IASI validation studies

Stuart Newman and co-workers

ECMWF / NWP-SAF Workshop on the assimilation of IASI in NWP, 6 May 2009

© Crown copyright Met Office
Many thanks to colleagues involved in collaboration

- **JAIEx science team**
 Bill Smith, Allen Larar, Dan Zhou, Hank Revercomb, Xu Liu

- **EUMETSAT support**
 Peter Schlüssel

- **ECMWF**
 Andrew Collard

- **Met Office**
 Jonathan Taylor, Fiona Hilton, Sid Clough

(and many others….)
This presentation covers the following areas:

- Principles of airborne validation campaigns (JAIVEx)
- IASI spectral calibration
- IASI direct radiance validation
- Cross-validation with AIRS
- Identification of model biases
- Summary
Airborne validation
Principles of airborne validation campaigns

• Aim to collect high-quality case studies during underflights of spaceborne instruments

• Hyperspectral sensors on research aircraft are used for direct radiance comparison (radiometric calibration)

• Collocated in situ measurements of atmospheric structure (temperature, humidity, trace gas species) and surface emission for radiance simulation (spectral calibration, spectroscopy, Level 2 product validation)

• Can be considered complementary to global studies using nearest radiosondes or model fields (statistical weight versus in-depth case studies)
FAAM BAe 146-301 capability

Endurance 5½ hours
Altitude 35 m – 10.5 km

- Dropsondes
- Core chemistry (ozone and CO)
- Temperature and humidity probes
- Multi-spectral shortwave radiometer
- Microwave radiometers
- Particulates (aerosols and cloud particles)
- Winds (and more…)

ARIES interferometer (Bomem MR200)
Spectral range 550-3000 cm\(^{-1}\)
LW (HgCdTe) and SW (InSb) detectors
Max. resolution 1 cm\(^{-1}\) (0.5 cm\(^{-1}\) sampling)
Multiple viewing geometries (up and down)
Field of view 44 mrad (full angle)
Collocated set of measurements

- IASI (MetOp)
- NAST-I, S-HIS (WB-57)
- ARIES (FAAM 146)
- Dropsondes T, q
- FAAM in situ T, q
- FAAM in situ CO, O$_3$
- ARM CART obs
- Surface T, ε
Joint Airborne IASI Validation Experiment (JAIVEx) – April-May 2007

- 8 MetOp cal/val flights
- Sea – Gulf of Mexico
- Land – Oklahoma
- 2 night, 6 day flights
- All MetOp collocated
IASI spectral calibration
Spectral calibration

Compare first derivatives (observed and simulated spectra) and compute correlation coefficient

Zero-filled first derivative IASI data

Zero-filled first derivative simulation
Maximise spectral correlation by applying a scaling to the nominal frequency array such that

\[\nu_{\text{shifted}} = c \times \nu_{\text{IASI}} \]

where \(c \approx 1.00003 \) for case study on 2 Feb 2007. This accuracy of \(3 \times 10^{-5} \) compares to the IASI specification of \(2 \times 10^{-6} \).

L. Strow and S. Hannon, “Initial IASI Validation”, UMBC, showed a similar result.

This was anticipated by the Technical Expertise Centre, and was followed by a routine correction to the configuration file parameters.
IASI direct radiance validation
JAIVEx case studies

• Best clear sky cases over ocean where the uncertainties in radiative transfer modelling and surface emission are minimised

• Optimise collocation of sensors (satellite and two aircraft) with simultaneous measurements of the atmospheric state

• FAAM aircraft measurements from low level retrieve surface temperature and emissivity

• Cases over Oklahoma ARM site present more complicated situation (variable surface emission), but useful for validation of IASI exploitation over land (e.g. 1d-var retrieval techniques)
Gulf of Mexico 30/4/2007

Flight track

IASI FOVs

AVHRR channel 1 image from MetOp on 30 April 2007
Radiative transfer simulations

- For case study select dropsondes released closely in time and space with clear-sky interferometer FOVs

- Construct profiles of temperature and humidity etc. for input to line-by-line radiation code; top-up above aircraft profile with NWP model fields

- Output line-by-line infrared simulated spectra for hyperspectral sounders

- Compare observed with simulated spectra
Window region residual ≈ −0.2 K
RT code differences

Brightness temperature (K)

700 720 740 760 780 800 820 840 860 880 900

CO₂ line mixing

Obs-calc residual (K)

GENLN2 line-by-line model
LBLRTM line-by-line model
JAIVEx case study
Gulf of Mexico 29 April 2007

JAIVEx case study
At comparable spectral resolutions

≈ 0.3 K range
Night flight on 19 April 2007 – ARM CART site Oklahoma

FAAM 146 and WB-57 flight track
Oklahoma emissivity

Oklahoma land surface case 20070420

Average emissivity spectrum

4222 individual retrievals

Wavenumber (cm$^{-1}$)
Oklahoma, 19 April 2007 (surface retrievals)
ARIES retrieved surface temperature from runs at 3000 feet

Avg. T = 286.2 K

Avg. T = 283.6 K

Overpass time:
Avg. T = 284.7 K

Avg. T = 283.6 K
Radiance validation 19/4/07

Simulation includes retrieved emissivity
Cross-validation with AIRS
IASI vs AIRS

• Case study of 29 April 2007 over Gulf of Mexico
• MetOp overpass at 1550 UTC followed by Aqua at 1919
• NAST-I on WB-57 provides continuous time coverage, for direct comparison with IASI and AIRS
• Spectra matched in space and time
IASI vs AIRS

IASI calibration linked to AIRS via collocated NAST-I observations

See Larar et al., ‘IASI spectral radiance performance validation: case study assessment from the JAIVEx field campaign’ submitted to Atmospheric Chemistry and Physics
IASI vs AIRS

(a) NAST-I sample time = 1608

(NAST-I - IASI) = 0.10 K

SW window
(4.2 – 4.0 micron)

(b) NAST-I sample time = 1850

(NAST-I - AIRS) = 0.05 K

SW window
(4.2 – 4.0 micron)
Intra-platform consistency

- LW window: bias of -0.03 K
- MW water vapour: -0.02 K
- SW: +0.04 K
Cross-validation results

- Across all three IASI spectral bands cross-validation using NAST-I as reference gives excellent agreement between IASI and AIRS

- Level of agreement is to within 0.13 K (absolute with NAST-I) and 0.05 K (IASI relative to AIRS)

- NAST-I itself is calibrated relative to S-HIS to within 0.04 K and both are ultimately referenced to national standard blackbody source, i.e. traceable chain of calibration
Identification of model biases
Case study 30 April 2007
Gulf of Mexico over ocean

- Water vapour band less well fitted than longwave band
- Larger (negative) residuals with Met Office model fields c.f. ECMWF fields used in simulation
- Met Office O-B data match negative residuals well
Profile comparison

Met Office and ECMWF temperature fields show good consistency.

Met Office humidity profile for case study shows significant dry bias relative to ECMWF.
Case study 12 December 2007
UK ocean area (North Sea)

- In this case the large negative bias from Met Office fields persists
- By contrast there is a smaller positive bias using ECMWF profile data
- Met Office O-B data match residuals
How representative are the case studies?

- Met Office obs-calc difference for 18 hours of observations on 30/4/07
- Most of the globe shows a negative bias
Comparing the Met Office and ECMWF obs-calc departures

- Met Office has a large negative bias for the high-peaking channels for all latitude bands
- ECMWF shows a smaller positive bias

Thanks to Fiona Hilton and Andrew Collard
Can we see a bias in the model water vapour fields?

Tropopause level humidity is consistently moister for ECMWF

Thanks to Sid Clough
Model bias issues

- Comparisons between IASI data and Met Office and ECMWF model profiles have helped to identify a large and previously unreported dry bias in the Met Office global model near the tropopause. In contrast, the ECMWF model tends to show a small moist bias. There is no evidence of significant IASI instrument biases in this spectral region.

- This has prompted the following changes for inclusion in the new Met Office 70-level model trial:

 1. More conventional water vapour observations assimilated by changing radiosonde upper threshold limits
 2. Changes to satellite biases in absence of water vapour obs aloft
 3. New 4D-Var definition of tropopause
 4. Humidity increments set to zero above the tropopause rather than allowing them to reset to a negative increment
Summary

• The JAIVEx campaign has produced a comprehensive data set for IASI validation and testing of retrieval algorithms

• Adjustments to the IASI spectral calibration parameters since launch have been successful

• IASI absolute radiance validation achieves agreement to within 0.3 K brightness temperature (total spread of measurements by four co-viewing interferometers) and less than 0.2 K compared to best line-by-line simulations

• Cross-validation studies show both IASI and AIRS agreement with reference measurement of less than 0.2 K

• Limiting factor in observed – background departures in strong water vapour band appears to be model treatment of stratospheric humidity, which has helped to identify a dry bias in the Met Office global model
Questions and answers
High-peaking water vapour channels

- The channels which show the worst bias are typically close to line centres.
- Although assimilation of IASI data could help to correct the model bias, these channels cause problems for operational assimilation.
- Their Jacobians show that they are sensitive to water vapour throughout the atmospheric column.
- A large model bias in the stratosphere leading to an observation-background difference can result in an erroneous humidity increment in the mid-troposphere.
IASI spectral calibration

- Improvement in residuals (February 2007 case) through scaling of nominal IASI frequency scale