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Purpose of assimilation : reconstruct as accurately as possible the 
state of the atmospheric or oceanic flow, using all available 
appropriate information. The latter essentially consists of

 The observations proper, which vary in nature, resolution and 
accuracy, and are distributed more or less regularly in space 
and time.

 The physical laws governing the evolution of the flow, available 
in practice in the form of a discretized, and necessarily 
approximate, numerical model.

 ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle 
latitudes. Although they basically are necessary consequences of the physical 
laws which govern the flow, these properties can usefully be explicitly introduced 
in the assimilation process.
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Both observations and ‘model’ are affected with some uncertainty  uncertainty on the 
estimate.

For some reason, uncertainty is conveniently described by probability distributions 
(don’t know too well why, but it works).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing 
everything we know (unambiguously defined if a prior probability distribution is defined; see Tarantola, 
2005).
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Bayesian estimation is however impossible in its general 
theoretical form in meteorological or oceanographical practice 
because

• It is impossible to explicitly describe a probability distribution 
in a space with dimension even as low as n ≈ 103, not to speak 
of the dimension  n ≈ 106-8 of present Numerical Weather 
Prediction models.

• Probability distribution of errors on data very poorly known 
(model errors in particular).
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Purpose of ensemble assimilation (and prediction too)

 Produce an ensemble of estimates which are meant to 
sample the conditional probability distribution 
(dimension N ≈ O(10-100)).
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Ensemble Kalman Filter (EnKF) and its many variants.

Cannot be exactly bayesian for nonlinear systems (it has been rigorously 
shown by Le Gland et al. that, in the limit of infinite ensemble size, the 
probability distribution defined by EnKF tends to a limit which is 
different in the nonlinear case from the bayesian distribution)
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Exact bayesian estimation

Particle filters

Predicted ensemble at time t : {xb
n, n = 1, …, N }, each element with its own weight

(probability) P(xb
n)

Observation vector at same time : y = Hx + 

Bayes’ formula

P(xb
n  y)  P(y  xb

n) P(xb
n)

Defines updating of weights



9

Particle filters are bayesian in the limit of infinite number of particles (proven)

Particle filters are now a ‘hot’ research topic, studied in many places (C. Snyder, P. 
J. van Leeuwen, S. Nakano, C. Baehr, …)

A general problem is that weights tend to concentrate on one, or a small number of 
particles ( need for regenerating new particles, for instance through Sequential 
Importance Resampling) 

The main question is whether it is possible to implement useful (and stable) particle 
filters with ensemble dimensions that are not prohibitive

Another question, as always with sequential estimation, is the possibility of taking 
temporal error dependence into account.
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Exact bayesian estimation

Acceptation-rejection

Bayes’ formula

f(x)  P(x  y) = P(y  x) P(x) / P(y)

defines probability density function for x.

Construct sample of that pdf as follows.

Draw randomly couple (, )  S x [0,supf].
Keep  if  < f().  is then distributed according to f(x).
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Acceptation-rejection

Seems costly.

Requires capability of permanently interpolating probability distribution defined by
finite sample to whole state space.
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Question

• Accepting that the purpose of ensemble 
assimilation is to obtain a sample of the 
underlying conditional probability 
distribution for the state of the flow, how can 
one objectively (and quantitatively) evaluate 
the degree to which that purpose has been 
achieved ?

Remark. The same question arises for ensemble prediction
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My point of view

o Ensemble estimation (either assimilation or prediction) is of a 
different essence than deterministic estimation in that the object to 
be estimated (basically a probability or a probability distribution) is 
not better known a posteriori than it was a priori (in fact, that 
object has no objective existence and cannot be possibly observed 
at all)

o As a consequence, validation of ensemble estimation can only be 
statistical, and it is meaningless (except in limit cases, as when the 
estimated probability distribution has a very narrow spread, and the 
verifying observation falls within the predicted spread, or on the 
contrary when the verifying observation falls well outside the 
spread of the estimated probability distribution) to speak of the 
quality of ensemble estimations on a case-to-case basis 
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What are the attributes which make a good ensemble estimation system ?

o Reliability
(it rains 40% of the times I predict 40% probability for rain)

- Statistical agreement between estimated probability and observed 
frequency for all events and all probabilities
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More generally

- Consider a probability distribution F. Let F‘(F) be the conditional frequency 
distribution of the observed reality, given that F has been predicted. Reliability is the 
condition that

F‘(F) = F for any F

Measured by reliability component of Brier and Brier-like scores, rank histograms, 
Reduced Centred Variable, …
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More generally, for a given scalar variable, Reduced Centred Random Variable
(RCRV, Candille et al., 2006)

where is verifying observation, and and are respectively the expectation and
the standard deviation of the predicted probability distribution.

Over a large number of realizations of a reliable probabilistic prediction system

E(s) = 0         ,       E(s2) = 1
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If observations show that F‘(F) ≠ F for some F, then a posteriori calibration 

F  F‘(F)

renders system reliable. Lack of reliability, under the hypothesis of stationarity of 
statistics, can be corrected to the same degree it can be diagnosed. 

Second  attribute

o ‘Resolution’ (also called ‘sharpness’)

Reliably predicted probabilities F‘(F) are distinctly different from climatology

Measured by resolution component of Brier and Brier-like scores, ROC curve area, 
information content, …
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It is the conjunction of reliability and resolution that makes the 
value of a probabilistic estimation system. Provided a large enough 
validation sample is available, each of these qualities can be 
objectively and quantitatively measured by a number of different, 
not exactly equivalent, scores.

In the specific context of ensemble assimilation, checking 
reliability is checking statistical consistency between a priori 
estimated and a posteriori observed innovation (as done by 
Desroziers for ‘deterministic’ assimilation).

Checking resolution is checking magnitude of innovation.
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Size of Assimilation Ensembles ?

Two aspects at least can have an impact on the size of assimilation 
ensembles : the numerical stability of the assimilation process, and 
the quality of the results.

o Observed fact : in ensemble prediction, present scores saturate for 
value of ensemble size N in the range 30-50, independently of 
quality of score.
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Impact of ensemble size on Brier Skill Score
ECMWF, event T850 > Tc Northern Hemisphere
(Talagrand et al., ECMWF, 1999)

Theoretical estimate (raw Brier score)

BN  B 
1
N

p(1 p)g( p)dp
0

1


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Question 
Why do scores saturate for N ≈ 30-50 ? Explanations that have been suggested

(i) Saturation is determined by the number of unstable modes in the system. Situation 
might be different with mesoscale ensemble prediction.

(ii) Validation sample is simply not large enough.

(iii) Scores have been implemented so far on probabilisic predictions of events or one-
dimensional variables (e. g., temperature at a given point). Situation might be 
different for multivariate probability distributions (but then, problem with size of 
verification sample).

(iv) Probability distributions (in the case of one-dimensional variables) are most often 
unimodal. Situation might be different for multimodal probability distributions (as 
produced for instance by multi-model ensembles).

In any case, problem of size of verifying sample will remain, even if it can be 
mitigated to some extent by using reanalyses or reforecasts for validation.
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Is it possible to objectively validate multi-dimensional probabilistic predictions ?

Consider the case of prediction of 500-hPa winter geopotential over the Northern Atlantic 
Ocean, (10-80W, 20-70N) over a 5x5-degree2 grid 165 gridpoints.

In order to validate probabilistic prediction, it is in principle necessary to partition predicted 
probability distributions into classes, and to check reliability for each class.

Assume N = 5, and partitioning is done for each gridpoint on the basis of L = 2 thresholds. 
Number of ways of positioning N values with respect to L thresholds. Binomial coefficient

This is equal to 21 for N = 5 and L = 2 , which leads to 

21165 ≈ 10218

possible probability distributions.

N  L
L










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Is it possible to objectively validate multi-dimensional probabilistic 
predictions (continuation) ?

21165 ≈ 10218 possible probability distributions.

To be put in balance with number of available realizations of the 
prediction system. Let us assume 150 realizations can be obtained 
every winter. After 3 years (by which time system will have started 
evolving), this gives the ridiculously small number of 450 
realizations.
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Is it possible to objectively validate multi-dimensional probabilistic 
predictions (continuation) ?

For a more moderate example, consider long-range (e. g.,  monthly or 
seasonal) probabilistic prediction of weather regimes (still for the winter 
Northern Atlantic). Vautard (1990) has identified four different weather 
regimes, with lifetimes of between one and two weeks. The probabilistic 
prediction is then for a four-outcome event. With N = 5-sized ensembles, 
this gives 56 possible distributions of probabilities.

In view of the lifetimes of the regimes, there is no point in making more 
than one forecast per week. That would make 60 forecasts over a 3-year 
period. Hardly sufficient for accurate validation.
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Conclusions

Bayesian (low-order) ensemble assimilation does not exist at present. May 
exist in some not-too-distant future. Size of ensembles remains a problem.

Ensemble assimilation must be evaluated, not only in terms of 
‘deterministic’ accuracy (e. g., accuracy of mean of ensemble), but also in 
terms of how well it estimates the spread of uncertainty. That is objectively 
measured by reliability and resolution (sharpness).

But there are limits to what can be achieved in that respect. It is necessary 
to identify clearly those limits.


