

Perceiving and communicating probabilities

Jutta Thielen and Renate Hagedorn

Decision making with uncertain forcasts...

- Capability of human mind for solving complex problems is limited compared with the size of problems

- Lack of objectively rational behaviour in real world
- Use of simple "rule of the thumb" to simplify decision making
- Heuristics are often helpful, but can lead to biases, especially in uncertain situations where probabilities are encountered

Non-rational thinking and cognitive illusions affect the optimal use of probabilistic forecasting

Joint Research Centre

Expert knowledge versus numbers

In doubt about a situation many forecasters believe in their own judgement or expert knowledge rather than numbers created by models

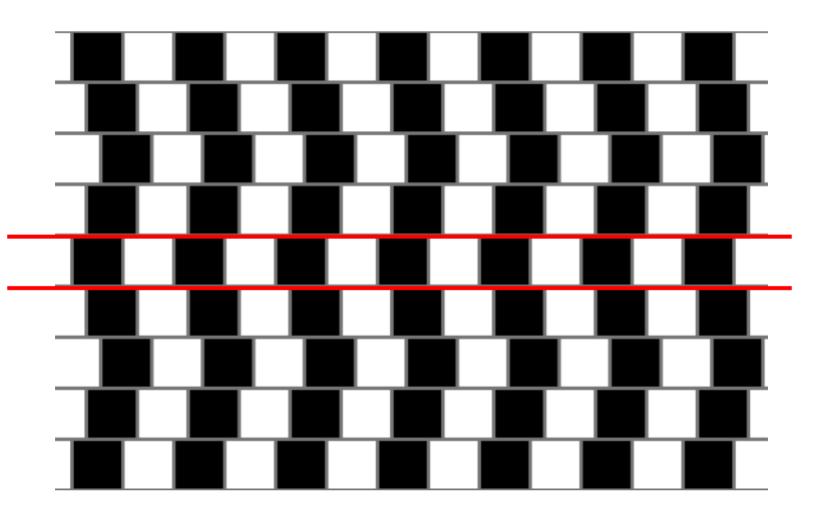
But can we really be sure that we can always trust our *expert* knowledge?

A few examples on perception ...

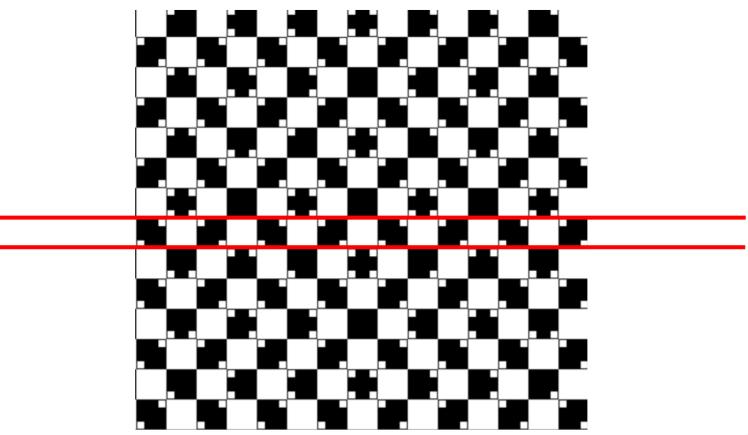
You have to supervise the work on a flood protection wall. You are told that for stability it is of *utmost importance that all layers are build exactly parallel*, otherwise there is a risk that the water pressure will destroy the wall and people need to be evacuated.

You have 5 seconds to make your decision on the two following structures:

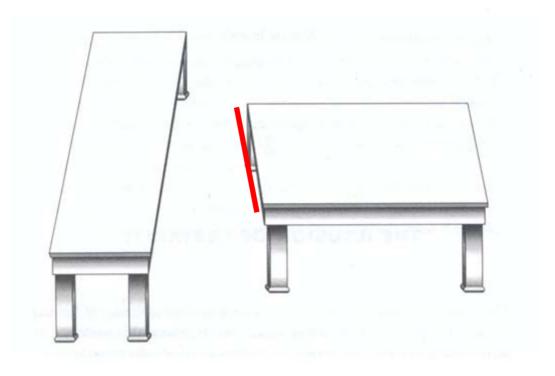
Do you sign off this wall as entirely parallel?



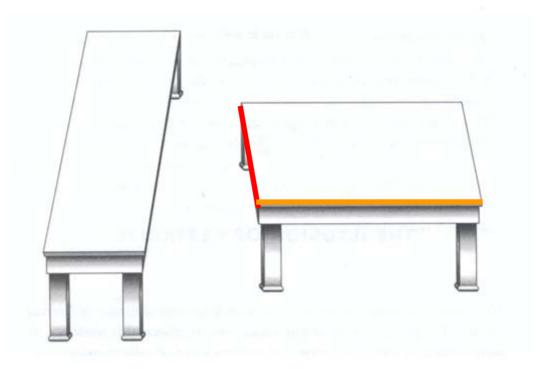
Or this one?



Do these two tables have the same shape or area?



Do these two tables have the same shape or area?



The illusion of certainty ... at times even against better knowledge!

Communicating probabilities

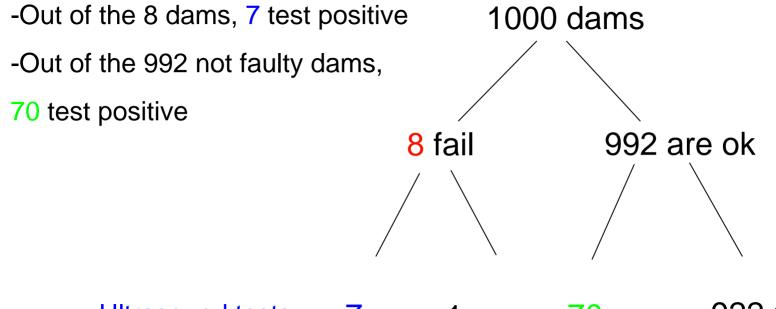
- As frequencies or probabilities?
- Phrasing is important (risk averse or risk taking)
 - 200 will be saved or 1/3 probability of 600 being saved and 2/3 of 600 not saved
- Wording is important
 - certain, virtually certain, unlikely, really unlikely, possible, less likely than,... -> % probability
- Presentation and colour coding is important

Communicate COLOURS: read aloud quickly to your neighbour the <u>colours</u>, not the words

FILLOW GREEN ORANGERED RED ORANGE WHITE GREEN GREEN BLUE BLUE ORANGE RED YELLOW

Exercise on probabilities and frequencies

-8 dams fail



Ultrasound tests: 7 pos 1 neg 70 pos 922 neg P(fail|pos) = $\frac{7}{7+70}$ A dam that was tested positive only fails in 1/11 = 9 percent

Exercise on probabilities and frequencies

Probability to fail = 0.008;

Probability not to fail is 0.992

If dam is faulty, the probability to test positive is 0.90

If dam is not faulty, the probability to test positive is 0.07

 $P(fail|pos) = \frac{0.008 * 0.9}{0.008 * 0.9 + 0.992 * 0.07}$

A dam that was tested positive only has a probability of 9% to fail

Conditional probabilities vs frequencies

	Failure of dam	
Test result	yes	no
Positive	hit	false alarm
Negative	missed	pos. rejection

Bayes's rule for condition probabilities:

P(failure|pos) =

p(failure)*p(pos|failure)

p(failure)*p(pos|failure)+p(no failure)*p(pos|failure)

Bayes's rule for natural frequencies:

P(failure|pos) =

hit hit+false alarms

