ECMWF Web re-engineering project

Baudouin Raoult

Peter Bispham, Andy Brady, Ricardo Correa,
Sylvie Lamy-Thepaut, Tim Orford,
David Richardson, Cihan Sahin, Stephan Siemen,
Carlos Valiente, Daniel Varela
The web re-engineering project

Motivation:
- Many of our users rely on our graphical web products for their daily work in their forecast offices, and have requested that our web services be continuously available.
- At the Annual Users’ meetings, we have received requests to create tailored products (e.g. control the event threshold on probability maps).

Goals:
- Redesign the web infrastructure so that the web service is highly available and supported at the same level as the field dissemination.
- Provide more interactivity (e.g. zoom, pan, overlay parameters).
- Allow product customisation (e.g. control the event threshold on probability maps).
- Use open (OGC) standards so that ECMWF products can be embedded in users’ own software.
The web re-engineering project (cont.)

- 2-year project to implement new ECMWF web service that is:
 - Highly available and operationally supported (same support as current dissemination)
 - Aimed at forecasters
 - Highly interactive
 - Suitable for deployment as computer-to-computer standard ‘web services’
 - Flexible to meet future requirements

- Milestones
 - First prototype - November 2009
 - Alpha release - February 2010
 - Beta release - January 2011
 - Operational release - June 2011
Requirements

- Highly available – Operationally supported
 - H/A Hardware
 - H/A Software
 - Operator monitoring

- Performance
 - Target: deliver a plot under 1 second

- Interactivity
 - Pan, zoom, overlay (à la GoogleMap)
 - Customisation, plots on demands (e.g. changing event probability threshold)

- Scalability
 - Support any future user load
 - Extensible: easy addition of new products
Gathering of user requirements

- The project has been presented on several occasions:
 - ECMWF Forecast Products Users’ Meeting, Computer Representatives Meeting
 - Very positive feedback from forecasters
 - Most forecaster requests focused on the desire to be able to create customised products
 - Requests for new products

- Consultation process will continue throughout the project
Service Oriented Architecture
Hardware

- Systems located in different parts of the building, attached to different routers and different power sources
- 2 Foundry Load Balancer ServerIronGT
- 3 servers hosting web servers
- 3 servers hosting web application
- 3 servers hosting several virtual machines
- 6 servers hosting storage, compute and plot services
- HP DL360 G5 Dual 2.5Hz Quad Core Xeon
- OpenSuSE Linux 11.1
Software

- We investigated technologies used by the “big players” (e.g. Google, Yahoo, Amazon, Facebook, Wikipedia …):
 - Memcached (Very fast distributed memory)
 - Tokyo Tyrant (Scalable, distributed persistent space)
 - Hadoop (High availability and redundant distributed data)
 - Xen (Virtualisation)
 - DRDB (Network RAID)
 - Ganeti (H/A Cluster management)
 - Nagios (Alerts system)
 - Scribe (Distributed logging)
Software (cont.)

- Ganglia (Distributed monitoring)
- Django (Python based Web framework, server side)
- jQuery (JavaScript based web framework, client side)
- OpenLayers (JavaScript based OGC WMS-client)
- Apache 2.2 (Web server)
- MySQL (Database)

And of course:
- Magics++
- grib_api
- Mars
- Metview ...
About Hadoop

- A framework that supports data intensive distributed applications
- Inspired by Google's MapReduce and Google File System (GFS) white papers.
- Yahoo, Amazon, IBM, Facebook, AOL, Fox, Last.fm, Microsoft, …
- Hadoop – HDFS - Distributed storage, with a filesystem like API (HDFS)
 - Data nodes hold blocks of data. Each node uses local storage
 - Name node holds the file names and the blocks location (single point of failure)
 - Each file is spread of several data nodes
 - Each block has several copies distributed over the cluster
 - Designed for large blocks (64 MB)
- MapReduce facility to be investigated
About Ganeti (H/A Pairs)

- Ganeti is a cluster virtual server management software tool built on top of existing virtualization technologies (Google)

- Xen virtual machines (Hardware assisted virtualization: 3% overhead)

- DRBD (Distributed Replicated Block Device)
 - “Network RAID1” (20% overhead write, 0% read)

- Live migration
 - Two passes memory migration: 10s for 12GB memory (Stoppage of around 60~300 ms is required to perform final synchronization)
 - No interruption of service: IP connections not broken (MAC address move)
 - Fail over: restart VM on backup machine.
 - Command line tools: can be done by operators
Service Oriented Architecture

- Multi-tier architecture, deployed on a series of Linux clusters:
 - Web frontend (Web server)
 - Web backend (Dynamic page generation)
 - Services (Plotting, probability computations, EPSgrams, …)
 - Data layer (Raw fields)

- Cluster approach provides built-in scalability, redundancy and load balancing

- Critical components run on virtual machines that can be redeployed dynamically
Deployment

- Virtual machines for critical components and single points of failure
 - Hadoop name node
 - SOA Broker
 - Spot database
 - Catalogue (MySQL)
 - All virtual machines sized in such a way that they can fit in a smaller number of nodes if necessary

- Physical machines for components with built-in redundancy
 - Hadoop data nodes
 - Memcached servers
 - Services (plot, retrieve, probabilities, epsgrams, …)
Developing in an SOA environment (is hard)

- Distributed design
- Troubleshooting
- Diagnostics tools
- Instrumentation
- Regression tests
Web user interface

- Involvement of external design companies
- Focus on usability
Prototype: Forecasting tool

- Interactivity: zooming, panning, ...
- Customisation:
 - Probabilities threshold, ...
 - Show/hide, add/remove layers
- Related products: Epsgrams
Prototype: Catalogue browsing

- Browseable catalogue – Link to Forecaster tool
- Limited interactivity – Preset number of projections, animation
- Similar to current web catalogue, but use the WREP infrastructure
Prototype: OpenLayers integration

- Alternate interface under investigation
- Overlay layers, addition of external data sources
- On top of WREP infrastructure: tiles are created on-demand
Prototype: OGC Web Map Services

- Aim: to make it possible to embed ECMWF products directly in the forecasters’ workstations
- On top of WREP infrastructure:
 - “GetCapabilities document” build dynamically from product catalogue content
 - Layers are created on-demand
- Challenges: access control, time dimension, customisation
Conclusion: fully functional proof of concept

- All products created “on-demand” (2D maps, EPSgrams)
- Zoom, pan, overlay
- Customisation: setting of probability thresholds, contouring
- Browsable catalogue
- Initial user interface
- OGC Web Map Service (WMS)
Future work

- Persistence
- Security and access control
- Monitoring, alerts and service statistics
- Management tools
- Performance tuning
- Develop further WMS aspect
- More products
- User testing
Thank you

Come to see our demo at the exhibition
Meeting Room 1