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Introduction: global reanalyses

® Goal: Produce datasets based on observations
describing the state of the atmosphere, that are
consistent: physically, globally, and in time

® Methodology: Use a fixed version of a state-of-the-art
weather model and data assimilation system (DAS),
assimilating as many observations as possible

® Difficulty: Besides making sure that no (major) bugs
undermine the attempt of using a “fixed version DAS”,
we have to deal with the irreqular variations of the
observing system in quantity and in quality, over time

and in space
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1.The many dimensions of data
assimilation in reanalysis

O Current reanalysis at ECMWF: ERA-Interim

O Monitoring of Data Assimilation Performance

® Complexity of the observing system
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Current Reanalysis System at ECMWF:
ERA-Interim

Now continuing in real-time
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NWP Changes Affecting Quality:

itigation in Reanalysis

(usually for the better)

1.

Data

Observing system (instrumentation — raw data)

Forcing data: SST, sea-ice, greenhouse gases...

Data processin

Requires additional collaboration
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® Current reanalysis at ECMWF: ERA-Interim

® DMonitoring of Data Assimilation Performance

® Complexity of the observing system
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Data assimilation performance

® How do we qualify/quantify it?

(scientific)

Extract the “best” information from all observations
= Make sure that the minimizations converge!
= Make sure that the bias correction “works properly”

= New diagnostics being developed by experts: this workshop!
Assimilate what we are supposed to assimilate

(technical)  «  Keep track of the hundreds of data sources

® In

- »
s
\6'74 <0 /
ERA-Interyn

= Do not assimilate unwanted data [“blacklist’]

= Do assimilate wanted data [“whitelist”]

reanalysis: we have the same issues, except:
Over longer time periods
Covered very quickly, typically 10 days of assimilation per day of run
Aim at producing time-consistent products
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Dive into the Assimilation Problem: Log!

Types of information

® Excerpt from IFS 4DVAR JO table

Data count

Observational
part of the cost
function,
Assumed
observation
error stdev., ...

Observation type,
Observable type,
Satellite,

Sensor, ...
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Monitoring of the minimizations in ERA-Interim

Number of GPSRO satellites: 1 (CHAMP)

+6 (COSMIC), +1 (GRAS)
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Bugfix for GPSRO radio occultation

observation operator

Resolved with the help of M. Fisher and S. Healy

[ had already been fixed in ECMWF operations]
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Time coverage of in situ surface data
1989 2009
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Time coverage

1989
Comparatively
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Data counts ... by observable type

Used count: Number of data actively assimilated per day in ERA-Interim 4DVAR
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How many more such plots do we have to
create and analyze?

® How do we automate their generation?
® How do we automatically trigger alerts?

. related to ...

® How can we appropriately “cut through” all the possible
dimensions and layers of information?

Vertical bin /

/bservable type

: “
/
4
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2. An attempt to get a better grip
on the data assimilation
performance: observation
statistics database

O Generation of long time-series

® Analysis

® Further application
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Design considerations

® Objective:

- Create a data supply chain that links as directly as possible the
Observation DataBase (ODB) to time-series

® Constraints:

- Do not assume any prescribed list of data types

- Acknowledge the fact that it is virtually impossible to specify a
priori all the possible plots that would span all the dimensions of
the observing system; hence: use an input (data)-driven

approach instead of an output (plot)-driven approach for the
statistics gathering

- Simply want to specify once and for all what attributes are
important to sort/group the observations:

=  For example, Date/Time? Observation type? Assimilation
type? Pressure? Altitude? Satellite channel?

< Ty $SECMWF



Part I: Calculate statistics directly from the
ODB in 1 SQL query -- Example for observations
on pressure levels

SELECT count(*) as count, Data count
sum(fg_depar@body) as sumfg depar, sum((fg depar@body) * (fg_depar@body)) as s2umfg depar,

Diagnostics

min (fg_depar@body) as minfg depar, 1 as maxfg depar, sum(an_depar@body) as

suman_depar, sum((an_depar@body) * (ai s2uman_depar, min(an_depar@body) as

minan _depar, max(an_depar@body) as maxan depar, expver@desc as expver, andate@Rdesc as andate,
antime@desc as antime, obstypelhdr as obstype, codetype@hdr as codetype, varno@body as wvarno,
satname_1Q@hdr as satname_ 1, satname 2Q@hdr as satname_ 2, satname 3Q@hdr as satname_ 3, satname_4Q@hdr as

Sorted by
Experiment ID,
Date,
Time,

Observation type and name (SYNOP, TEMP, ...),
Observation sub-type and name (Land Automatic Report, ...)
Observable type (Temperature, U-wind, ...)
Assimilation type (active, passive, ...)

Pressure level bin,

Latitude bin

FROM desc, hdr, body

WHERE
n Restrict to observations on pressure levels

<~ ECMWF



Part Ii: Automate the SQL query generation and
build a tree of observation statistics

® How do we make sure we don’t forget any query to span
the entire observation database?

® How do we write these requests automatically?
® Solution: tree of requests and conditional keys
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Excerpt of a tree of observation statistics
(direct view of the data structure from the web browser)

- where==status_at body=1 AND (obstype at hdr = 7 and codetype _at hdr = 210) AND (obstype at hdr = 7 and codetype _at hdr = 210): {
- status@body==1: { . .

_ varnogbody==119: { < Observable type 119 (radiances) as found in ODB
- satname_4ghdr==AMSUA : {

+ press@body==14: { ..},

+ press@body==10: { ..},

+ press@body==11: { .. },

b

i

Instruments as found in ODB

+ press@body==12: { ..
+ press@body==13: { ..
+ pressgbody==6:
+ press@body==7:
+ press@body==5:
+ pressgbody==8:
+ press@body==9:
}f
satname_4ghdr==SsMI : { ..}
satname_4ghdr==ATRS : { ..
satname 4ghdr==METEOSAT: { .. I,
satname_4ghdr==MsG : { .. I,
satname_4ghdr==HIRS : { .. I,
satname_4@ghdr==SSMIS : { .. I,
satname_4@hdr==GOESING : { .. },
satname_4ghdr==mMsu : { .. I,
satname_4ghdr==S5U : { .. },
satname_4@hdr==AMSUB : { .. I,
satname_4ghdr==AMSR-E : { .. I,
satname_4ghdr==MHS : { .. },
satname_ 4ghdr==MTSATIMG: { .. }

//

B e
R

I
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Part lll: Create and populate an observation
statistics database

® We insert the “tree” of statistics into ... an SQL-
type database (=== for now), thus
effectively stacking several cycles of observation
statistics over one another to construct a 20+-
year-deep database

® Very good news is...

We can apply the same “tree logic” to extract statistics from SQL and have
them grouped automatically to generate time-series

® This approach

- Will still be relevant with the next-generation observation (SQL) database at
ECMWEF, because it relies exclusively on the SQL engine to calculate the
statistics

Opens up the possibility to generate quickly and interactively time-series,
organized according to a tree definition that can be modified at any time

i h
C eeess————rey 5 ECMWF
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Outline

2. An attempt to get a better grip
on the data assimilation
performance: observation
statistics database

O Generation of long time-series

® Further application
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Time-series Investigation

1.

Start by plotting the time-series!

Most tools / statistical methods available to
automatically “process” time-series assume that:

- The time-series are representative of the same “observable”
throughout the time period

- The data have been “cleaned-up” — there are no outliers ...

We first have to get a feeling for what may be
problematic in our time-series, before passing them on
to automatic time-series processing tools

»
2 e
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AMSU-A Bias correction

AMSUA ch.10 RAD Used meanbiascors

AMSU-A channel 10, 57 GHz O2, peaks 100-30hPa
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Comparison HIRS/AIRS bias corrections

HIRS 7 and equivalent ATRS Mean Bias correction Globe
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Time-series of GPSRO innovations

LIMB RO Ub_altitude_le_25000.0 Lb_altitude_ge_24000.0 Used

GPS Radio occultation bending angles, selected satellites

Standard deviation of innovations, in percent of observation = s
Altitude band 25-26 km

L
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SSM/I DMSP F-13 Innovations

SSMI ch. 3 RAD Used
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Ratio of (actual over prescribed) sigma_o

|SSMI RAD Used

.....

SSM/I DMSP F-13, all channels
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A,

ctual errors are smaller than prescribed (or assumed)

Ratio of the actual observation error relative to the prescribed error =

Sigma_o estimated by the method of Desroziers et al. [2005]
Sigma_o used in the assimilation

RSS (Wentz) dataset Operational dataset

-~ 0.59
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Ratio of (actual over prescribed) sigma_o

PR R U wind, Atmospheric motion vectors from satellite imagery
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Ratio of (actual over prescribed) sigma_o

U Used U wind, in situ measurements
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Ratio of (actual over prescribed) sigma_o

T Used Temperature, in situ measurements

HiE g & B o

Larger errors for radiosondes over land than over sea

1 1.6 (representativeness?)
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Ratio of (actual over prescribed) sigma_o

IPS Used Surface pressure, in situ measurements

LAND AUTOMATIC

i S ECMWF
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Count of data assimilated daily in 4DVAR

PS Used Surface pressure, in situ measurements
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Time-series: Various Types

® Physical data:
- Observations
® Process-generated data:
- Innovations (O-B), residuals (O-A), bias corrections

- Very likely more affected by time-correlation than physical data

® Process control data:
- Fit before and after minimization, bias correction...

- Useful to check that data and products fall within some range

® Common points in all these time-series:

- Aggregate of sensors only valid if the aggregation remains the
same

- Need to consider individual sensors?

.
%, l e
—]
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How many time-series then...?

Type of “tuple”

Number

Found over

Surface station ®

~15000 stations ® 4 variables

5 years (2004-2009)

instrument = ~25000 tuples
Drifting buoy ® ~2000 buoys ® 3 variables 5 years (2004-2009)
instrument = 2500 tuples

Radiosonde station ®
instrument

1623 stations ® 4 variables
= ~5000 tuples

5 years (2004-2009)

Aircraft platform &®
instrument

~2500 aircraft ® 3 variables
= ~7000 tuples

12 hours in 2009

Satellite ® wind product

79 tuples

20+ years (1989-2009)

Satellite ® radiometer ®
channel

28 satellite ® 14 instruments
® 394 channels = 636 tuples

20+ years (1989-2009)

Satellite ® ozone instr.

16 tuples

20+ years (1989-2009)

Satellites with scatter.

3

20+ years (1989-2009)

Satellite with GPSRO

20+ years (1989-2009)

& "“ECMWF
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Time-series Investigation: Rationale

1. Describe: -- Can we detect:
Breaks? Seasonality / cycles? Trends? Outliers?
2. Analyze: -- Can we explain:

The origins of the breaks? The cycles? Are the outliers
symptoms of problems in the DAS or simply the results of
occasional poor sampling?

3. Detect: -- Could we improve:

The alarm system to detect problems in the incoming data?
Statistical models from long time-series could be used as
basis from where to automatically trigger alerts as the
screening encounters problematic data — with applications
for operational NWP

4. Control: -- Check the assimilation performance:

4DVAR, VarBC: “process control” statistics

> Ty & ECMWF
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Conclusions

® Generating observation-related time-series from a data
assimilation system can require significant efforts

- Easy approach: long, straightforward scripts and codes that “know” about
the data types

- Simple approach: short, apparently more complex (recursive) scripts and
codes that deal with “irregular” structures

- The differences are not really “interesting” from a scientific point of view if
you have somebody else “doing the plots for you”... but even then, the
resources spent there could probably be better used...

® An experimental observation statistics database has been
constructed from ERA-Interim

- Already allowed to find a few points that need improvement in next
reanalysis: Detect when the bias spin-up has stabilized, Need to automatically
trigger alarms when large changes occur in the observation statistics

-  We are not yet at the point where we can simply call automated methods to
detect breaks, trends, cycles etc...

- Considering sensor-based time-series seems to make more physical sense
than aggregate of sensors, whose coverage vary over time

© ey CSECMWF



Future Prospects

® To reconstruct our observation statistics database with a finer
granularity: (stations, surface type, lat/lon gridding, local time,
timeslot...) — quite a few time-series!

- To start investigating simple, robust methods to “process” the
various types of time-series

- To learn from the current time-series for the design of the
observation handling in the next reanalysis

® To investigate how an observation statistics database could
help/be implemented very close to the 4DVAR assimilation

- To store in a unified framework the statistical information that
needs propagation in time, e.g. bias correction tables

- To avoid repeating the monitoring calculations by having them
done immediately close to the assimilation

- To integrate the observation alarm system closer to the
assimilation, effectively allowing to use past time-series of
observation statistics
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Thank you for your attention!

ERA-Interim webpage:
http://www.ecmwf.int/research/era/do/get/index

Technical tools used to construct/serve/display the timeseries information shown in this talk

@ python” Googlecode @ & matplotlib

timeline

pr——1 Q) @ «icrmr, E—

dvanced
open source database.

json.org
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