow Water Equiv-
alent Climatology, provided by the NSID@(mstrong et al.2005. The climatology is produced from
a combination of SMMR, SSM/I and visible data, with the passnicrowave data providing the SWE
information, and visible data is used to fill in any pixelstthgere seen to be snow covered but not de-
tected by the microwave radiometer. Only data from the 37@htz19GHz channels are used, gridded
to the 25km EASE grid. The dataset comprises monthly means ovember 1978 to May 2007 (as
of late 2009). To account for the masking effect of vegetatibe algorithm is adjusted by a forest factor
using MODIS land cover. This factor increases on a linealesaih forest cover percentage, up to a
maximum value for forest cover fraction of 50% or above. Aiknproduct based entirely on AMSR-E
observations is also now available from NSIDC.

Foster et al(2005 propose a modified version of the original Chang algoritleen( 1) to investigate
the errors due to the effect of vegetation cover and the gssoimof constant grain size. The new
algorithm now uses seasonally- and spatially-varyingesgjon coefficients, relating to climatological
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forest cover and grain size variability. The new algoritlean improvement during the melting phase,
however there are still problems observed in dense marfonests and alpine regions around the Great
Lakes. ‘Dynamic’ approaches, where the grain size used/esokith time and is dependent on, for
example, the temperature history of the pixel, have alsm lieweloped. Tedesco et al(2010 have
recently compared the following approaches for real timeEx\étrieval:

Static retrieval The retrieval ofFoster et al(2005 described above. This is the benchmark to which
all the other methods are compared.

Dynamicretrieval Retrieval coefficients are recalibrated every few days agkseaccording to ancil-
lary in situ snow depth data

Forward modelling with an EM model ‘Effective grain size’ parameter in the forward model récal
brated every few days or weeks according to ancillary insitow depths

Land surface model Forcing comes from the Global Land Data Assimilation Systenich provides
meteorological forcing at 2x2.5 degrees resolution at Jlgaatervals. These forcing data are
derived from observed data at global scales.

These different approaches are evaluated with 3 years dfinlata at 37 WMO stations. The biggest
improvements are seen with the dynamic retrieval, whiclivsh80-90% reduction in RMSE compared
to ground-measured snow depth. The EM model also offersamgpnents but not so much, and at
some stations performs significantly worse. This could be tduthe neglect of snow stratification in
the model, and soil properties not being calibrated for fifferént sites. The highest RMSE for the
benchmark retrieval and the forward model is for heavilyefted stations. RMSE at these stations
for the novel approaches is lower: dynamic approaches haveeed to take account of the vegetation
explicitly as this is included implicitly through the upéditretrieval coefficient. Estimates of SWE using
the land surface model come out equal to the dynamic retrieaerms of RMSE, and as the best in
terms of a correlation coefficient. Using the microwave @datds no information to the model estimates:
high frequency noise in the brightness temperatures degithé model estimates, and signal saturation
prevents information retrieval for deep snowpacks.

Similarly, recent attempts to assimilate retrieved SWEhwitland surface model and meteorological
forcing data and have not been very successful. A Kalmam éjproach was used to assimilate re-
motely sensed SWE data into a macroscale hydrology moddrureadis and Lettenmaig¢2006),

but the output appeared to be dominated by retrieval errBismulation of ground-measured bright-
ness temperatures using forward models driven by snow péitsarements can improve snow depth
estimates urand et al. 2009 but scaling up to satellite pixels is a problem. The landasag model
requires several snow layers and model melt-refreezeddpeigood estimates of brightness tempera-
tures Purand et al.2008, and deriving suitable input parameters such as grainasigéobal scales is
troublesome.

5 Multi-source products

Several products are available that use a mixture of dat@asto produce global products. The ESA
Globsnow project aims to produce two fundamental climata decords, one for snow extent and one for
SWE. The project team includes agencies and companies fiolanB, Norway, Austria, Switzerland
and Canada. Snow extent data will be provided from 1995 asyéased on medium resolution optical
imagery. The basic product will be available weekly and rhigntvith 1km resolution globally, 250 and
500m for complex terrain. The SWE data will be obtained fromigture of active and passive, optical
and microwave-based spaceborne sensors combined withdyb@sed weather station observations,
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with the retrieval based oRulliainen(2006. This retrieval uses a Bayesian approach within a data
assimilation framework to compare the brightness tempezaspectral difference with station data,
based on prior error estimates. The estimated accuracyeddutput is 25-40mm for areas with less
than 150mm of SWE, with daily output at a resolution of 25kmg @xcluding the mountainous areas,
Greenland, the glaciers and snow on ice.

Another blended product is the Air Force Weather Agency/WAhow Algorithm (ANSA), at 25km
resolution (Foster et al, in press). It combines data on smdent, SWE, fractional snow cover, snow-
pack ripening, onset of snowmelt and actively melting aiieaall weathers. MODIS is the default
data source for cloud-free snow cover data and as a qualitgkcbhn SWE retrievals from AMSR-E.
The SWE algorithm first checks brightness temperature tbids to ensure the presence of snow, then
subsequently for whether the snow is shallow, medium or.dé&éen the retrieval algorithm dfelly
(2009 is used along with 500m resolution forest data to retriev@sdepth. This is converted to SWE
using Sturm classesturm et al. 1995. AMSR-E is also used to detect wet snow (incipient meltdipri
to active melting. The QSCAT diurnal difference (relativackscatter between morning and afternoon
passes) is used to identify active snowmelt.

6 Final remarks

Recently there has been an increase in the number and vefigtpw data products available, particu-
larly at global scales. The longest-term datasets from teisensing are now several decades long, pro-
viding an important observational record of interannualakility. The range of methods for obtaining
show extent data allows much inter-comparison, althougé caist still be taken over the discrimina-
tion of cloud-covered and snow-covered scenes. New teabgigsing active microwave sensors will
add to the range and resolution of remotely sensed dataley@oining years.

Nevertheless, there are still many questions about thebitidy and utility of SWE retrievals from pas-
sive microwave sensors. Several studies have shown thate®Wiates from good land surface models
are actually degraded by the introduction of passive miex@ndata Andreadis and Lettenmaig2006
Tedesco et al.2010, and in some cases by assimilating in situ data (Ross Brpers comm). As-
similation of in situ snow depth and/or SWE observationalicessful where the observations are both
dense enough to properly sample the terrain, and are udbéssienates of the snow cover. These two
conditions are rarely met. It is also important to note, hmvethat much of the algorithm development
and calibration for remote sensing has taken place in Nortlerca, and that application of these re-
trievals over Siberia is relatively untested, due to a gguafiground data and good quality forcing for
land surface models.

A snow property that appears repeatedly in remote sensiniguvas is the grain size. Care must be

taken over the interpretation of this parameter, as it ischedr that the grain size that is measured in
the field or laboratory is easily related to the bulk paramttat controls the scattering over a satellite

pixel at optical or at microwave frequencies. With the depelent of active remote sensing techniques
there now exists the opporunity to study the scatteringgnas of snow from space at finer scales. The
combination of data from different sources, used to maxantieir particular strengths and minimise

the number of assumptions inbuilt into retrievals, is sutlkeé next step in measuring and understanding
snow across the globe.

7 Acknowledgements

Much of the material for this paper was provided by the veipfué members of the snow community.
Particular thanks go to Chris Derksen, Ross Brown, Marce3ed, Ed Kim, Nick Rutter, Jim Foster
and Alex Langlois.

120 ECMWF/GLASS Workshop on Land surface modelling, 9-12éober 2009



CLIFFORD, D.: SNOW PRODUCTS FOR ASSIMILATION AND VERIFICATION

References

K.M. Andreadis and D.P. Lettenmaier. Assimilating remptsensed snow observations into a
macroscale hydrology modeAdvances in Water Resources, 29:872—-886, 2006.

Richard L. Armstrong and Mary J. Brodzik. Recent Northermisphere snow extent: a comparison
of data derived from visible and microwave satellite sesis@eophysical Research Letters, 28(19):
3673-3676, 2001.

R.L. Armstrong, M.J. Brodzik, J.R. Wang, M.H. Savoie, O. &eafeld, and T. Zhang. Solutions to
the snow cover mapping anomaly over the Tibetan plateaugposin Fall Meet. Suppl. Abstract
C31A-0282. Eos Trans. AGU, 2004.

R.L. Armstrong, M.J. Brodzik, K. Knowles, and M. Savoie. G& monthly EASE-Grid snow water
equivalent climatology. Digital media, 2005. Boulder, Q@ational Snow and Ice Data Center.

R.D. Brown and A. Frei. Comment on “Evaluation of surfaceedl» and snow cover in AR4 coupled
models by A. Roesch”Journal of Geophysical Research, 112:doi:10.1029/2006JD008339, 2007.

A.T.C. Chang, J.L. Foster, and D.K. Hall. Nimbus-7 derivdobgl snow cover parameterénnals of
Glaciology, 9:39-44, 1987.

A.T.C. Chang, R.E.J. Kelly, E.G. Josberger, R.L. Armstrohg. Foster, and N.M. Mognard. Analysis
of ground-measured and passive-microwave-derived sn@thdariations in midwinter across the
northern Great Plainslournal of Hydrometeorology, 6:20-33, 2005.

D. Clifford, R. Gurney, and K. Haines. Effect of ENSO phaselange-scale snow water equivalent
distribution in a GCM.Journal of Climate, 22:6153-6167, 2009.

J. Dozier and R. Melloh. Cold Land Processes Experimentalgesue.Journal of Hydrometeorol ogy,
9:952-1019, 2008.

M. Durand, E.J. kim, and S.A. Margulis. Quantifying uncartain modeling snow microwave radiance
for a mountain snowpack at the point-scale, including igtraphic effects. |[EEE Transactions on
Geoscience and Remote Sensing, 46:1753-1767, 2008.

M. Durand, E.J. Kim, and S.A. Margulis. Radiance assimitathows promise for snowpack charac-
terization. Geophysical Research Letters, 36:d0i:10.1029/2008GL035214, 2009.

D. Foster and R. Davy. Global snow depth climatology. USABIPUSAFETAC/TN-88/006, 1988.
U.S. Air Force Environ. Tech. Appl. Cent., Scott Air ForcesBalll.

James L. Foster, Chaojiao Sun, Jeffrey P. Walker, Richatly,kdfred Chang, Jiarui Dong, and Hugh
Powell. Quantifying the uncertainty in passive microwamevg water equivalent observationBe-
mote Sensing of Environment, 94:187-203, 2005.

J.L. Foster, D.K. Hall, J.B. Eylander, G.A. Riggs, S.V. Nghi, M. Tedesco, E. Kim, P.M. Montesano,
R.E.J. Kelly, K.A. Casey, and B. Choudhury. A blended glabraw product using visible, passive
microwave and scatterometer satellite data. Manuscriptéparation.

Allan Frei, James A. Miller, and David A. Robinson. Improveinulations of snow extent in the
second phase of the Atmospheric Model IntercomparisoreBrpAMIP-2). Journal of Geophysical
Research, 108:10.1029/2002JD003030, 2003. doi: 10.1029/20023D80.

D.K. Hall, J.L. Foster, V.V. Salomonson, A.G. Klein, and .LYChien. Development of a technique
to assess snow-cover mapping errors from spd&#E Transactions on Geoscience and Remote
Sensing, 39:432-438, 2001.

ECMWF/GLASS Workshop on Land surface modelling, 9-12 Noken2009 121



CLIFFORD, D.: SNOW PRODUCTS FOR ASSIMILATION AND VERIFICATION

D.K. Hall, R.E.J. Kelly, G.A. Riggs, A.T.C. Chang, and J.lodter. Assessment of the relative accuracy
of hemispheric-scale snow-cover magsnals of Glaciology, 34:24-30, 2002.

R. Kelly. The AMSR-E snow depth algorithm: description andial results. Journal of the Remote
Sensing Society of Japan, 29:307-317, 2009.

K.M. Larson, E.D. Gutmann, V.U. Zavorotny, J.J. Braun, M.Williams, and F.G. Nievin-
ski. Can we measure snow depth with GPS receivers@eophysical Research Letters, 36:
doi:10.1029/2009GL039430, 2009.

S.V. Nghiem and W.Y. Tsai. Global snow cover monitoring wsftaceborne Ku-band scatterometer.
| EEE Transactions on Geoscience and Remote Sensing, 39:2118-2134, 2001.

T.H. Painter, K. Rittger, C. McKenzie, P. Slaughter, R. Baand J. Dozier. Retrieval of subpixel snow
covered area, grain size, and albedo from MODR&mote Sensing of Environment, 113:868-879,
20009.

Jouni Pulliainen. Mapping of snow water equivalent and sdepth in boreal and sub-arctic zones by
assimilating space-borne microwave radiometer data amthgrbased observatioriRemote Sensing
of Environment, 101:257-269, 2006.

M. Sturm, J. Holmgren, and G. Liston. A seasonal snow cowasification system for local to global
applications.Journal of Climate, 8:1261-1283, 1995.

M. Tedesco, R. Reichle, A. Low, T. Markus, and J.L. Foster.n@yic approaches for snow depth
retrieval from space-borne microwave brightness tempegatEEE Transactions on Geoscience and
Remote Sensing, 48:1955 — 1967, 2010.

S.M. Uppala, P.W. Kallberg, A.J. Simmons, U. Andrae, V. Dat@dechtold, M. Fiorino, J.K. Gibson,
J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saan, N. Sokka, R.P. Allan, E. Anders-
son, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. Van De BelgBidlot, N. Bormann, S. Caires,
F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. FentS. Hagemann, E. Holm, B.J. Hoskins,
L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. McNally, Mdhfouf, J.-J. Morcrette, N.A. Rayner,
R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Unizhasiljevic, P. Viterbo, and J. Woollen.
The ERA-40 re-analysisQuarterly Journal of the Royal Meteorological Society, 131:2961-3012,
2005.

L. Wang, C. Derksen, and R. Brown. Detection of pan-Arctitestrial snowmelt from QuikSCAT,
2000-2005.Remote Sensing of Environment, 112:3794-3805, 2008.

H. Zhao and R. Fernandes. Daily snow cover estimation fromaAded Very High Resolution Ra-
diometer Polar Pathfinder data over Northern Hemispheig darfaces during 1982-2004ournal
of Geophysical Research, 114:doi:10.1029/2008JD011272, 2009.

122 ECMWF/GLASS Workshop on Land surface modelling, 9-12éober 2009



	1 Introduction
	2 Current products used at ECMWF
	3 Ground-based measurements
	4 Remote sensing products
	4.1 Snow extent and duration
	4.2 Snow water equivalent

	5 Multi-source products
	6 Final remarks
	7 Acknowledgements

