Observing the atmospheric composition of fire plumes With IASI

LMD/IPSL S. Turquety

LATMOS/IPSL IASI Team C. Clerbaux, J. Hadji-Lazaro, M. Pommier, M. George

ULB IASI Team
P.-F. Coheur, D. Hurtmans, L. Clarisse

Outline

(1) IASI/METOP trace gas observations

(2) More details on retrievals in fire plumes

(3) Main issues and future capabilities?

Atmospheric measurements from nadir IR sounding

monitor / quantify sources?

IASI instrument – Launched Oct. 2006

Launched onboard METOP-A in Oct 2006 MetOp: First European meteorological platform on polar orbit (EPS system) 3 successive satellites: 15 years of data

(1 day of data)

120 spectra along the swath (2400 km) Each 50 km along the trace

> Up to 1.3 106 spectra/day (16Gb)

- → Oct. 19, 2006 MetOp-A launch
- → Jun. 4, 2007 L1C Operational dissemination (Eumetcast)
- → Sep. 27, 2007 L2 (P, T, clouds) operational dissimination
- → Mar. 1, 2008 L2 (trace gases) operational dissimination

IASI instrument – Launched Oct. 2006

- 12 km pixel x 4 @ nadir
- 120 spectra along the swath (±48.3° Scan
- \rightarrow 2400 km), each 50 km along the trace

Small ground pixel size

Global coverage twice daily (morning and evening orbits)

- Spectral coverage = 645-2760 cm⁻¹
- Spectral resolution = 0.5 cm⁻¹
- Radiometric noise ~ <0.1-0.2 K

Broad spectral coverage without gaps

Medium spectral resolution

High radiometric performances

Measurements and Products

Operational L2 trace gases (EUMETCAST) : O3, CO

Main characteristics of retrievals in research groups

→ special issue ACPD

Retrievals at LATMOS/CNRS and ULB: 2 complementary tools

Operational retrieval

SA-NN

- \rightarrow Total columns CO, CH₄
- \rightarrow Partial columns O_3

[Hadji-Lazaro et al., 1999; Clerbaux et al., 2001; Turquety et al., 2002, 2004]

A priori information (CTM) provided during the training phase

Resear

→ Towards NRT retrievals: use of precalculated tables FORLI algorithm (Turquety et al., 2009, George et al., 2009)

Adjustment of radiances using optimal estimation method

- → Columns / Profiles absorbing species
- → Error analysis

[Coheur et al., 2003, 2005; Barret et al., 2005]

NRT Retrievals at LATMOS/CNRS and ULB

Average 1°x1°, 10 days, 18-28 August 2008

CO, O₃, HNO₃, SO₂ in near real time CO profiles, very soon O3 profiles

Clerbaux et al,
ACP IASI Special Issue, 2009

Carbon monoxide (ULB/LATMOS)

Clerbaux et al, ACP IASI Special Issue, 2009

Preliminary validation: George et al., ACPD, 2009

5. rurquety – Lor workshop our rife description, rannam, oK – 14-16 Sept. 2009

A few words about retrieval error...

- → Uncertainty on the radiances (radiometric noise): measurement error => only error accounted for in theoretical retrieval error
- → Uncertainty on the atmospheric and surface parameters (e.g. emissivity, temperature and water vapor profiles)
- → Lack of vertical resolution: **smoothing error**

characterized by the averaging kernel and the derived degrees of freedom of signal:

$$\mathbf{A} = \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{x}}$$

$$DOFS = trace(\mathbf{A})$$

Degrees of freedom for signal (DOFS)

Extreme events: wildfires

Evaluation of CO retrievals during the 2007 Greek fires

Comparisons to MOPITT/Terra CO (v3 L2 data)

- → IASI background lower
- → IASI larger in BB plumes

Strong implication for inversion results!

MOPITT v4: low bias in large plumes corrected

Information on vertical transport?

Turquety et al., ACPD 2009

Information on vertical transport?

Wildfires: short lived species detection

Coheur et al., ACP 2009

Greece fires (August 2007)

August 25, PM

Measurements of short-lived species

NH3

Spectral signatures

C2H4 CH3OH

Wildfires: short lived species detection

Coheur et al., ACP 2009

Greece fires (August 2007)

Chemistry and transport

Slopes vs. CO give enhancements ratios $\Delta[X]/\Delta[CO]$

Wildfires: short lived species detection

Coheur et al., ACP 2009

Siberian fires (April-May 2008)

Measurements of short-lived species

C₂H₄ CH₃OH

HCOOH, CH₃COOH, PAN

+ *New results*: C₂H₂, HCN, HONO...

Validation against in situ observations during the POLARCAT campaign

(M. Pommier, S. Turquety)

Example of validation profile

Background air above Greenland (DLR flight)

S. Turquety – ESF workshop on Fire description, Farnham, UK – 14-16 Sept.

Siberian pollution (Forest Fire): Flight YAK July 11th 2008

Siberian pollution (Forest Fire): YAK July 11th 2008

Enhancement in the IASI CO in the lower troposphere BUT not able to resolve the plume shape

North American pollution (Forest Fire): DC8 July 5th 2008

Enhancement in the IASI CO in the upper troposphere BUT

- not able to resolve the plume shape
- too large CO?
- problem of validation:
 large correlation with CO above 12km but no in situ observation...

Possible constraint on injection height from IR observations?

Daily tropospheric excess of CO2 seen by the NOAA-10 in 1987-1991

Correlation of DTE seasonal cycle with fire emissions; Variability of CO2 only reproduced by LMDz if pyro-convection is accounted for.

Chédin et al., ACPD, 2009; Rio et al., ACPD, 2009

Conclusions

Trace gas observations from satellite:

- (+) Good spatial and temporal coverage allow the monitoring of plumes
- (+) Relatively long records
- (-) Lack vertical resolution
- (-) Retrieval error often difficult to assess accurately!

Specific problems for fire plumes:

- Huge pollution : far from the a priori statistics
- Impact of aerosols (probably important for O3)
- LACK VALIDATION DATA

Next step:

- Analyse observations with a CTM to check the available constraint
- Use model as a intermediate for validation

Future:

- IASI for at least 15 years
- IASI-like observations on MTG (2015) BUT probably lower spectral resolution
 - → Geostationary observations

Thank you for your attention!

Check IASI NRT CO maps: www.iasi-chem.aero.jussieu.fr

IASI Level 1 data received through the EUMETcast distribution service

To use retrievals from LATMOS and ULB, please contact

Cathy Clerbaux, LATMOS, clerbaux@aero.jussieu.fr

Pierre-François Coheur, ULB, pfcoheur@ulb.ac.be

