The LandFLUX initiative

Carlos Jimenez, Catherine Prigent

¹LERMA, Observatoire de Paris, France

on belhalf of the LandFLUX community

W. Rossow, S. Seneviratne, B. Muller, M. McCabe, J. Fisher, K. Wang, J. Sheffield, E. Wood, M. Jung, M. Reichstein, M. Bosilovich, M. Kanamitsu, A. Beljaars, P.

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

<carlos.jimenez@obspm.fr>

ECMWF/GLASS Workshop, ECMWF, 11/2009

• Several global data analysis activities are conducted in the frame of **GEWEX** to complete the description of the energy and water cycle.

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes • Most products are now being worked on (clouds, aerosols, radiative fluxes, precipitation, ocean surface turbulent fluxes, water vapour, temperature, and ozone) apart from the turbulent **land heat fluxes**.

The **LandFlux** initiative of the GEWEX Radiation Panel (GRP):

Objectives:

to develop the needed capabilities to produce a **global, multi-decadal** surface heat flux data product.

• Agenda:

1st workshop in Toulouse, May 2007. 2nd workshop in Melbourne, Sep 2009.

(http://www.gewex.org/projects-GRP.htm)

• Some possibilities for global estimation of land surface heat fluxes (LE, H):

[e.g. monthly latent fluxes August 93]

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

 6. Inter--comparing fluxes (a) using observations to infer the properties of the atmosphere and surface needed to derive the fluxes by **physically** based **formulations** e.g. (Fisher J., 2007, Rem. Sens.Envir.)

(b) using observations to **force** 'complex' **land surface model**, e.g GSWP-2

(Dirmeyer P. (2006), BAMS)

(c) **assimilating** observations into a coupled land-atmosphere model e.g NCEP reanalysis

(Kalnay. E. (1996), BAMS)

Governing equations

• Energy partition at the surface governed by:

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes $H = \rho c_{\rm p} \frac{T_{\rm s} - T_{\rm a}}{R_{\rm a}},$

$$\lambda E = \frac{\rho c_{\rm p}}{\gamma} \frac{e_{\rm s} - e_{\rm a}}{R_{\rm a} + R_{\rm s}},$$

$$A = R_{\rm n} - G - \Delta S = H + \lambda E,$$

where H, λE and A are the fluxes of sensible heat, latent heat and available energy, R_n is net radiation, G is soil heat flux; ΔS is the heat storage flux; T_s , T_a are the aerodynamic surface and air temperatures; e_s , e_a are the water vapour pressure at the evaporating surface and in the air; R_a is the aerodynamic resistance, R_s is the surface resistance to evaporation, λ is the latent heat of evaporation, ρ is air density, and c_p is the specific heat capacity of air. The psychometric constant γ is given by $\gamma = (M_a/M_v)(c_p P_a/\lambda)$, where M_a and M_v are the molecular masses of dry air and water vapour and P_a is atmospheric pressure.

from Cleugh et al. (2007), Regional evaporation estimates from flux tower and MODIS satellite data

<carlos.jimenez@obspm.fr>

Governing equations

• Eliminating surface temperature:

Penman-Monteith equation

$$\lambda E_{act} = \frac{\Delta}{\Delta + \gamma^*} (R_n - G_0) + \frac{\gamma}{\Delta + \gamma^*} \frac{\rho_a c_p (e_s(T_a) - e_a)}{r_{ah}}$$

 T_a is atmospheric temperature [°C]; e_s is saturated vapour pressure at temperature T [mbar]; Δ is the slope of the vapour pressure curve [mbar K⁻¹]; γ^* equals γ (1+r_c r_{ah}⁻¹); γ is the psychrometric constant [mbar K⁻¹]; ($e_s(T_0)$ - e_a) is saturated vapour pressure deficit [mbar];

Prisley-Taylor simplification

$$\lambda E = \alpha \left(R_n - G_0 \right) \frac{\Delta}{\Delta + \gamma}$$

 α is a constant [-] ranging from 1 to 1.35 for wet surfaces [78]; γ is the psychrometric constant [mbar K⁻¹]; Δ is the slope of the vapour pressure curve [mbar K⁻¹].

from Verstraeten et al. (2008), Assessment of evapotranspiration and soil moisture content across different scales of observation

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

LandFLU

Radiation at the surface

 $R_n = K \downarrow - K \uparrow + L \downarrow - L \uparrow$

where $K \downarrow =$ down-welling shortwave radiation (which depends on atmospheric transmissivity, time-of-day, day-of-year and geographic position, $K\uparrow$ = reflected shortwave radiation which depends on surface albedo (α) and K \downarrow , L \downarrow = down-welling longwave radiation (which depends on the atmospheric emissivity which in turn is influenced by amounts of atmospheric water vapor, carbon dioxide and oxygen and by air temperature and $L\uparrow$ = up-welling longwave radiation (which depends on land surface temperature and emissivity).

from Kalma et al. (2008), Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data

From atmospheric reanalysis (e.g ERA-INTDD), or radiative transfer models fed with relevant data (SRB, ISCCP-FD), or simpler parameterizations combining estimation of down-welling components and surface properties (albedo, emissivity, Ts, ...).

1.Introduction

2.Equations

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

Soil heat flux

 Cannot be measured remotely, G/Rn (5-20%) constant or parameterized

<carlos.jimenez@obspm.fr>

Observatoire

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

Land surface skin temperature (LST)

• Radiative temperature available from IR sensors (LandSat, ASTER, AVHRR, MODIS ...) for clear-sky at different spatial (60m - 4km) and time (1/2 hour -16 days) resolutions (also from microwave sensors less clear-sky biased but less frequent and at larger spatial resolutions).

LST and its difference with air temperature govern the flux partitioning; its diurnal rate of change is a useful constrain for LE as soil moisture conditions have a thermal signature.
 e.g. July 2003 LST differences for

Atmospheric forcing

 Meteorological inputs (e.g air temperature, vapour pressure, wind,) are required by some methods, datasets exist (e.g. CRU) but global coverage can be an issue.

observations and models

Characterizing the surface

 Ra, aerodynamic resistance, some of the parameters difficult to estimate globally (U, zo ...)

$$R_{a} = \frac{1}{k^{2}U} \left[\ln\left(\frac{z-d}{z_{0H}}\right) - \Psi_{H}\left(\frac{z-d}{L}\right) \right] \left[\ln\left(\frac{z-d}{z_{0}}\right) - \Psi_{M}\left(\frac{z-d}{L}\right) \right].$$
(4)

In this equation k is von Karman's constant (0.4); U is wind speed at the reference height z; d is the zero-plane displacement height; z_0 , z_{0H} are the roughness lengths for momentum and sensible heat, respectively; and Ψ_M, Ψ_H are the stability correction functions for momentum and heat which depend on the Monin–Obukhov length L (Kaimal & Finnigan, 1994). λE

> from Cleugh et al. (2007), Regional evaporation estimates from flux tower and MODIS satellite data

 Rs, efective resistance (soil+vegetation) estimated by parameterizations requiring vegetation indexes (e.g. NDVI, SAVI, EVI) and derived measures (fractional land cover(fc), leaf area index(LAI), fraction of active radiation (PAR) intercepted and/absorbed by vegetation cover,)

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

LandFLUX

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

 6. Inter--comparing fluxes

e.g. two-source model with soil and canopy resistances coupled with a model simulating the growth of the ABL. Requires 2 Ts measurements (GOES) but avoids the use of absolute Ts-Ta and remove time independent biases in Ts.

rson and Kustas (2008), Thermal remote sensing of drought and evapotranspiration

Fig. 1. Multiscale evapotranspiration (ET) maps for 1 July 2002, focused over the corn and soybean production region of central lowa, produced with the ALEXI/DisALEXI (Atmosphere Land Exchange Inverse/Disaggregated ALEXI) surface energy balance models [Anderson et al., 2007a] using surface temperature data from aircraft (30-meter resolution), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (60-meter), Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (1-kilometer), GOES Imager (5-kilometer), and GOES Sounder (10-kilometer) instruments. The continental-scale ET map is a 14-day composite of clear-sky model estimates.

<carlos.jimenez@obspm.fr>

Observatoire

LandFLUX

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

• How to reduce sensitivity to input errors or lack of inputs?

e.g. Vi-Ts methods, with changes in the slope of Vi-Ts tracking surface conductance. Here determining Tsoil and Tveg from Vi-Ts scatter plot to derive an evaporative fraction without requiring VPD or Ta.

Nishida et al. (2003), An operational remote sensing algorithm of land surface evaporation

• Possibilities to estimate LE/H:

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

 6. Inter--comparing fluxes 1. H from formulations involving Ts, LE calculated as a residual of the surface energy balance

e.g. Su (2002), the Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes

2. LE calculated from equations predicting the main evapotranspiration processes, H as a residual

e.g. Cleugh et al. (2007), Regional evaporation estimates from flux tower and MODIS satellite data

3. LE and/or H calculated from empirical regressions linking the fluxes to related atmospheric/surface observations

e.g Wang et al. (2008), An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature and soil moisture

LandFLUX

• Some validated methods for LE:

Table 2 Validation of remote sensing techniques for estimating evaporation

	Section	Method	Source	Validation	Surface type	T _{rad,} NDVI and albedo	R_n-G	Е	Time step	RMSE (W m ⁻²)	r ²	Relative error (%)
1 Introduction	4.1	One-source SEB	Kustas (1990)	Kustas (1990)	Furrowed cotton	Mast; aircraft	Observed	BR EC	30 min	24-85		10-25
	4.1	One-source SEB	Boegh et al. (2002)	Boegh et al. (2002)	Wheat, grass, maize, barley	Landsat TM	Derived	EC	30 min	27	0.87	14
2 Equations	4.1	One-source SEB	Su (2002)	Su et al. (2005)	Corn	Mast	Observed	EC	30 min	47	0.89	
2.2900000	4.1	One-source SEB	Su (2002)	Su et al. (2005)	Soybean	Mast	Observed	EC	30 min	40	0.84	
3.Inputs	4.1	One-source SEB	Su (2002)	McCabe and Wood (2006)	Corn and soybean	ASTER	Derived	EC	Instant	99	0.66	
	4.1	One-source SEB	Su (2002)	McCabe and Wood (2006)	Corn and soybean	Landsat 7 ETM	Derived	EC	Instant	68	0.77	
4.Methods	4.1	One-source SEB	Su (2002) [SEBS]	Su et al. (2007)	Grassland, crops, (rain)forest	MODIS	Derived	EC	Daily	44		25
	4.2	Two-source SEB	Kustas (1990)	Kustas (1990)	Furrowed cotton	Mast, aircraft	Observed	BR EC	30 min	48		15
5. Global	4.2	Two-source SEB	Norman et al. (1995) [TSM]	Kustas and Norman (1999)	Furrowed cotton	Masts; aircraft	Observed	BR EC	Instant	37-47		12-15
fluxes	4.2	Two-source SEB	Norman et al. (1995) [TSM]	Norman et al. (2000)	Shrubland, rangeland, pasture, salt cedar	Masts	Derived	BR EC	30 min	105		27
o. Inter- -comparing	4.2	Two-source SEB	Norman et al. (1995) [TSM]	French et al. (2005)	Corn and soybean	ASTER	Derived	EC	30 min	94		26
fluxes	4.2	Two-source SEB	Kustas and Norman (1999)	Li et al. (2006)	Corn and soybean	Landsat7 ETM, Landsat5TM	Observed	EC	30 min	50–55		10-15
	5	Time-rate of change	Anderson et al. (1997) [ALEXI], Norman et al. (2003)[disALEXI]	Norman et al. (2003)	Wheat, pasture	GOES, Airborne TIMS, TMS	Derived	EC	Hourly	40–50		20

Kalma et al. (2008), Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data

• Some validated methods for LE:

	Table 2 continued											
	Section	Method	Source	Validation	Surface type	T _{rad,} NDVI and albedo	R_n-G	Е	Time step	RMSE (W m ⁻²)	r ²	Relative error (%)
1.Introduction	5	Time-rate of change	Norman et al. (2000) [DTD]	Norman et al. (2000)	Shrubland, rangeland, pasture, bare, salt cedar	IRT on masts	Derived	BR EC	30 min	65		17
2.Equations	5	Time-rate of change	Anderson et al. (1997) [ALEXI], Norman et al. (2003)[disALEXI]	Anderson et al. (2007a, b)	Water, forest, woodland, shrubland, grassland, crops, bare, built-up	GOES, MODIS	Derived	EC	Hourly	58		25
3.Inputs	6.1	T_{rad},α and VIs	Bastiaanssen et al. (1998a) Bastiaanssen (2000) [SEBAL]	French et al. (2005)	Corn and soybean	ASTER	Derived	EC	30 min, during overpass	55		15
4.Methods	6.2	T_{rad} and α	Roerink et al. (2000) [S-SEBI]	Verstraeten et al. (2005)	Forests	AVHRR	Derived	EC	30 min during overpass	35		24
5. Global fluxes	6.3	$T_{\rm rad}$ and VIs	Carlson et al. (1995a) [Triangle Method]	Gillies et al. (1997)	Tallgrass prairie, grasslands, steppeshrub	Aircraft M/S scanner	Observed	BR EC	During overpass	25-55	0.80-0.90	10-30
6. Inter-	6.3	$T_{\rm rad}$ and VIs	Jiang and Islam (2001)	Jiang and Islam (2001)	Mixed farming, forest, tall & short grass	AVHRR	Derived	BR EC	During overpass	85	0.64	30
-comparing fluxes	6.3	$T_{\rm rad}$ and VIs	Jiang and Islam (2001)	Jiang and Islam (2001)	Mixed farming, forest, tall &short grass	AVHRR	Observed	BR EC	During overpass	50	0.90	17
	6.3	$T_{\rm rad}$ and VIs	Jiang and Islam (2001)	Jiang and Islam (2003)	Mixed farming, cropping, forest, tall& short grass	AVHRR	Derived	BR EC	During overpass	59	0.79	15

Kalma et al. (2008), Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data

• Some validated methods for LE:

	Table 2	continued										
s	Section	Method	Source	Validation	Surface type	T _{rad,} NDVI and albedo	R_n-G	Е	Time step	RMSE (W m ⁻²)	r ²	Relative error (%)
on e	5.3	$T_{\rm rad}$ and VIs	Jiang and Islam (2001)	Batra et al. (2006)	Mixed farming, forest, tall &short grass	MODIS, AVHRR	Derived	BR	During overpass	51-56	0.77–0.84	22–28
6	5.3	$T_{\rm rad}$ and VIs	Nishida et al. (2003a)	Nishida et al. (2003a)	Forest, corn, soybean, wheat, shrubland rangeland, tallgrass	AVHRR	Derived	EC	Day time averages	45	0.86	
6	5.4	Empirical method based on EVI	Wang et al. (2007)	Wang et al. (2007)	Forest, grassland, cropping	MODIS	Observed	EC	16-day averages	32	0.81	36
7	1.2	T _{rad} and climate data	McVicar and Jupp (2002) [NDTI]	McVicar and Jupp (1999)	Cropping	Mast IRT	Observed	BR	AVHRR and TM overpass time	88–72	0.52-0.81	27–30
7	.3	T _{rad} and compl. approach	Granger (1989) [Complementary method]	Crago and Crowley (2005)	Grassland, rangelands	Mast IRT	Observed	EC BR	10 min, 30 min	16-132		
7	.3	T _{rad} and compl. approach	Venturini et al. (2008)	Venturini et al. (2008)	Rangelands, pasture, wheat	MODIS	Derived	BR	Instant. on 7 days	34	0.79	15
8	3.2	$ \begin{array}{c} Assimilation \\ of \ T_{rad} \end{array} $	Caparrini et al. (2004)	Caparrini et al. (2004)	Tall-grass prairie	IRT on masts	Observed	EC BR	30 min	56		
8	3.2	Assimilation of T _{rad}	Caparrini et al. (2004)	Caparrini et al. (2004)	Tall-grass prairie	IRT on masts	Observed	EC BR	Daily averages	20	0.96	

Kalma et al. (2008), Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data

LandFLUX

• Findings from previous review:

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxes

 6. Inter--comparing fluxes

- assessment of ~ 30 published validations showing an RMSE ~ 50
 W/m² and relative errors of 15-30% (at different time steps and for different regions)
- the assessment shows that more complex **physical** and analytical methods are not necessarily more accurate than empirical and **statistica**l methods
- improved temporal **scaling procedures** are required to extrapolate instantaneous estimates to daily and longer time periods
- **gap-filling techniques** are needed when temporal scaling is affected by intermittent satellite cover

• Pros and cons of different methods?

1.Introduction

LandFLUX

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparing fluxes

Concept	Method	Р	arameters	Advantages	Disadvantages	Ref
		EO	Other			(Sel.)
	SEBAL	LST,	$T_a, v_a, \epsilon_0, RH,$	Data requirements are minimal;	Dry and wetland requirement to	[88],
8		α ₀ ,	surface	Physical concept; no need for land	estimate H, hence heterogeneous	[89],
lan		NDVI	roughness	use; multi-sensor approach.	surface needed in the ROI; only	[90],
y ba					applicable for flat terrain.	[25].
nerg	SEBS	LST,	$T_a, v_a, \epsilon_0, LAI, e_a$	No a-priori knowledge of the	Dry and wetland requirement to	[68],
hee		α ₀ ,	& esat,, surface	actual turbulent heat fluxes needed.	estimate H; combined with Penman-	[70].
oft		NDVI	roughness		Monteith equation.	
tion	RMI	LST,	Detailed	Based on geostationary satellites	Monin-Obukhov lengths require	[64].
erisa		α_0	meteorological	with high temporal resolution.	detailed meteorological data (network	
mete			data		of synoptical stations).	
araı	S-SEBI	LST,	$T_a, \epsilon_0, (RH)$	Data requirements are minimal; No	Dry and wetland requirement to	[91],
4	iNOAA	α ₀ ,		need for land use; no need to	estimate evaporative fraction	[69].
		NDVI		estimate H, multi-sensor.	(dependent on ROI).	
	Trapezo-	LST,	$T_a, \epsilon_0, vapour$	Minimal meteorological data	Requirement for biome map, surface	[92].
	idal	SAVI	pressure deficit,	requirement, ET estimation at	roughness, vegetation height.	
	shape		LAI	regional scales.		
ed	Promet	α ₀ ,	Resistance	Across scales, physiologically based	Requires a plant physiological	[54].
bas			values, LAI, soil	(SVAT).	model, land use, extensive	
teith			type		meteorological dataset.	
Mon	Granger	LST,	T _a , saturated	Feedback relationship: LST is	Requires long term T _a and a	[65].
an-N		α ₀ ,	vapour pressure	used to obtain the vapour pressure	conventional ET model including	
enm		NDVI		deficit in the overlying air.	vapour transfer coefficient.	
Ā	Wang	LST,	Meteorological	Gradients of T _a and LST not	Day and night LST required.	[93].
		α_0, VI	data	required.		
	Cleugh	LST,	Meteorological	Linear relationship surface	Extensive meteorological data and	[94].
		α_0, VI	data	conductance and MODIS-LAI.	estimations of canopy cover required.	

<carlos.jimenez@obspm.fr>

Observatoire

LERMA

Policies for development of global LE, H?

LandFLU)

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global fluxe:

6. Inter--comparing fluxes

l'Observatoire

[8] (1) <u>"Stand alone.</u>" It can operate without surface meteorological data (e.g., wind speed, vapor pressure deficit (VPD), air temperature, boundary layer stability). In general, the VPD and the wind speed (or the aerodynamic resistance) are difficult to be estimated from remote sensing, yet critical for ET estimation. Therefore we tried to minimize the influence of these two meteorological elements in our algorithm.

[9] (2) "<u>Flexibility</u>." If meteorological data are available, the algorithm should be flexible enough to incorporate them. It should also incorporate other ancillary data such as albedo, emissivity, and roughness when they are available. Therefore we must describe these variables explicitly in the algorithm.

[10] (3) <u>"Simplicity.</u>" It is simply constructed in order to save computational resources.

[11] (4) "Scalability." It provides information not only about instantaneous but also about daily ET. This is because daily ET is more interesting for many users than instantaneous one. Moreover, because the NASA EOS project operates the two MODIS sensors onboard the EOS-AM (Terra) satellite and the EOS-PM (Aqua) satellite [*Running et al.*, 1994] and they observe each land surface twice a day (morning and afternoon), the algorithm should consistently process these multiple data sources if required.

[12] (5) <u>"Versatility."</u> It should operate regardless of the type of vegetation, land cover, season, and climate.

Nishida et al. (2003), An operational remote sensing algorithm of land surface evaporation

Policies for development of global ET? Other ideas?

1.Introduction

LandFLUX

- 2.Equations
- 3.Inputs
- 4.Methods
- 5. Global fluxe
- 6. Inter--comparing fluxes

Mu et al. (2003), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data

<carlos.jimenez@obspm.fr>

LandFLUX	 Published global 	ELSEVIER	Remote Sensing of Environment 112 (2008) 901-919	www.elsevier.com/locate/rse		
	RS datasets:	Global estim AVHRR	nates of the land–atmosphere water flux ba and ISLSCP-II data, validated at 16 FLU	vater flux based on monthly d at 16 FLUXNET sites		
	1.		Joshua B. Fisher ^{a,*} , Kevin P. Tu ^b , Dennis D. Baldoco	chi ^a		
1.Introduction		712	JOURNAL OF HYDROMETEOROLOGY	VOLUME 9		
2.Equations		An Improved Determina	l Method for Estimating Global Evapotranspiration Bas tion of Surface Net Radiation, Vegetation Index, Tempo Soil Moisture	ed on Satellite erature, and		
			KAICUN WANG			
3.Inputs		Department of Geogra and Global Env	phy, University of Maryland, College Park, College Park, Maryland, and Laboratory ironment Observation, Institute of Atmospheric Physics, Chinese Academy of Science	for Middle Atmosphere es, Beijing, China		
	2		Shunlin Liang			
		D	epartment of Geography, University of Maryland, College Park, College Park, Maryl	and		
4.Methods		IC	NIRNAL OF GEOPHYSICAL RESEARCH VOL 114 D06305 doi:10.1	029/2008113011302 2009		
		Click	JORNAL OF GEOFITTSICAL RESEARCH, VOL. 114, D00505, d0110.1	023/2000315011392, 2009		
5. Global		F ^u ll Article				
fluxes		Toward an	estimation of global land surface heat			
6 Inter-		fluxes from	n multisatellite observations			
-comparing	3.	Carlos Jiménez	z, ¹ Catherine Prigent, ¹ and Filipe Aires ²			
fluxes		ELSEVIER	Remote Sensing of Environment 111 (2007) 519-536	www.elsevier.com/locate/rse		
		Devel	opment of a global evapotranspiration algo on MODIS and global meteorology da	orithm based ata		

Qiaozhen Mu*, Faith Ann Heinsch, Maosheng Zhao, Steven W. Running

 Prisley-Taylor with new ecophysiological ideas on how to reduce potential to actual ET when soil moisture, stomatal resistance and wind speed data are unavailable.

[1° x 1°, monthly means, 1986-1995]

 Inputs Global estimates R_n Net radiation ISLSCP-II $T_{\rm max}$ ISLSCP-II Air temperature Water vapor pressure ISLSCP-II ea AVHRR Visible spectrum reflectance $r_{\rm vis}$ Near-infrared spectrum reflectance AVHRR $r_{\rm NIR}$

• Evaluation at 16 tower EC fluxes with model using in situ meteorology

Fisher et al. (2008), Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FluxNet sites

LandFLU)

1.Introduction

2.Equations

3.Inputs

4.Methods

6. Inter-

-comparing

fluxes

2. Statistical method using a simple regression equation calibrated at 12 (EBBR and EC) US sites

 $ET = R_n (0.1440 + 0.6495 \text{NDVI} + 0.0090 T_{a,d})$

- 0.0163DTaR),

[1° x 1°, monthly means, 1986-1993]

Inputs

 $R_{n},$ T $_{a,d}$ (day time averaged air T) , DTaR (diurnal air T range) from ISLSCP-II, NDVI from AVHRR

• Evaluation at 12 sites using in situ meteorology

Wang et al. (2008), An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegeation index, temperature and soil moisture

<carlos.jimenez@obspm.fr>

LandFLU)

1.Introduction

2.Equations

3.Inputs

4.Methods

6. Inter-

-comparing fluxes

LandFLUX

1.Introduction

2.Equations

3.Inputs

4.Methods

6. Inter-

-comparing

fluxes

3. Statistical method using regression models to relate land surface model fluxes with multi-sensor observations (aiming not only at data production but also at land model development and multi-variable assimilation)

• Inputs

Table 1. Correlation Coefficients and RMS Errors for a Nonlinear Estimation Between Individual Groups of Satellite-Derived Variables and Sensible and Latent Fluxes (GSWP Multimodel Analysis and NCEP Reanalysis)^a

	Corre	lation	RN	ISE
Satellite Products	GSWP	NCEP	GSWP	NCEP
	Se	ensible Flux		
Emissivity	0.44	0.61	27.1 (58.1)	34.9 (63.0)
Backscatter	0.32	0.52	28.6 (61.3)	37.5 (67.7)
Reflectance	0.42	0.59	27.4 (58.8)	35.4 (63.8)
Skin Temperature	0.64	0.63	23.0 (49.5)	34.1 (61.6)
Diurnal Cycle	0.59	0.71	24.4 (52.3)	30.8 (55.5)
Net Radiation	0.69	0.70	21.8 (46.8)	31.5 (56.9)
	L	atent Flux		
Emissivity	0.80	0.83	21.6 (46.2)	31.5 (56.9)
Backscatter	0.70	0.75	25.6 (55.0)	36.7 (66.2)
Reflectance	0.82	0.79	20.2 (43.4)	34.5 (62.4)
Skin temperature	0.48	0.48	31.5 (67.7)	49.3 (89.1)
Diurnal cycle	0.72	0.76	24.9 (53.4)	36.2 (65.3)
Net radiation	0.82	0.84	20.6 (44.3)	29.5 (53.4)

^aThe satellite-derived variables are SSM/I emissivity, ERS backscatter, AVHRR reflectance, ISCCP skin temperature, amplitude of its diurnal cycle, and net radiation. The RMS error is given in W/m² and as a percentage of the mean flux (in brackets).

• Coarse **evaluation** at 76 Ameriflux sites using tower flux 2002-2006 annual climatologies

Jimenez et al. (2008), Towards an estimation of global land surface heat fluxes from multi-satellite observations

[0.5° x 0.5°, monthly means, 1993-1999

[Statistical models for LSM development]

Methodology

Phase 1

The statistical models learn the global relationships between observations and a land model state variable (e.g. soil moisture).

Phase 2

The statistical models map the observations into soil moisture using the learned global relationships.

[Statistical models for LSM development]

Applications [1]

 for specific regions and times there may be no consistency between the LSM (original) variable and the satellite-driven (statistical model) variable: this can be used to diagnose potential LSM problems.

Longitude

100 120 140 160

(a) July 93 monthly soil moisture e.g. from NCEP, (c) associated prediction from satellite observations, and (e) difference.

[Aires, F., et al., Sensitivity of microwave and infrared satellite observations to soil moisture at a global scale. II: Global statistical relationships, JGR, 110, 2005]

Applications [2]

• the observations mapped into state variables by the statistical model could be integrated into the LSM by standard variational **assimilation schemes**.

Cost function to combine information from the observations and the LSM:

• there exist techniques to calculate R_i and give more weights to the statistical model predictions when there are more reliable.

• as the statistical model was calibrated with the LSM outputs, we force **consistency** between **LSM** and **satellite-derived variable** and minimize the typical problems trying to assimilate exogenous inputs.

2.Equations

3.Inputs

4.Methods

5. Global fluxes

6. Inter--comparino fluxes • We have started an **inter-comparison** of land surface heat fluxes within the framework of LandFLUX.

• A first comparison of **monthly heat fluxes in 1993-95** was conducted with the aim of assessing the spread in the estimated fluxes. There was no attempt to quantify the accuracy of the products, no intentions to claim that one product was superior to the others.

• We are expanding these first inter-comparison exercises into a focused activity (LandFlux-EVAL), that will include multi-scale (spatial and temporal) data sets, assessment over longer time-periods, and identification of specific regions for focused analysis.

• ETH Zurich and the Observatoire de Paris are the contact institutions for this activity.

[http://www.iac.ethz.ch/url/LandFlux-EVAL]

I ondEl IIV		INSTITUTION	LE	Н	Rn	Resolution
Laiiuflur		PHYSICAL FC	DRMULATIONS/STATISTICAL MODELS [driven b	oy observat	ional data]	
	OXUNI	University of Oxford	Priestley-Taylor ET, data from ISLSCP-II (SRB, CRU, AVHRR)	Rn - LE	SRB	1986-95 monthly 1º x 1º
1.Introduction	MAUNI	University of Maryland	Empirical, calibrated with Ameriflux, satellite data from ISLSCP-II (SRB, CRU, AVHRR)	SRB	1986-95 monthly 1º x 1º	
2 Equations	PRIUNI	Princenton University	Penman-Montheith ET, data from ISCCP, AVHRR	Rn - LE	ISCCP-FD	1986-06 daily 2.5° x 2.5°
2.29001013	OBSPM	Paris Observatory	Empirical, calibrated with GSWP fluxes, data fron ERS, SSMI, AVHRR	n ISCCP,	ISCCP-FD	1992-99 monthly 1/4º x 1/4º
3.Inputs	MPIBGM	MPI Biogeochemistry	Empirical, global upscaling of FluxNet, data from GPCC, AVHRR	1982-08 monthly 1/2º x 1/2º		
4.Methods		LAND SURFACE MC	DELS [coupled with an atmospheric model assi	milating ob	servational dat	a]
	MERRA	NASA-GMAO	MERRA reanalysis, GEOS-5 atmospheric model o model	coupled with	NSIPP land	1979- 6-hourly 1/2º x 2/3º
5. Global fluxes	NCEP	NCEP/NCAR	NCEP-DOE reanalysis, atmospheric model couple	ed with OSU	l land model	1979- 6-hourly 1/2º x 2/3º
6. Inter- -comparing	ERA	ECMWF	ERA Interim reanalysis, atmospheric model couple model	ed with TES	SEL land	1989-98 6-hourly 1.5° x 1.5°
fluxes		LAND SURF	ACE MODELS [forced off-line with model and/or	· observatio	onal data]	
	GSWP	GLASS/ISLSCP	Multi-model ensemble, forced with ISLSCP-II		↓Rn SRB	1986-95 monthly 1º x 1º
	NOAH	NCAR/OSU/AFWA/HL			↓Rn	
	CLM	NCAR +	data assimilation system 1979- 3			
	MOSAIC	NASA-GSFC				

Monthly averaged latent fluxes (LE)

1.Introduction

LandFLUX

2.Equations

3.Inputs

4.Methods

5. Global fluxes

Monthly averaged sensible fluxes (H)

1.Introduction

LandFLUX

2.Equations

3.Inputs

4.Methods

5. Global fluxes

<carlos.jimenez@obspm.fr>

3.Inputs

5. Global

<carlos.jimenez@obspm.fr>

- Differences calculated with respect to the all-products ensemble average.

• 1993 annual RMSE (W/m²) [from the global monthly mean differences]

		OXUNI	MAUNI	OBSPM	PRUNI	MPIBGM	MERRA	NCEP	\mathbf{ERA}	GSWP	NOAH	CLM	MOSAIC
	OXUNI	0	21.95	24.7	25.25	26.57	31.9	28.41	22.62	26.97	24.23	31.89	26.43
	MAUNI	21.95	0	18.15	26.28	20.36	34.59	32.25	22.23	21.57	23.58	30.3	30.19
×	OBSPM	24.7	18.15	0	23.46	15.09	30.58	30.66	19.73	14.79	19.11	24.24	27.16
fl	PRUNI	25.25	26.28	23.46	0	23.4	31.4	32.47	25.32	27.21	24.85	27.4	27.98
Ę	MPIBGM	26.57	20.36	15.09	23.4	0	31.21	31.88	22	19.06	20.29	23.57	28.24
er	MERRA	31.9	34.59	30.58	31.4	31.21	0	30.37	28.84	31.24	27.28	30.62	28.58
at	NCEP	28.41	32.25	30.66	32.47	31.88	30.37	0	25.36	30.59	26.36	32.66	27.09
	ERA	22.62	22.23	19.73	25.32	22	28.84	25.36	0	20.41	19.93	26.66	23.87
	GSWP	26.97	21.57	14.79	27.21	19.06	31.24	30.59	20.41	0	17.57	22.68	24.96
	NOAH	24.23	23.58	19.11	24.85	20.29	27.28	26.36	19.93	17.57	0	18.37	16.27
	CLM	31.89	30.3	24.24	27.4	23.57	30.62	32.66	26.66	22.68	18.37	0	23.67
	MOSAIC	26.43	30.19	27.16	27.98	28.24	28.58	27.09	23.87	24.96	16.27	23.67	0
								NORD		Garro			
		OXUNI	MAUNI	OBSPM	PRUNI	MPIBGM	MERRA	NCEP	ERA	GSWP	NOAH	CLM	MOSAIC
	OXUNI	OXUNI 0	MAUNI 21.95	OBSPM 26.51	21.76 PRUNI	33.78	MERRA 33.28	NCEP 42.01	ERA 27.93	GSWP 30.36	NOAH 28.97	CLM 30.93	MOSAIC 29.32
	OXUNI MAUNI	0 21.95	MAUNI 21.95 0	0BSPM 26.51 29.33	25.36	MPIBGM 33.78 35.63	MERRA 33.28 34.83	NCEP 42.01 47.07	ERA 27.93 31.46	GSWP 30.36 32.55	NOAH 28.97 33.5	CLM 30.93 32.9	MOSAIC 29.32 33.55
×	OXUNI MAUNI OBSPM	OXUNI 0 21.95 26.51	MAUNI 21.95 0 29.33	0BSPM 26.51 29.33 0	PRUNI 31.76 25.36 31.7	33.78 35.63 23.15	MERRA 33.28 34.83 28.8	NCEP 42.01 47.07 33.11	ERA 27.93 31.46 16.85	GSWP 30.36 32.55 16.39	NOAH 28.97 33.5 28.38	CLM 30.93 32.9 32.86	MOSAIC 29.32 33.55 30.38
flux	OXUNI MAUNI OBSPM PRUNI	OXUNI 0 21.95 26.51 31.76	MAUNI 21.95 0 29.33 25.36	OBSPM 26.51 29.33 0 31.7	9RUNI 31.76 25.36 31.7 0	MPIBGM 33.78 35.63 23.15 35.33	MERRA 33.28 34.83 28.8 35.12	NCEP 42.01 47.07 33.11 47.37	ERA 27.93 31.46 16.85 34.14	GSWP 30.36 32.55 16.39 35.58	NOAH 28.97 33.5 28.38 36.76	CLM 30.93 32.9 32.86 35.39	MOSAIC 29.32 33.55 30.38 37.77
e flux	OXUNI MAUNI OBSPM PRUNI MPIBGM	0 21.95 26.51 31.76 33.78	MAUN1 21.95 0 29.33 25.36 35.63	OBSPM 26.51 29.33 0 31.7 23.15	PRUNI 31.76 25.36 31.7 0 35.33	33.78 35.63 23.15 35.33 0	MERRA 33.28 34.83 28.8 35.12 31.69	NCEP 42.01 47.07 33.11 47.37 40.04	ERA 27.93 31.46 16.85 34.14 25.09	30.36 32.55 16.39 35.58 28.01	NOAH 28.97 33.5 28.38 36.76 38.21	CLM 30.93 32.9 32.86 35.39 39.3	MOSAIC 29.32 33.55 30.38 37.77 40.63
ble flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA	OXUNI 0 21.95 26.51 31.76 33.78 33.28	MAUN1 21.95 0 29.33 25.36 35.63 34.83	OBSPM 26.51 29.33 0 31.7 23.15 28.8	PRUNI 31.76 25.36 31.7 0 35.33 35.12	MPIBGM 33.78 35.63 23.15 35.33 0 31.69	MERRA 33.28 34.83 28.8 35.12 31.69 0	NCEP 42.01 47.07 33.11 47.37 40.04 38.21	ERA 27.93 31.46 16.85 34.14 25.09 27.3	GSWP 30.36 32.55 16.39 35.58 28.01 32.05	NOAH 28.97 33.5 28.38 36.76 38.21 36.53	CLM 30.93 32.9 32.86 35.39 39.3 35.15	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08
sible flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA NCEP	OXUNI 0 21.95 26.51 31.76 33.78 33.28 42.01	MAUN1 21.95 0 29.33 25.36 35.63 34.83 47.07	OBSPM 26.51 29.33 0 31.7 23.15 28.8 33.11	PRUNI 31.76 25.36 31.7 0 35.33 35.12 47.37	MPIBGM 33.78 35.63 23.15 35.33 0 31.69 40.04	MERRA 33.28 34.83 28.8 35.12 31.69 0 38.21	NCEP 42.01 47.07 33.11 47.37 40.04 38.21 0	ERA 27.93 31.46 16.85 34.14 25.09 27.3 33.2	GSWP 30.36 32.55 16.39 35.58 28.01 32.05 34.86	NOAH 28.97 33.5 28.38 36.76 38.21 36.53 39.55	CLM 30.93 32.9 32.86 35.39 39.3 35.15 44.74	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08 42.98
ensible flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA NCEP ERA	OXUNI 0 21.95 26.51 31.76 33.78 33.28 42.01 27.93	MAUNI 21.95 0 29.33 25.36 35.63 34.83 47.07 31.46	OBSPM 26.51 29.33 0 31.7 23.15 28.8 33.11 16.85	PRUNI 31.76 25.36 31.7 0 35.33 35.12 47.37 34.14	MPIBGM 33.78 35.63 23.15 35.33 0 31.69 40.04 25.09	MERRA 33.28 34.83 28.8 35.12 31.69 0 38.21 27.3	NCEP 42.01 47.07 33.11 47.37 40.04 38.21 0 33.2	ERA 27.93 31.46 16.85 34.14 25.09 27.3 33.2 0	GSWP 30.36 32.55 16.39 35.58 28.01 32.05 34.86 20.42	NOAH 28.97 33.5 28.38 36.76 38.21 36.53 39.55 30.99	CLM 30.93 32.9 32.86 35.39 39.3 35.15 44.74 33.4	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08 42.98 30.99
Sensible flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA NCEP ERA GSWP	OXUNI 0 21.95 26.51 31.76 33.78 33.28 42.01 27.93 30.36	MAUNI 21.95 0 29.33 25.36 35.63 34.83 47.07 31.46 32.55	OBSPM 26.51 29.33 0 31.7 23.15 28.8 33.11 16.85 16.39	PRUNI 31.76 25.36 31.7 0 35.33 35.12 47.37 34.14 35.58	MPIBGM 33.78 35.63 23.15 35.33 0 31.69 40.04 25.09 28.01	MERRA 33.28 34.83 28.8 35.12 31.69 0 38.21 27.3 32.05	NCEP 42.01 47.07 33.11 47.37 40.04 38.21 0 33.2 34.86	ERA 27.93 31.46 16.85 34.14 25.09 27.3 33.2 0 20.42	GSWP 30.36 32.55 16.39 35.58 28.01 32.05 34.86 20.42 0	NOAH 28.97 33.5 28.38 36.76 38.21 36.53 39.55 30.99 27.27	CLM 30.93 32.9 32.86 35.39 39.3 35.15 44.74 33.4 32.26	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08 42.98 30.99 29.08
Sensible flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA NCEP ERA GSWP NOAH	OXUNI 0 21.95 26.51 31.76 33.78 33.28 42.01 27.93 30.36 28.97	MAUNI 21.95 0 29.33 25.36 35.63 34.83 47.07 31.46 32.55 33.5	OBSPM 26.51 29.33 0 31.7 23.15 28.8 33.11 16.85 16.39 28.38	PRUNI 31.76 25.36 31.7 0 35.33 35.12 47.37 34.14 35.58 36.76	MPIBGM 33.78 35.63 23.15 35.33 0 31.69 40.04 25.09 28.01 38.21	MERRA 33.28 34.83 28.8 35.12 31.69 0 38.21 27.3 32.05 36.53	NCEP 42.01 47.07 33.11 47.37 40.04 38.21 0 33.2 34.86 39.55	ERA 27.93 31.46 16.85 34.14 25.09 27.3 33.2 0 20.42 30.99	GSWP 30.36 32.55 16.39 35.58 28.01 32.05 34.86 20.42 0 27.27	NOAH 28.97 33.5 28.38 36.76 38.21 36.53 39.55 30.99 27.27 0	CLM 30.93 32.9 32.86 35.39 39.3 35.15 44.74 33.4 32.26 23.36	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08 42.98 30.99 29.08 19.95
Sensible flux	OXUNI MAUNI OBSPM PRUNI MPIBGM MERRA NCEP ERA GSWP NOAH CLM	OXUNI 0 21.95 26.51 31.76 33.78 33.28 42.01 27.93 30.36 28.97 30.93	MAUNI 21.95 0 29.33 25.36 35.63 34.83 47.07 31.46 32.55 33.5 32.9	OBSPM 26.51 29.33 0 31.7 23.15 28.8 33.11 16.85 16.39 28.38 32.86	PRUNI 31.76 25.36 31.7 0 35.33 35.12 47.37 34.14 35.58 36.76 35.39	MPIBGM 33.78 35.63 23.15 35.33 0 31.69 40.04 25.09 28.01 38.21 39.3	MERRA 33.28 34.83 28.8 35.12 31.69 0 38.21 27.3 32.05 36.53 35.15	NCEP 42.01 47.07 33.11 47.37 40.04 38.21 0 33.2 34.86 39.55 44.74	ERA 27.93 31.46 16.85 34.14 25.09 27.3 33.2 0 20.42 30.99 33.4	GSWP 30.36 32.55 16.39 35.58 28.01 32.05 34.86 20.42 0 27.27 32.26	NOAH 28.97 33.5 28.38 36.76 38.21 36.53 39.55 30.99 27.27 0 23.36	CLM 30.93 32.9 32.86 35.39 39.3 35.15 44.74 33.4 32.26 23.36 0	MOSAIC 29.32 33.55 30.38 37.77 40.63 35.08 42.98 30.99 29.08 19.95 23.05

• Based on this **PRELIMINARY** results, it seems that the **fluxes spread** in the new global observation-based heat flux estimates is similar to the already existing reanalysis and LSMs heat fluxes.

LandFLUX

1.Introduction

2.Equations

3.Inputs

4.Methods

5. Global

fluxes

Concluding remarks

LandFLUX

- 1.Introduction
- 2.Equations
- 3.Inputs
- 4.Methods
- 5. Global fluxes
- 6. Inter--comparing fluxes

- Estimation of **land surface heat fluxes** [LE/H] from observations is difficult due to the large spatial heterogeneity of vegetation and soils and the dependence of water availability on meteorology and climate.
- Nevertheless, there is a solid body of work estimating LE/H at different space and time scales by combining **observations** with physical **formulations** or statistical **models**.
- The combination of long-term satellite data records and appropriate formulations can provide the **long data record of LE/H** required to close the water and energy cycle (using observation based products). The derived products can also be of utility to benchmark land surface and climate models.
- There are already a number of groups independently pursuing global scale estimation of flux components. These **products** vary in terms of the forcing data used, the governing equations employed, and the temporal scale of their application.
- The **LandFLUX activity** will provide a framework for undertaking coordinated evaluation and assessment of these various products, ultimately identifying and delivering a robust procedure for production of a global land surface flux data set.

BACKUP SLIDES

Concluding remarks

• Global estimation of **land surface heat fluxes** [LE/H] is difficult due to the large spatial heterogeneity of vegetation and soils and the dependence of water availability on meteorology and climate.

• Satellite **observations** can be used to estimate globally LE/H, but they require a **formulation/model** to infer the fluxes from the observations.

• There are already a number of groups independently pursuing global scale estimation of flux components. These **products** vary in terms of the forcing data used, the governing equations employed, and the spatial and temporal scales of their application.

• The **LandFLUX** activity will provide a framework for undertaking coordinated evaluation and assessment of these various products, ultimately identifying and delivering a robust procedure for operational production of a global land surface flux data set.

FORMULATIONS/MODELS

LandFLU

Corlos.jimenez@obspmaficons. Do we need further work to cast them in terms of the observed

Concluding remarks

OBSERVATIONS/INPUTS

• Some critical inputs to the formulation/models require further work e.g

• **Re-calibration** of **long-term satellite radiance** datasets are crucial to producing long-term LE/H: AVHRR visible and near-infrared (for albedo, NDVI, FPAR) and infrared (for surface skin temperature, cross-calibration of the geostationary satellite radiances is also needed to resolve diurnal variability) and SSM/I (also SMMR, for surface skin temperature, vegetation properties and soil moisture). These records should also be connected to more current records from MODIS/ MERIS and SSMIS/AMSR.

• Improving the estimation of radiation: newer **albedo products** based on combined analyses of MODIS, MISR, POLDER and connect them to an AVHRR-based record?

• A global surface **skin temperature** product that resolves diurnal variations for **clear and cloudy** conditions is desired: by a combined analysis of satellite infrared and microwave measurements (many different instrument combinations can be tried but the longest record would be obtained using weather satellite infrared imagery and SSM/I-AMSR)?

Annual biases

- Biases calculated with respect to the all-products ensemble average.

1993

Annual biases

- Biases calculated with respect to the all-products ensemble average.

1993

Amazon basin

Amazon basin

Parana basin

• LE and Rn 1993-95 time series

[BLACK all-products ensemble average]

Rn

LE

Parana basin

Disclaimer

We present here a global inter-comparison of 12 land surface <u>monthly averaged heat flux products</u> with the aim of **quantifying the range of uncertainty** from present heat flux monthly estimates. There is **NO ATTEMPT** to quantify the accuracy of the products, **NO CLAIMS** are made stating that one product is superior to the others. Biases will be reported with respect to the average All data producers are kindly acknowledged by making their estimates available and by being available for discussions concerning their products.

Methodology

Expand the workshop based intercomparison exercise into a focused activity (LandFlux-EVAL), that will include multi-scale (spatial and temporal) data sets, assessment over longer time-periods, and identification of specific regions for focused analysis. ETH Zurich and the Observatoire de Paris are the contact institutions for this activity (see http://www.iac.ethz.ch/url/LandFlux-EVAL).

Murray basin

• LE and Rn 1993-95 time series

Murray basin

Mississippi basin

LE and Rn 1993-95 time series

[BLACK all-products ensemble average]

LE

Rn

Mississippi basin

Summary

• 1993 annual RMSE (W/m²) [from the global monthly mean differences]

			OXUNI	MAUNI	OBSPM	PRUNI	MPIBGM	MERRA	NCEP	ERA	GSWP	NOAH	CLM	MOSAIC
		OXUNI	0	21.95	24.7	25.25	26.57	31.9	28.41	22.62	26.97	24.23	31.89	26.43
		MAUNI	21.95	0	18.15	26.28	20.36	34.59	32.25	22.23	21.57	23.58	30.3	30.19
	X,	OBSPM	24.7	18.15	0	23.46	15.09	30.58	30.66	19.73	14.79	19.11	24.24	27.16
1.Introduction	fl	PRUNI	25.25	26.28	23.46	0	23.4	31.4	32.47	25.32	27.21	24.85	27.4	27.98
	Ę	MPIBGM	26.57	20.36	15.09	23.4	0	31.21	31.88	22	19.06	20.29	23.57	28.24
	er	MERRA	31.9	34.59	30.58	31.4	31.21	0	30.37	28.84	31.24	27.28	30.62	28.58
2 Products	at	NCEP	28.41	32.25	30.66	32.47	31.88	30.37	0	25.36	30.59	26.36	32.66	27.09
2.1 100000		ERA	22.62	22.23	19.73	25.32	22	28.84	25.36	0	20.41	19.93	26.66	23.87
		GSWP	26.97	21.57	14.79	27.21	19.06	31.24	30.59	20.41	0	17.57	22.68	24.96
		NOAH	24.23	23.58	19.11	24.85	20.29	27.28	26.36	19.93	17.57	0	18.37	16.27
3.Examples		CLM	31.89	30.3	24.24	27.4	23.57	30.62	32.66	26.66	22.68	18.37	0	23.67
		MOSAIC	26.43	30.19	27.16	27.98	28.24	28.58	27.09	23.87	24.96	16.27	23.67	0
			OXUNI	MAUNI	OBSPM	PRUNI	MPIBGM	MERRA	NCEP	ERA	GSWP	NOAH	CLM	MOSAIC
4.Annual		OXUNI	0	21.95	26.51	31.76	33.78	33.28	42.01	27.93	30.36	28.97	30.93	29.32
means		MAUNI	21.95	0	29.33	25.36	35.63	34.83	47.07	31.46	32.55	33.5	32.9	33.55
	×	OBSPM	26.51	29.33	0	31.7	23.15	28.8	33.11	16.85	16.39	28.38	32.86	30.38
5 Zonal	jn	PRUNI	31.76	25.36	31.7	0	35.33	35.12	47.37	34.14	35.58	36.76	35.39	37.77
o. Zonar	e t	MPIBGM	33.78	35.63	23.15	35.33	0	31.69	40.04	25.09	28.01	38.21	39.3	40.63
means	ple	MERRA	33.28	34.83	28.8	35.12	31.69	0	38.21	27.3	32.05	36.53	35.15	35.08
	Sil	NCEP	42.01	47.07	33.11	47.37	40.04	38.21	0	33.2	34.86	39.55	44.74	42.98
	ü	ERA	27.93	31.46	16.85	34.14	25.09	27.3	33.2	0	20.42	30.99	33.4	30.99
6. Basins	Se	GSWP	30.36	32.55	16.39	35.58	28.01	32.05	34.86	20.42	0	27.27	32.26	29.08
	•••	NOAH	28.97	33.5	28.38	36.76	38.21	36.53	39.55	30.99	27.27	0	23.36	19.95
		CLM	30.93	32.9	32.86	35.39	39.3	35.15	44.74	33.4	32.26	23.36	0	23.05
7 0		MOSAIC	29.32	33.55	30.38	37.77	40.63	35.08	42.98	30.99	29.08	19.95	23.05	0

· Based on this PRELIMINARY results, can we say that the range of uncertainties in the new global observation-based heat flux estimates is similar to the already existing reanalysis and LSMs heat fluxes?

LandFLUX

• Benchmarking the climate models?

Hydrologic Statistics - Globe												
Models					1970 -	1999 (20	C3M)					
		Globe			Ocean				Land			
	Area	Р	Е	Area	Р	Е	P-E	Area	Р	Е	P-E	
	m ²	mm/yr	mm/yr	m ²	mm/yr	mm/yr	mm/yr	m ²	mm/yr	mm/yr	mm/yr	
BCCR-BCM2.0_Set1	5.09E+14	1091.8	1091.8	3.65E+14	1185.7	1287.0	-101.3	1.44E+14	854.6	598.7	255.9	
CGCM3.1(t63)_Set1	5.09E+14	996.9	996.9	3.55E+14	1120.6	1220.7	-100.1	1.54E+14	711.7	480.6	231.0	
					/							
			_									
UKMO-HADCM3_Set1	5.09E+14	1064.2	1064.2	3.62E+14	1181.5	1269.9	-88.3	1.47E+14	776.0	559.1	217.0	
UKMO-HADGEM1_Set1	5.09E+14	1103.9	1103.9	3.62E+14	1226.5	1333.6	-107.1	1.47E+14	801.4	537.0	264.4	
SUMMARY												
STATISTICS												
Mean		1045.0	1045.0		1156.7	1251.0	-94.3		770.2	537.5	232.7	
SD		55.1	55.1		68.5	68.9	15.4		55.8	57.5	33.9	
Min		916.5	916.5		1017.6	1096.3	-127.7		659.2	444.4	162.8	
Max		1187.2	1187.2		1311.3	1400.5	-63.7		882.0	675.8	314.5	
Number of Model Runs sho	Number of Model Runs showing increases											
Number of Model Runs sho	wing deci	reases										

from W. H. Lim and M. L. Roderick (2009) An Atlas of the Global Water Cycle Based on the IPCC AR4 Climate Models7

52

• GSWP-2 (mean 434 mm/year)

CLM2-TOP_BU	HT SSID_DU
ISBA_B0	LaD_80
MOSAIC_B0	CRCHIDEE_B0
SIBUC_B0	VISA_B0
MM_B0	SSIBCOLA_B0
NSIPP_B0	SWAP_B0
NOAH_B0	MOSES2_B0
SSIBCOLA_P1	A NSIPP_P1
SWAP_P1	A NOAH_P1
SSIBCOLA_P2	NSIPP_P2
SWAP_P2	+ NOAH_P2
SSIBCOLA_P3	NSIPP_P3
SWAP_P3	NOAH_P3
MOSES2_P3	SSIBCOLA_P4
NSIPP_P4	O SSIBCOLA_PE
NSIPP_PE	O NOAH_PE
SSIBCOLA_R1	NSIPP_R1
SWAP_R1	NOAH_R1
MOSES2_R1	×SSIBCOLA_R2
SSIBCOLA_R3	+ NSIPP_R3
SSIBCOLA_M1	O NSIPP_M1
SWAP_M1	△ SSIBCOLA_M2
ANSIPP_M2	X SSIBCOLA_11
KNSIPP_I1	X SWAP_I1
KNOAH IT	

from Schloser and Gao (2009), Assessing Evapotranspiration Estimates from the GSWP-2 Simulations

<carlos.jimenez@obspm.fr>

Observatoire

LERMA