Land surface predictability in Europe: Extremes & trends

Eric B. Jaeger and S. I. Seneviratne
ECMWF workshop, 9-12 November 2009
Motivation

Several major extreme events over Europe in recent years (e.g. 2003 heat wave: Schär et al. 2004, Nature; Ciais et al. 2005, Nature)
Motivation

Several major extreme events over Europe in recent years (e.g. 2003 heat wave: Schär et al. 2004, *Nature*; Ciais et al. 2005, *Nature*)

Land-atmosphere interactions are a substantial contributor to European heat waves in present and future climate (Seneviratne et al. 2006, *Nature*)
Motivation

Several major extreme events over Europe in recent years (e.g. 2003 heat wave: Schär et al. 2004, Nature; Ciais et al. 2005, Nature)

Land-atmosphere interactions are a substantial contributor to European heat waves in present and future climate (Seneviratne et al. 2006, Nature)

Land surface and its memory cause some predictability (Fischer et al. 2007, J. Climate)
Outline

1. part: land-atmosphere interactions and impact on European summer climate

Impact on: …the mean climate
…temperature extremes
…precipitation extremes
…trends
1. BACKGROUND

2. RESULTS

3. IMPLICATIONS FOR PREDICTABILITY

4. CONCLUSIONS

Outline

1. part: land-atmosphere interactions and impact on European summer climate

Impact on: ...the mean climate
...temperature extremes
...precipitation extremes
...trends

2. part: Implications for predictability & ongoing projects at ETH
Model experiments

Regional climate model CLM, 50km, driven by ECMWF re-analysis and operational analysis (1958-2006)
Model experiments

Regional climate model **CLM**, 50km, driven by ECMWF re-analysis and operational analysis (1958-2006)

Interactive SM:
- CTL: control simulation

Prescribed SM:
- SSV: lowpass filtered SM from CTL (cutoff ~10d)
- ISV: lowpass filtered SM from CTL (cutoff ~100d)
- IAV: SM climatology from CTL
- PWP: SM const. at plant wilting point
- FCAP: SM const. at field capacity
Model experiments

Regional climate model, CLM, 50km, driven by ECMWF re-analysis and operational analysis and operational analysis.

Interactive SM:
- CTL: control simulation

Prescribed SM:
- SSV: lowpass filtered SM (cutoff ~100d)
- ISV: lowpass filtered SM from CTL (cutoff ~100d)
- IAV: SM climatology from CTL
- PWP: SM const. at plant wilting point
- FCAP: SM const. at field capacity

Jaeger and Seneviratne., *Clim. Dynam.*
Validation of CTL

Jaeger et al., JGR (2009)
Validation of CTL

Land atmosphere coupling is reasonably represented in CLM

Jaeger et al., JGR (2009)
Mean climate: JJA

1. BACKGROUND
2. RESULTS
3. IMPLICATIONS FOR PREDICTABILITY
4. CONCLUSIONS
Mean climate: JJA

SSV-CTL ISV-CTL IAV-CTL PWP-CTL FCAP-CTL

strong impact on T_{2m}, precipitation (but also on clouds, radiation, circulation etc.)
PDFs of T_{max}
PDFs of T_{max}

Soil moisture effects high T_{max} values stronger than low ones
PDFs of T_{max}

Soil moisture has a dampening effect on temperature.
Extremes: HWDI

HWDI = heat wave duration index:

‘(max, mean) number of consecutive days (at least two) with values above the long-term 90th-percentile’
Extremes: HWDI
Extremes: HWDI
Extremes: HWDI

1. BACKGROUND

2. RESULTS

3. IMPLICATIONS FOR PREDICTABILITY

4. CONCLUSIONS
Extremes: HWDI
Extremes: HWDI
Extremes: HWDI

2. RESULTS

\[\Delta T = 0 \]

\[\Delta \text{persistence} \]
Extremes: HWDI

1. BACKGROUND
2. RESULTS
3. IMPLICATIONS FOR PREDICTABILITY
4. CONCLUSIONS
Due to changes in the PDF of T_{max} or due to changes in persistence?
Extremes: HWDI
Extremes: HWDI

1. BACKGROUND
2. RESULTS
3. IMPLICATIONS FOR PREDICTABILITY
4. CONCLUSIONS

Lorenz et al., GRL (submitted)
Continuous reduction in HWDI, likely due to reduction in persistence associated with a loss of SM memory

Lorenz et al., *GRL (submitted)*
Precipitation extremes

1. BACKGROUND
2. RESULTS
3. IMPLICATIONS FOR PREDICTABILITY
4. CONCLUSIONS
Precipitation extremes

SM impacts the prec. frequency, but on wet days prec. remains unchanged.
Trends in T_{max} (mean)
Trends in T_{max} (mean)
Trends in T_{max} (mean)

global-dimming
global-brightening
Trends in T_{max}: mechanisms?

1. BACKGROUND
2. RESULTS
3. IMPLICATIONS FOR PREDICTABILITY
4. CONCLUSIONS
Trends in T_{max}: link to SM

1981-2006: CTL

1981-2006: IAV

no trend
Aerosols are kept constant in CLM, hence (mostly) only cloud trends are the cause for T_{max} trends, whereas SM act as an amplifier.
Trends in T_{max} (extremes)
Trends in T_{max} (extremes)

Stronger than those in mean

1981-2006: IAV

1981-2006: CTL
Trends in T_{max} (extremes)

Stronger influence of SM

1981-2006: IAV
1981-2006: CTL
Implications for predictability

Soil moisture is found to play a major role for heat waves in Europe: asymmetric effect affecting mostly “hot” extremes; also effect on persistence

Identified effects on precipitation occurrence

➤ Major implications for:
 - short-term predictability
 - seasonal forecasting
 - decadal forecasting
 - climate-change projections
Implications for predictability

Despite low land-atmosphere coupling, diagnostic estimate of soil moisture predictability ($\rho_{SM}^*\Omega$) based on GLACE-1 data suggests significant potential in Europe (Seneviratne et al. 2006, JHM)

(near-monthly) soil moisture autocorrelation
On-going projects at ETH

- SwissSMEX (Swiss Soil Moisture Experiment), 2008-2011

- NRP 61 project DROUGHT-CH: Drought early warning and forecasting in Switzerland and Central Europe (2010-2012)

- EU-FP7 Carbo-EXTREME: Impacts of extreme events on land carbon balance (modeling studies using CLM from NCAR)
Conclusions

- Soil moisture significantly impacts:
 - Extreme (hot) temperatures
 - Heat wave persistence
 - Precipitation frequency
 - Decadal trends in cloud cover and mean/extreme climate

- Important implications for predictability: Need also to be combined with analysis of soil moisture persistence!

- Potential of soil moisture initialization for weather, seasonal, and decadal forecasting needs to be better investigated! However, lack of observations remains an issue