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series: a reanalysis perspective with 
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Introduction: global reanalyses

 Goal: Produce datasets based on observations
describing the state of the atmosphere, that are 
consistent: physically, globally, and in time

 Methodology: Use a fixed version of a state-of-the-art 
weather model and data assimilation system (DAS), 
assimilating as many observations as possible

 Difficulty: Besides making sure that no (major) bugs 
undermine the attempt of using a “fixed version DAS”, 
we have to deal with the irregular variations of the 
observing system in quantity and in quality, over time 
and in space
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Outline

1.The many dimensions of data 
assimilation in reanalysis

2.An attempt to get a better grip 
on the observing system 
diagnostics: observation 
statistics database

3.Conclusions and perspectives
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Outline

1.The many dimensions of data 
assimilation in reanalysis

 Current reanalysis at ECMWF: ERA-Interim

 Monitoring of Data Assimilation Performance

 Complexity of the observing system
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Current Reanalysis System at ECMWF: 
ERA-Interim Now continuing in real-time
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Changes that can be minimized in a reanalysis Requires additional collaboration

1. Data
- Observing system (instrumentation – raw data)

- Forcing data: SST, sea-ice, greenhouse gases…

- Data processing

2. Data assimilation
- Analysis scheme

- Bias correction

- Data usage: blacklist, thinning, active/passive (!      )

- Observation error assignment (!      )

3. NWP forecast model
- Physics

- Dynamics

- Resolution

- Misc: computer (!       ), code (!       ), compiler (!       ), settings (!       )

NWP Changes Affecting Quality: 
Mitigation in Reanalysis
(usually for the better)
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Outline

1.The many dimensions of data 
assimilation in reanalysis

 Current reanalysis at ECMWF: ERA-Interim

 Monitoring of Data Assimilation Performance

 Complexity of the observing system
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Data assimilation performance

 How do we qualify/quantify it?
- Extract the “best” information from all observations

 Make sure that the minimizations converge!

 Make sure that the bias correction “works properly”

 New diagnostics being developed by experts: this workshop!
- Assimilate what we are supposed to assimilate

 Keep track of the hundreds of data sources

 Do not assimilate unwanted data [“blacklist”]

 Do assimilate wanted data [“whitelist”]

 In reanalysis: we have the same issues, except:
- Over longer time periods
- Covered very quickly, typically 10 days of assimilation per day of run
- Aim at producing time-consistent products

(scientific)

(technical)
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Dive into the Assimilation Problem: Log!

 Excerpt from IFS 4DVAR JO table
Diagnostic JO-table (JOT) MINIMISATION JOB T0095 NCONF=   131 NSIM4D=     0 NUPTRA=     0
========================================================================================= 

Obstype 1 === SYNOP, Land stations and ships  
--------------------------------------------------

Codetype 11 === SYNOP Land Manual Report        
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

H2          1470            2005.605696282   1.36    0.113E+00   0.119E+00
Z            212            488.6433227499   2.30    0.224E+03   0.448E+02
PS         14009            20229.45067233   1.44    0.713E+02   0.535E+02

Codetype 14 === SYNOP Land Automatic Report     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

H2          1215            1359.493317157   1.12    0.120E+00   0.108E+00
Z             52            247.0854971979   4.75    0.523E+02   0.429E+02
PS         12730            25453.43002755   2.00    0.524E+02   0.527E+02

Codetype 21 === SYNOP-SHIP Report               
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U           1208            2543.019994507   2.11    0.200E+01   0.112E+01
PS          1096            3226.156897906   2.94    0.853E+02   0.600E+02

Codetype 23 === SYNOP SHRED Report              
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U              6            12.95046365384   2.16    0.200E+01   0.102E+01
PS             5            21.74637926436   4.35    0.853E+02   0.556E+02

Codetype 24 === SYNOP Automatic SHIP Report     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U            828            734.5471588233   0.89    0.200E+01   0.108E+01
U10         1130            731.2756952020   0.65    0.200E+01   0.103E+01
Z              3            109.4780440042   36.49    0.412E+02   0.299E+02
PS          2644            5390.184158827   2.04    0.505E+02   0.610E+02

Codetype 140 === SYNOP METAR                     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

PS         20311            23482.61878113   1.16    0.800E+02   0.558E+02
---------- --------------------------- --------

ObsType 1 Total:      56919            86035.68610659           1.51

Obstype 2 === AIREP, Aircraft data            
--------------------------------------------------

Codetype 141 === AIREP Aircraft Report           
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U           6176            5428.182041774   0.88    0.326E+01   0.245E+01
T           3414            2534.539880515   0.74    0.127E+01   0.714E+00

Codetype 144 === AMDAR Aircraft Report 

Diagnostic JO-table (JOT) MINIMISATION JOB T0095 NCONF=   131 NSIM4D=     0 NUPTRA=     0
========================================================================================= 

Obstype 1 === SYNOP, Land stations and ships  
--------------------------------------------------

Codetype 11 === SYNOP Land Manual Report        
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

H2          1470            2005.605696282   1.36    0.113E+00   0.119E+00
Z            212            488.6433227499   2.30    0.224E+03   0.448E+02
PS         14009            20229.45067233   1.44    0.713E+02   0.535E+02

Codetype 14 === SYNOP Land Automatic Report     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

H2          1215            1359.493317157   1.12    0.120E+00   0.108E+00
Z             52            247.0854971979   4.75    0.523E+02   0.429E+02
PS         12730            25453.43002755   2.00    0.524E+02   0.527E+02

Codetype 21 === SYNOP-SHIP Report               
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U           1208            2543.019994507   2.11    0.200E+01   0.112E+01
PS          1096            3226.156897906   2.94    0.853E+02   0.600E+02

Codetype 23 === SYNOP SHRED Report              
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U              6            12.95046365384   2.16    0.200E+01   0.102E+01
PS             5            21.74637926436   4.35    0.853E+02   0.556E+02

Codetype 24 === SYNOP Automatic SHIP Report     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U            828            734.5471588233   0.89    0.200E+01   0.108E+01
U10         1130            731.2756952020   0.65    0.200E+01   0.103E+01
Z              3            109.4780440042   36.49    0.412E+02   0.299E+02
PS          2644            5390.184158827   2.04    0.505E+02   0.610E+02

Codetype 140 === SYNOP METAR                     
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

PS         20311            23482.61878113   1.16    0.800E+02   0.558E+02
---------- --------------------------- --------

ObsType 1 Total:      56919            86035.68610659           1.51

Obstype 2 === AIREP, Aircraft data            
--------------------------------------------------

Codetype 141 === AIREP Aircraft Report           
Variable      DataCount Jo_Costfunction JO/n       ObsErr BgErr

U           6176            5428.182041774   0.88    0.326E+01   0.245E+01
T           3414            2534.539880515   0.74    0.127E+01   0.714E+00

Codetype 144 === AMDAR Aircraft Report 

Data count

Observational
part of the cost 
function,

Assumed 
observation 
error stdev., …

Observation type,
Observable type,
Satellite,
Sensor, …

Types of information
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Monitoring of the minimizations in ERA-Interim

20092006

Bugfix for GPSRO radio occultation 
observation operator

Resolved with the help of M. Fisher and S. Healy 
[ had already been fixed in ECMWF operations]

1 (CHAMP) +6 (COSMIC), +1 (GRAS)Number of GPSRO satellites:
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Outline

1.The many dimensions of data 
assimilation in reanalysis

 Current reanalysis at ECMWF: ERA-Interim

 Monitoring of Data Assimilation Performance

 Complexity of the observing system
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Time coverage of in situ surface data
1989 2009

http://json.org

http://code.google.com/p/simile-widgets/wiki/Timeline

Snapshot of interactive observing system visualization tool built with:

MetPy
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Time coverage of radiance data

Comparatively 
fewer sources…

Comparatively many 
more instruments …

1989 2009
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Data counts … by observable type

Now approx. 8 million 
observations per day 

7-day and 3-month moving averages 
[individual points not shown]

IR and MW
Radiances

Bending 
angles

Hu. 2m

U10/V10 wind

Ozone

SSMI PWC

Z

Sfc. pressure
Temperature

U10/V10 
ambigu. 
wind

U/V wind

Upper-air 
Humidity

: Number of data actively assimilated per day in ERA-Interim 4DVAR
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How many more such plots do we have to 
create and analyze?

 How do we automate their generation?
 How do we automatically trigger alerts?

… related to …

 How can we appropriately “cut through” all the possible 
dimensions and layers of information?

??Observation 
type

Vertical bin

Observable type
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Outline

1.The many dimensions of the 
data assimilation in reanalysis

2.An attempt to get a better grip 
on the data assimilation 
performance: observation 
statistics database

3.Conclusions and perspectives
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Outline

2. An attempt to get a better grip 
on the data assimilation 
performance: observation 
statistics database

 Generation of long time-series

 Analysis

 Further application
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Design considerations

 Objective:
- Create a data supply chain that links as directly as possible the 

Observation DataBase (ODB)  to time-series

 Constraints:
- Do not assume any prescribed list of data types

- Acknowledge the fact that it is virtually impossible to specify a 
priori all the possible plots that would span all the dimensions of 
the observing system; hence: use an input (data)-driven 
approach instead of an output (plot)-driven approach for the 
statistics gathering

- Simply want to specify once and for all what attributes are 
important to sort/group the observations:

 For example, Date/Time? Observation type? Assimilation 
type? Pressure? Altitude? Satellite channel?
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Part I: Calculate statistics directly from the 
ODB in 1 SQL query -- Example for observations 
on pressure levels

SELECT count(*) as count, 
sum(fg_depar@body) as sumfg_depar, sum((fg_depar@body)*(fg_depar@body)) as s2umfg_depar, 
min(fg_depar@body) as minfg_depar, max(fg_depar@body) as maxfg_depar, sum(an_depar@body) as 
suman_depar, sum((an_depar@body)*(an_depar@body)) as s2uman_depar, min(an_depar@body) as 
minan_depar, max(an_depar@body) as maxan_depar, expver@desc as expver, andate@desc as andate, 
antime@desc as antime, obstype@hdr as obstype, codetype@hdr as codetype, varno@body as varno, 
satname_1@hdr as satname_1, satname_2@hdr as satname_2, satname_3@hdr as satname_3, satname_4@hdr as 
satname_4, status@body as status, …

[ omitted for the talk ]

FROM desc, hdr, body

WHERE  not(biascorr@body is not NULL and biascorr@body <> 0)  AND  not(obstype@hdr == 10)  AND  
not((obstype@hdr == 10 and codetype@hdr == 250))  AND (obstype@hdr in (2,3,5,6))

Data count

Diagnostics

Sorted by 
Experiment ID,

Date,
Time,

Observation type and name (SYNOP, TEMP, …),
Observation sub-type and name (Land Automatic Report, …)

Observable type (Temperature, U-wind, …)
Assimilation type (active, passive, …)

Pressure level bin,
Latitude bin

Restrict to observations on pressure levels
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Part II: Automate the SQL query generation and 
build a tree of observation statistics
 How do we make sure we don’t forget any query to span 

the entire observation database?
 How do we write these requests automatically?
 Solution: tree of requests and conditional keys

Tree of SQL requests
ERA-Interim

Dates/times
Surface obs.

Satellite 
radiances

Aircraft

Radiosondes

AMVs

Channels

Pressure bins

Altitude bins
GPS 

radio occ.

Count
Statistics

Count
Statistics

Count
Statistics Count

Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Count
Statistics

Tree of observation statistics

json.orgMetPyBuilt with:ODB
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Excerpt of a tree of observation statistics

Each branch ends with a timeseries

(direct view of the data structure from the web browser)

Instruments as found in ODB

AMSU-A channels as found in ODB

Observable type 119 (radiances) as found in ODB



Slide 22

Slide 22

Part III: Create and populate an observation 
statistics database
We insert the “tree” of statistics into … an SQL-

type database (                         for now), thus 
effectively stacking several cycles of observation 
statistics over one another to construct a 20+-
year-deep database

Very good news is…
- We can apply the same “tree logic” to extract statistics from SQL and have 

them grouped automatically to generate time-series

This approach
- Will still be relevant with the next-generation observation (SQL) database at 

ECMWF, because it relies exclusively on the SQL engine to calculate the 
statistics

- Opens up the possibility to generate quickly and interactively time-series, 
organized according to a tree definition that can be modified at any time
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Outline

2. An attempt to get a better grip 
on the data assimilation 
performance: observation 
statistics database

 Generation of long time-series

 Analysis

 Further application
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Time-series Investigation

1. Start by plotting the time-series!

2. Most tools / statistical methods available to 
automatically “process” time-series assume that:
- The time-series are representative of the same “observable”

throughout the time period

- The data have been “cleaned-up” – there are no outliers …

3. We first have to get a feeling for what may be 
problematic in our time-series, before passing them on 
to automatic time-series processing tools
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AMSU-A Bias correction

NOAA-15

NOAA-18

NOAA-17

NASA EOS-AQUA

NOAA-16

METOP-A

METOP-A

Daily statistics
7-day moving average
3-month moving average

NH sudden 
stratospheric 

warming
Jan-Mar 2009

AMSU-A channel 10, 57 GHz O2, peaks 100-30hPa

http://code.google.com/p/flot/

json.orgMetPy

Snapshot of interactive tool built with:
ODB
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Comparison HIRS/AIRS bias corrections

NASA EOS-AQUA 
AIRS average of 
channels 338, 355, 
362, and 375

METOP-A HIRS 7
NOAA-17 HIRS 7

NOAA-16 HIRS 7

NOAA-18 HIRS 7

NOAA-14 HIRS 7

Unusually 
long spin-up

HIRS channel 7, ~13microns CO2, peaks lower troposphere
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Time-series of GPSRO innovations
GPS Radio occultation bending angles, selected satellites
Standard deviation of innovations, in percent of observation
Altitude band 25-26 km

CHAMP

FORMOSAT-3/COSMIC 
satellite #4

GRAS on 
METOP-A
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SSM/I DMSP F-13 Innovations

RSS (Wentz) dataset 
acquired for ERA-40

Dataset as used by ECMWF 
operations in real-time

Bias correction

Standard deviation of residual (o-a)

Standard deviation of innovation (o-b) without bias correction

Standard deviation of 
innovation with bias correction

(mean)
(stdev.)

1990 20081999

SSM/I channel 3, 22 GHz H2O
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Ratio of (actual over prescribed) sigma_o

RSS (Wentz) dataset Operational dataset

SSM/I DMSP F-13, all channels

0.60

0.55

Sigma_o estimated by the method of Desroziers et al. [2005]
Sigma_o used in the assimilation

Ratio of the actual observation error relative to the prescribed error = 

Actual errors are smaller than prescribed (or assumed)
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Ratio of (actual over prescribed) sigma_o

0.6

0.9

0.7

0.8

U wind, Atmospheric motion vectors from satellite imagery

Actual errors are smaller than prescribed (or assumed)
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Ratio of (actual over prescribed) sigma_o
U wind, in situ measurements

Dropsondes
2.0

1.0

Actual errors are smaller than prescribed (or assumed)

Actual errors are larger than prescribed (or assumed)
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Ratio of (actual over prescribed) sigma_o
Temperature, in situ measurements

1.0

1.6

Aircraft

Larger errors for radiosondes over land than over sea
(representativeness?)
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Ratio of (actual over prescribed) sigma_o
Surface pressure, in situ measurements

1.0

1.3 LAND AUTOMATIC

METAR
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Count of data assimilated daily in 4DVAR

LAND AUTOMATIC

LAND MANUAL

METAR

DRIFTING BUOYS

SHIP AUTOMATIC

SHIP (Manual)

Surface pressure, in situ measurements
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Outline

2. An attempt to get a better grip 
on the data assimilation 
performance: observation 
statistics database

 Generation of long time-series

 Analysis

 Further application
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Time-series: Various Types

 Physical data:
- Observations

 Process-generated data:
- Innovations (O-B), residuals (O-A), bias corrections

- Very likely more affected by time-correlation than physical data

 Process control data:
- Fit before and after minimization, bias correction…

- Useful to check that data and products fall within some range

 Common points in all these time-series:
- Aggregate of sensors only valid if the aggregation remains the 

same

- Need to consider individual sensors?
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How many time-series then…?

20+ years (1989-2009)28 satellite  14 instruments 
 394 channels = 636 tuples

Satellite  radiometer 
channel

20+ years (1989-2009)9Satellite with GPSRO

20+ years (1989-2009)3Satellites with scatter.

20+ years (1989-2009)16 tuplesSatellite  ozone instr.

20+ years (1989-2009)79 tuplesSatellite  wind product

12 hours in 2009~2500 aircraft  3 variables 
= ~7000 tuples

Aircraft platform 
instrument

5 years (2004-2009)1623 stations  4 variables 
= ~5000 tuples

Radiosonde station 
instrument

5 years (2004-2009)~2000 buoys  3 variables 
= 2500 tuples

Drifting buoy 
instrument

5 years (2004-2009)~15000 stations  4 variables 
= ~25000 tuples

Surface station 
instrument

Found overNumberType of “tuple”
V

ariability contained in each tim
e-series

N
um

ber of tim
e-series
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Time-series Investigation: Rationale

1. Describe: -- Can we detect:
 Breaks? Seasonality / cycles? Trends? Outliers?

2. Analyze: -- Can we explain:
 The origins of the breaks? The cycles? Are the outliers 

symptoms of problems in the DAS or simply the results of 
occasional poor sampling?

3. Detect: -- Could we improve:
 The alarm system to detect problems in the incoming data? 

Statistical models from long time-series could be used as 
basis from where to automatically trigger alerts as the 
screening encounters problematic data – with applications 
for operational NWP

4. Control: -- Check the assimilation performance:
 4DVAR, VarBC: “process control” statistics
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Conclusions

 Generating observation-related time-series from a data 
assimilation system can require significant efforts

- Easy approach: long, straightforward scripts and codes that “know” about 
the data types

- Simple approach: short, apparently more complex (recursive) scripts and 
codes that deal with “irregular” structures

- The differences are not really “interesting” from a scientific point of view if 
you have somebody else “doing the plots for you”… but even then, the 
resources spent there could probably be better used…

 An experimental observation statistics database has been 
constructed from ERA-Interim

- Already allowed to find a few points that need improvement in next 
reanalysis: Detect when the bias spin-up has stabilized, Need to automatically 
trigger alarms when large changes occur in the observation statistics

- We are not yet at the point where we can simply call automated methods to 
detect breaks, trends, cycles etc…

- Considering sensor-based time-series seems to make more physical sense 
than aggregate of sensors, whose coverage vary over time
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Future Prospects
 To reconstruct our observation statistics database with a finer 

granularity: (stations, surface type, lat/lon gridding, local time, 
timeslot…) – quite a few time-series!

- To start investigating simple, robust methods to “process” the 
various types of time-series

- To learn from the current time-series for the design of the 
observation handling in the next reanalysis

 To investigate how an observation statistics database could 
help/be implemented very close to the 4DVAR assimilation

- To store in a unified framework the statistical information that
needs propagation in time, e.g. bias correction tables

- To avoid repeating the monitoring calculations by having them 
done immediately close to the assimilation

- To integrate the observation alarm system closer to the 
assimilation, effectively allowing to use past time-series of 
observation statistics
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Thank you for your attention!

ERA-Interim webpage: 
http://www.ecmwf.int/research/era/do/get/index

Technical tools used to construct/serve/display the timeseries information shown in this talk

json.org

timeline


