Global soil moisture monitoring: possible assimilation of a suite of satellite observations from the visible to the microwave

Filipe Aires (1), Catherine Prigent (2), Angelika Xaver (3) and Carlos Jimenez (2)
(1) LMD, University Paris VI, Paris; (2) LERMA, Observatoire de Paris, France; (3) Vienna Institute of Technology, Austria

Comparison of current global soil moisture datasets using an innovative error cluster metric

In the dataset developed at the Vienna University of Technology, a change detection algorithm is used to retrieve soil moisture from the ERS scatterometer (Wagner et al. 2003). This dataset covers a period from 1992 to 2000. Another dataset considered here uses the Land Retrieval Parameter Model (Owe et al., 2008) applied to the Special Sensor Microwave Imager (SSM/I) brightness temperature measurements (more informative TMI observation will also be considered).

Analysis of collocated satellite data and in situ soil moisture measurements

Global Soil Moisture Data Bank (Robock et al., BAMS, 2000): soil moisture measurements in different environments (Russia, Mongolia, India, USA)

Find a method that uses all information, even the soil moisture and vegetation link at global scale

- neural network between the satellite data and the soil moisture at global scale
- advantages:
 - does not depend on radiative transfer codes that can be very questionable globally
 - data-fusion of multi-spectral satellite observations
 - nonlinear model ⇒ situation-dependent (important for global scale)

-NCEP and ECMWF soil moisture estimate to train the network:
 - good index for large-scale variability
 - similar behaviour with satellite with in situ
 - training of the neural network on monthly time-scale

Conclusions and perspectives

- Consistency checking method: Check the consistency of any model output with satellite observations
- Variational assimilation applications: Define a link between observations and model (link coherent with model);
- additional constraint to the model: spatial and temporal coherency with satellite observations

References

- Prigent et al., JGR, 2005;
- Aires et al., JGR, 2005;
- Owe et al., 2008;