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1 Introduction

Let us introduce the seminar series on subgrid-scale parametrization by examining the progress in the ECMWF
forecast system at representing the top-of-atmosphere (TOA) longwave radiation budget. Figure1 compares
an ensemble of year-long integrations using the ECMWF integrated forecasting system forced by observed sea
surface temperatures. The left set of panels shows an integration using model cycle 23r4, which was operational
in 2000, and was used conduct the ERA-40 reanalysis. The right set of panels shows an integration with cycle
CY33R1, operational in 20081. Over the eight intermediate years the errors have been greatly reduced, with
the global mean RMS error reduced by almost one half. While some of this error reduction undoubtedly
derives from improvements in the large-scale model dynamics and advection, much of it is a result of better
subgrid-scale schemes to represent the processes of convection, clouds and cloud-radiation interaction. If the
convection scheme produces too little activity over the Tropical American and African continents, as it did in
earlier model versions, then it is extremely difficult to adjust cloud scheme tuning parameters to eradicate the
IR error. Likewise, if the cloud scheme microphysics allow too much ice to sediment out of tropical cirrus
clouds, adjusting the radiative properties of the ice crystals will likely lead to increased errors elsewhere, such
as low ice clouds over the poles. Perfect cloud properties ofcloud cover and condensate amount will still
result in radiative errors if the assumed radiative properties or vertical overlap of those clouds are poor. It is
clear that small errors in the TOA IR budgets and other cloud related fields can only result from a harmonious
improvement of all subgrid-scale processes, and the 2008 ECMWF seminar series aims to introduce some of
the advances that have occurred recently.

This lecture concerns itself with the representation of cloud physics, and these lecture notes draw heavily on
(and even duplicate some of) the ECMWF training course lecture notes ofTompkins(2005). When considering
the approach to model clouds in general circulation models (GCMs), there are a number of zero order issues
that require attention, in addition to the representation of the complex warm phase and ice phase microphysics
processes that govern the growth and evolution of cloud and precipitation particles.

Unlike cloud resolving models (CRMs) or large-eddy models (LEMs), which, having grid resolutions finer
than O(1km), aim to resolve the motions relevant for the clouds under consideration, GCMs must additionally
consider macroscopic geometrical effects. Claiming to resolve cloud scale motions allows CRMs and LEMs
to make the assumption that each grid scale is completely cloudy if condensate is present. This approach is
clearly not adequate for GCM size grid scale of O(100km) for which clouds are a subgrid-scale phenomenon,
(although some schemes such asOse, 1993; Fowler et al., 1996, have indeed adopted this approach).

GCMs must therefore consider cloud geometrical effects. Toreduce the fractal cloud to a tractable low dimen-
sional object, GCMs usually reduce the problem to the specification of the:

1The comparison is not entirely “clean” or fair, since the 23r4 integration was performed when the PA section used a 3-member
ensemble all initialized at 12Z, the right hand panel uses a 4member ensemble initialized at 6 hourly intervals, but thisimpact is
minimal for an accumulated flux field such as the TOA IR budget.The astute reader will also note a small change in the observational
dataset due to a change in the choice of CERES platform. Both of these differences are minimal and the vast majority of the reduction
in the error maps is due to model physics improvements
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Figure 1: Comparison of ensemble mean net TOA OLR budgets from 13 month integrations of the ECMWF
IFS model (top) to CERES observations (middle), with the model-obs difference shown in the lower pan-
els. The left column is for cycle 23R4 while the right for 33R1. The comparison is made for 13-month
integrations starting Aug 2000 with the first month discarded.

• horizontal fractional coverage of the gridbox by cloud,

• vertical fractional coverage of the gridbox by cloud,

• sub-cloud variability of cloud variables in both the horizontal and vertical, and the

• overlap of the clouds in the vertical column.

The above list is far from exhaustive, and implicitly neglects interactions between adjacent GCM columns (for
example, how cloud affects solar fluxes in adjacent columns at low sun angles), probably a safe assumption for
grid-scales exceeding 10km or so (Di Giuseppe and Tompkins, 2003)

In fact, most GCMs further simplify the above list (i) by assuming clouds fill GCM grid boxes in the verti-
cal and (ii) by neglecting many of the consequences of sub-cloud fluctuations of cloud properties. Both of
these are considerable simplifications. Although verticalGCM grids are much finer than the horizontal res-
olution, the same is of course also true of cloud processes. Using O(50) levels in the vertical implies that
some cloud systems or microphysical related processes are barely if at all resolved, such as tropical thin cirrus
(Dessler and Yang, 2003), or the precipitation melting layer (Kitchen et al., 1994), which can have important
implications (Tompkins and Emanuel, 2000). Likewise, many authors have highlighted the biases that can be
introduced when sub-cloud fluctuations are neglected, due to the strong nonlinearity of cloud and radiative
processes (Cahalan et al., 1994; Barker et al., 1999; Pincus and Klein, 2000; Pomroy and Illingworth, 2000;
Fu et al., 2000; Rotstayn, 2000; Larson et al., 2001).
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Another implication of the above is that clouds must exist 
Figure 2: Schematic showing that partial cloud cover in a gridbox in only possible if temperature or hu-
midity fluctuations exist. The blue line shoes humidity and the yellow line saturation mixing ratio across an
arbitrary line representing a gridbox. If all supersaturation condenses as cloud then the shaded regions will
be cloudy.

Nevertheless, the zero order primary task of cloud schemes,in addition to representing the microphysics of
clouds, is to predict the horizontal cloud coverage. It is clear that a Utopian perfect microphysical model will
render poor results if combined with an inaccurate predictor of cloud cover, due to the incorrect estimate of
in-cloud liquid water.

The equally important issue of cloud microphysics is covered in detail in a complementary lecture by Richard
Forbes, and this presentation will mostly concentrate on the issue of cloud geometry and the parametrization of
cloud cover.

2 Fractional cloud cover

The first thing to realize is that fractional cloud cover canonlyoccur if there is horizontal subgrid-scale variabil-
ity in humidity and/or temperature (controlling the saturation mixing ratio,qs)2. If temperature and humidity
are homogeneous, then either the whole grid box is sub-saturated and clear, or supersaturated and cloudy3.

This is illustrated schematically in Fig.2. Fluctuations in temperature and humidity may cause the humidity
to exceed the saturated value on the subgrid scale. If it is assumed that all this excess humidity is immediately
converted to cloud water (and likewise that any cloud drops evaporate instantly in sub-saturated conditions),
then it is clear that the grid-mean relative humidity (RH, where the overline represents the gridbox average)
must be less than unity if the cloud cover is also less than unity, since within the cloudy parts of the gridbox
RH = 1 and in the clear skyRH< 1. Generally speaking, since clouds are unlikely when the atmosphere is dry,
and sinceRH is identically 1 whenC = 1, there is likely to be a positive correlation betweenRH andC.

The main point to emphasize is that,all cloud schemes that are able to diagnose non-zero cloud coverfor
RH < 1 (i.e. any scheme other than an “all-or-nothing” scheme) must make an assumption concerning the
fluctuations of humidity and/or temperature on the subgrid-scale, as in Fig.2. Either (i) they will explicitly

2As this document replicates figures and is drawn from a variety of sources, the notation for mass mixing ratio intermittently
interchanges betweenr andq. Note that in the literature, whileq is commonly used for mass mixing ratio, most textbooks adhere to
the convention thatq represents the closely-related specific humidity

3For simplicity, throughout this initial text we ignore the subtle complication of the ice phase, where super-saturation are common
(Heymsfield et al., 1998; Gierens et al., 2000; Spichtinger et al., 2003)
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Figure 3: Schematic of RH based scheme, see text for details.

give the nature of these fluctuations, most usually by specifying the probability density function (PDF) for the
total water at each gridcell, or (ii) they willimplicitly assume knowledge about the time-mean statistics of the
fluctuations (i.e. the actual PDF at each grid point is maybe not known).

It is important to recall, when trying to categorize the seemingly diverse approaches to cloud cover parametriza-
tion, thatthis central fact ties all approaches together.

3 Relative humidity schemes

Relative humidity schemes are called such because they specify a diagnostic relationship between the cloud
cover and the relative humidity. In the last section we saw that subgrid-scale fluctuations allow cloud to form
whenRH< 1. RH schemes formalise this by setting a criticalRH (denotedRHcrit ) at which cloud is assumed to
form, and then increaseC according to a monotonically increasing function ofRH, with C=1 identically when
RH=1. This is illustrated schematically in Fig.3. In the upper panel a situation is depicted where the mean
relative humidity is low, thus even with subgrid-scale fluctuations present, no point in the domain is saturated
and therefore cloudy. Given a certain fixed variability, increasing the mean relative humidity implies that a
critical threshold is reached at which cloud forms (middle panel), until eventually full saturation and overcast
conditions are achieved (lower panel).
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In each panel the insert shows the schematic progression of theRH-cloud cover relationship. One can therefore
specify a monotonically increasing function to describe the increase of cloud cover withRH without necessarily
knowing the nature or magnitude of the subgrid-scale thermodynamic variability. One commonly used function
was given bySundqvist et al.(1989):

C = 1−
√

1−RH
1−RHcrit

. (1)

It is apparent thatRHcrit defines the magnitude of the fluctuations of humidity (the humidity variance). IfRHcrit

is small, then the subgrid humidity fluctuations must be large, since cloud can form in mean-dry conditions.

It is clear that one of the drawbacks of this type of scheme is that the link between cloud cover and local
dynamical conditions is vague. Convection will indeed produce cloud if its local moistening effect is sufficient
to increaseRH past the critical threshold, but it is apparent that a grid cell with 80% RH undergoing deep
convection is likely to have different cloud characteristics than a gridcell with 80%RH in a frontal stratus
cloud. RH schemes simply state that, averaged across all conditions across the globe, a gridcell with X%RH
will have Y% cloud cover.

This lack of differentiation between different local conditions lead some authors to augment theirRH schemes.
The ECHAM4 climate modelRoeckner et al.(1996) augments the cloud cover in the presence of a strong
temperature inversion to improve the representation of stratocumulus.

Other authors augment their schemes by using additional predictors toRH. TheSlingo (1980, 1987) scheme
was used operationally in the ECMWF forecast model until itsreplacement by theTiedtke(1993) scheme in
1995, and was used for a further 10 years in the Tangent linearand adjoint computations of the 4D-Var inner-
loops until replaced byTompkins and Janisková(2004). The basic form for the mid-level cloud cover (Cmid) is
given as

C∗
mid =

(
RH−RHcrit

1−RHcrit

)2

, (2)

but Slingo modifies this according to an additional predictor, the vertical velocity at 500 hPa (ω500), thus

Cmid = C∗
mid

ω500

ωcrit
, (3)

if 0 > ω500 > ωcrit while the cloud cover is set to zero if subsidence is occurring (ω500 > 0).

Xu and Randall(1996) used a cloud resolving model (CRM) to derive an empirical relationship for cloud cover
based on the two predictors ofRH and cloud water content:

C = RHp
[
1−exp

(
−α0ql

(qs−qv)γ

)]
, (4)

whereγ , α0 andpare ’tunable’ constants of the scheme, with values chosen using the CRM data. One weakness
of such a scheme is, of course, this dependence on the reliability of the CRM’s parametrizations, in particular
the microphysics scheme. Additionally, it is unlikely thatthe limited set of (convective) cases used as the
training dataset would encompass the full range of situations that can naturally arise, such as cloud in frontal
systems for example.

While these latter schemes use additional predictors for cloud cover, we shall still refer to them as “relative
humidity” schemes, since the common and central predictor in all cases isRH. It is doubtful if any of the
schemes could be reasonably simplified by replacing theRH dependence with a fixed value.

4 Statistical schemes

Instead of describing the spatial and temporal mean statistics of the humidity fluctuations such as theRH
schemes, another group of schemes take a different approach, by specifying the underlying distribution of
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into account, and assume temperature is 
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Figure 4: Schematic showing the statistical scheme approach. Upper panel shows an idealized PDF of total
water (qt ). The vertical line represents the saturation mixing ratioqt = qs, thus all the points under the
PDF to the right of this line are cloudy. The integral of this area translates to the cloudy portion of the
gridbox, marked on the lower part of the figure, with darker shading schematically representing high total
water values.

humidity (and/or temperature) variability at each grid box. This is shown schematically in Fig.4. If the PDF
form for total waterqt is known, then the cloud coverC is simply the integral over the part of the PDF for which
qt exceedsqs:

C =

∫ ∞

qs

G(qt)dqt . (5)

Likewise, the cloud condensate is given by

q̄c =
∫ ∞

qs

(qt −qs)G(qt)dqt . (6)

As always we are assuming that all supersaturation is immediately condensed as cloud. Here we are also
ignoring temperature fluctuations for simplicity, but these can be included, as outlined later in this section.

The main tasks of the statistic scheme is therefore to give a suitable form for the PDF of total water fluctuations,
and to derive its defining moments.

4.1 Defining the PDF

Various distributions have been used, many of which are symmetrical.Smith(1990) uses a symmetric triangu-
lar PDF, diagnosing the variance based on a criticalRH function at which cloud is determined to form, later
modified byCusack et al.(1999). This PDF has been subsequently adopted byRotstayn(1997) andNishizawa
(2000). LeTreut and Li(1991) use a uniform distribution, setting the distribution’s variance to an arbitrarily
defined constant. A Gaussian-like symmetrical polynomial function was used byLohmann et al.(1999) with
variance determined from the subgrid-scale turbulence scheme followingRicard and Royer(1993), who investi-
gated Gaussian, exponential and skewed PDF forms.Bechtold et al.(1992) based their scheme on the Gaussian
distribution, which was modified inBechtold et al.(1995) to a PDF linearly interpolated between Gaussian and
exponential distributions.Bony and Emanuel(2001) have introduced a scheme that uses a generalized Log-
Normal distribution.Lewellen and Yoh(1993) detail a parameterization that uses a Bi-normal distribution that
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Table 1: PDF forms used in statistical cloud schemes. In the summary column, the key is: U=unimodal,
B=Bimodal, S=Symmetric, Sk=Skewed.

PDF Shape Summary Reference
Double Delta U,S Ose(1993); Fowler et al.(1996)
Uniform U,S LeTreut and Li(1991)
Triangular U,S Smith(1990); Rotstayn(1997); Nishizawa(2000)
Polynomial U,S Lohmann et al.(1999)
Gaussian U,S Bougeault(1981); Ricard and Royer(1993); Bechtold et al.(1995)
Beta U,sk Tompkins(2002)
Log-normal U,sk Bony and Emanuel(2001)
Exponential U,Sk Bougeault(1981); Ricard and Royer(1993); Bechtold et al.(1995)
Double Gaussian/Normal B,Sk Lewellen and Yoh(1993); Golaz et al.(2002)

can be skewed as well as symmetrical and is bimodal, althougha number of simplifying assumptions were
necessary in order to make the scheme tractable. LikewiseGolaz et al.(2002) also give a bimodal scheme.
These forms are summarized in table1.

Examples of PDFs measured in the literature are shown in Figs. 5 and6 . Although it is difficult to theo-
retically derive a PDF form, since theqt distribution is the result of a large number of interacting processes,
therefore forcing the use of empirical methods, it is possible to use physically-based arguments to justify cer-
tain functional forms. For example, in the absence of other processes, large-scale dynamical mixing would
tend to reduce both the variance and the asymmetry the distribution. Therefore, the Gamma and Lognormal
distributions would be difficult to use since they are alwayspositively skewed, and only tend to a symmetri-
cal distributions as one of their defining parameters approaches infinity.Bony and Emanuel(2001) attempt to
circumnavigate this by switching between Lognormal and Gaussian functions at a threshold skewness value.

Another problem that distributions such as the Lognormal, Gamma, Gaussian and Exponential suffer from is
that they are all unbounded functions. Thus, if these functional forms are used, the maximum cloud condensate
mixing ratio approaches infinity, and part of the grid cell isalways covered by cloud. Precautionary measures,
such as the use of a truncated function, can be taken, but thisincreases the number of parameters required
to describe the distribution, and again introduces undesirable discreteness. Moreover, functions such as the
Gaussian function or the polynomial used byLohmann et al.(1999) are also negatively unbounded, implying
that part of the gridcell has negative water mass. The choiceof function must also involve a fair degree of
pragmatism, since in addition to providing a good fit to the available data, it must also be sufficiently simple
and of few enough degrees of freedom to be of use in a parameterization scheme. For example,Larson et al.
(2001) were able to provide good fits to their aircraft data using a 5-parameter double Gaussian function,
but it is unclear how these parameters would be determined ina GCM cloud scheme. The Beta distribution
used byTompkins(2002) is bounded and can provide both symmetrical and skewed distributions, but has the
disadvantage of an upper limit on the skewness when the distribution is restricted to a sensible bell-shaped
regime, and that the form is not mathematically as simple as alternative unimodal distributions.

Considering the question of whether a unimodal distribution is adequate, we refer to a number of observational
studies. Some of the data from the following studies is shownfor illustrative purposes in Fig.5. Ek and Mahrt
(1991) examined PBL relative humidity variability in a limited number of flight legs, and assumed a unimodal
Gaussian fit for their distribution.Wood and Field(2000) studied flight data from both warm and cold clouds
and reported unimodal distributions ofqt , but also observing more complex distributions, giving some weakly
and strongly bimodal examples.Davis et al.(1996) reported uni- or bi-modal skewed distributions in liquid
water content from flight data in marine stratocumulus clouds. Larson et al.(2001) have also examined flight
data for PBL clouds and found that mainly unimodal or bimodaldistributions occurred. They reported that
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Figure 5: Reproduction total water PDFs from the aircraft observational study ofWood and Field(2000).
Refer to the original article for details.

PDFs that included positive or negative skewness were able to give an improved fit the data.Price(2001) used
tethered balloon data of PBL humidity collected during a three year period, finding that roughly half of the
data could be classified as symmetrical or skewed unimodal. Afurther 25% of the data could be regarded as
multi-modal.

Although many of the above studies reported a significant frequency of occurrence of distributions classed as bi-
or multi-modal, these distributions often possessed a single principle distribution peak, as in the example given
by Price(2001), and thus a unimodal distribution could still offer a reasonable approximation to these cases.
This also applies to the flight data examples shown inHeymsfield and McFarquhar(1996) taken in ice clouds.
Additionally, the bimodal and multi-modal distributions may be exaggerated in both flight and balloon data
due to under-sampling. Satellite data on the other hand can give a more global view at relatively high spatial
resolutions. Two such studies have been reported byWielicki and Parker(1994) andBarker et al.(1996) who
used Landsat data at a resolution of 28.5 metres to examine liquid water path in a large variety of cloud cover
situations. They reported unimodal distributions in nearly or totally overcast scenes, and exponential-type
distributions in scenes of low cloud fraction, as expected since in these cases only the tail of theqt distribution
is detected. Note that the analysis of LWP is likely to lead tomuch smoother (and thus more unimodal) PDFs
due to the vertical integration.

In summary, it appears that in the observational data available conducted over a wide variety of cloud conditions
(although rarely in ice-clouds), approximate uni-modality was fairly widespread, and that a flexible unimodal
function can offer a reasonable approximation to the observed variability of total water. That said, a significant
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Figure 6: Reproduction of ice water content PDFs from the aircraft observational study of
Heymsfield and McFarquhar(1996). Refer to the original article for details.
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Figure 7: Schematic illustrating the 3rd and 4th moments; skewness and kurtosis.

minority of cases are very likely to be better modelled usinga bimodal distribution like those advocated by
Lewellen and Yoh(1993) andGolaz et al.(2002).

4.2 Setting the PDF moments

The second task of statistical schemes is to define the higherorder moments of the distribution. If the distri-
bution is simple, such as the uniform distribution, then it is defined by a small number of parameters. In the
case of the uniform distribution, one could specify the lower or upper bounds of the distribution; two param-
eters are required. Equivalently, one could give the first two distribution moments: namely the mean and the
variance. Likewise, more complicated PDFs that require 3 parameters can be uniquely defined using the first
three moments: mean, variance and skewness; four-parameter distributions need the fourth moment of kurtosis
(describing the PDF ’flatness’, see schematic in Fig.7), and so on.

It is clear to see why the accurate specification of the moments is important. The schematic of Fig.8 shows
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that, even if the distribution mean is correct, diagnosing avariance that is too small (i.e. the distribution is too
narrow) will lead to the incorrect prediction of clear sky conditions.

Some schemes diagnostically fix the higher order moments of the distribution, such as the variance. However, it
is clear that this is not an ideal approach, since by having a fixed distribution width (for example), the PDF (and
thus cloud properties) are not able to respond to local dynamical conditions. The fixed width (and higher order
moments) are then equivalent to the specification of the critical relative humidity at which cloud is assumed to
form in theRH schemes.

To illustrate this with a specific example, let us consider the uniform distribution adopted byLeTreut and Li
(1991). The PDF for a typical partially cloudy grid box is shown in Fig. 9. Considering the humidity, it is
assumed that no supersaturation exists as is usual, and thusin the cloudy portion,qv = qs. Thus the grid-mean
humidity can be written as:

qv = Cqs+(1−C)qe (7)

whereqe is the humidity in the ’environment’ of the cloud; the cloud-free part of the gridbox. From the uniform
distribution shape, it is possible to defineqe in terms of a criticalRH for cloud formationRHcrit :

qe = qs(1− (1−C)(1−RHcrit )). (8)

The definition ofRH is qv/qs, which substituting the definitions above gives

RH = 1− (1−RHcrit )(1−C)2, (9)

which can be rearranged to give

C = 1−
√

1−RH
1−RHcrit

. (10)

This is recognised to be the relative humidity scheme used bySundqvist et al.(1989). Thus it is seen that a so-
called statistical scheme with fixed moments can be reduced to aRH scheme, or likewise thatRH schemes do
not need to rely on ad-hoc relationships, but can be derived consistently with an assumed underlying PDF of to-
tal water. This point was fully appreciated bySmith(1990), whose work actually provides theRH-formulation
associated with the triangular distribution in its appendix.

In summary, it is important to stress that there is not a cleardistinction between the so-called ’RH schemes’ and
statistical schemes. If a time-invariant variance is used in a statistical scheme, it can be reduced to aRH-type
formulation and we have seen how theRH scheme ofSundqvist et al.(1989) can be derived by assuming a
uniform distribution for total water, and likewise that theSmith (1990) scheme also reduces to an equivalent
RH formulation.

s or qt

G
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q
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e.g. HOW WIDE?

saturation

cloud forms?

Figure 8: Even if the mean total water is correct, if the incorrect distribution width is diagnosed, for example
the narrow yellow distribution, then clear sky conditions will prevail when in fact partial cloud cover exists
(pink triangle).
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Figure 9: Graphical aid to the derivation of the cloud cover as a function of the RH when the total water is
assumed to be uniformly distributed. If cloud begins to format RHcrit then the width of the distribution is
2qs(1−RHcrit ). See text for details.

5 Accounting for temperature variability

In this lecture fluctuations of temperature are ignored for simplicity. However, since water vapor perturbations
can be correlated with temperature perturbations, which alter the local saturation vapor pressure, it may also be
necessary to consider temperature variability. To this end, it has been useful to form a variable,s, defined as4

s= al (q
′
t −αl T

′
l ) (11)

whereq′t is the fluctuation of the total water mixing ratio,qt , equal to the sum of the vapor (qv), cloud ice
(qi) and liquid cloud water (ql ) mixing ratios, andT ′

l is the liquid water temperature fluctuation (T − L
Cp

ql ), an

analogue to moist static energy. The fluctuations are definedabout the mean thermodynamic state,T̄l , and the
constants are defined asαl = ∂qs

∂T (T̄l ) andal = [1+ L
cp

αl ]
−1, whereqs is the saturation vapor mixing ratio,L is

the latent heat of vaporization andcp is the specific heat of dry air. Physically,sdescribes the distance between
the thermodynamic state to the linearized saturation vapormixing ratio curve, as illustrated in Fig.10.

Defining ss = al (qs− q̄t) the cloud condensate massqc (= ql + qi) is given byqc = s− ss, providing s> ss.
Assuming that any supersaturation efficiently condenses tocloud, it is possible to express the cloud fractionC
as

C =

∫ ∞

ss

G(s)ds (12)

whereG(s) is the PDF ofs.

The variance ofs, and therefore the associated liquid water and cloud cover,depends on the correlation between
Tl andqt perturbations in addition to their respective magnitudes:

σ2(s) = a2
l (q

′
t
2 + αl T ′

l
2−2αl q′tT

′
l ). (13)

This aspect was disregarded by many previous statistical schemes, which were formulated in terms ofs, but
simply set the variance to a fixed or arbitrary value. In such schemes it is not known whether cloud is a result of
temperature perturbations, water perturbations, or a combination of the two. For example, the scheme ofSmith

4Once again, the commonly used notation is repeated here, butthis variable is not to be confused with the more common use for s,
which is the dry static energy
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Figure 10: Schematic showing the definition of s, in terms of qt . See text for details.

(1990) appears to take temperature perturbations into account since it is written in terms of thesvariable, and is
often cited as doing so, but in fact the use of a fixed distribution width means that the scheme can be equivalently
written as a function of relative humidity. In other words, all of the subgrid thermodynamic variability leading
to clouds could be solely due to humidity fluctuations, or equally due to temperature fluctuations. As stated
earlier, the author of theSmith(1990) scheme was fully aware of this fact and provided the equivalent relative
humidity formulation in the appendix.

Thesvariable formulation is convenient if one is able to explicitly specify the temperature and humidity fluctu-
ations and their cross correlations and some parametrizations such asRicard and Royer(1993) have calculated
temperature perturbations separately that result from turbulence, since the turbulence scheme can provide the
various correlations ofq′2t ,T ′2

l andq′tT
′

l separately. The schemes ofLappen and Randall(2001) andGolaz et al.
(2002) are further examples.

The question still needs to be asked whether it is necessary to account for temperature fluctuations in cloud
schemes, or if accounting for total water fluctuations will allow one to specify the basic cloud properties
such as cloud cover to a reasonable level of accuracy, given the uncertainty in other aspects of the schemes
such as the ice microphysics. Temperature fluctuations are likely to be smaller in magnitude than total water
fluctuations, especially in the tropics where gravity wavesremove buoyancy fluctuations on fast timescales
(Bretherton and Smolarkiewicz, 1989). The study ofPrice and Wood(2002) indicates that temperature fluc-
tuations, while significant, are less important than humidity fluctuations, even in the lower troposphere in
midlatitudes.

Tompkins(2003) made further investigations using aircraft data from various field campaigns associated with
the ARM program. An example of the relative error made when temperature and humidity errors are neglected
is reproduced in Fig.11. It clearly shows that humidity fluctuations have a larger influence on cloud cover error
than temperature, even for the dataset studies here which consisted mostly of boundary layer clouds below 4km.
The reader is referred toTompkins(2003) for further details. This indicates that the first order task of a cloud
scheme is to represent the variability in total water.

6 Joint PDFs of temperature, total water and velocity

Even if humidity (total water) variability is the prime consideration for cloud schemes, the previous section
indicated that temperature has a non-negligible influence.It was pointed out that knowing the temperature
and humidity fluctuations separately were not adequate; thecross correlationT ′

l q′t must also be known. One
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Figure 11: Cloud cover error as function of true cover for leglengths ranging from 1 to 16 km when (a)
temperature and (b) humidity fluctuations are ignored in turn. FromTompkins(2003).

methodology would be to introduce a scheme using joint-PDFsof these variables. In fact theGolaz et al.(2002)
introduces a joint-PDF that also incorporates vertical velocity.

The complication that exists when specifying cross-correlations of the thermodynamic variables is that the
correlation depends on the horizontal scale of motion considered most relevant for the clouds within the grid-
box, which would tend to be the scale of the motion on the scaleof the grid-cell. Phelps and Pond(1971);
Donelan and Miyake(1973); Paluch and Lenschow(1991); Mahrt (1991) andWilliams et al.(1996) all found
that temperature and humidity are positively correlated over the small length scales but the correlation becomes
negative for longer spatial scales, with the cross-over occurring on a scale between a few hundred metres and
2km. Tompkins(2003) found this cross-over to be at a spatial scale of about 500m averaged over all the flight
legs studied.

As discussed byMahrt(1991) and others, the positive correlation is expected in small scale buoyant updraughts,
while a negative correlation would be associated with mesoscale motions. Thus if the temperature and humidity
cross-correlations were to be provided by a turbulence scheme that considers the small-scale turbulent eddies,
this will not be relevant for the cloud cover determining processes occurring with-in the grid-cell. Instead,
Tompkins(2003) found that in the cases where the cross correlation was the strongest, a good fit to the data
could be achieved by assuming either dry or moist large-scale adiabatic ascent, as shown in figure12.
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Figure 12: Schematic to illustrate why cloud cover errors are smaller whenT ′r ′t is small (rt is the total water
mixing ratio). The ellipse in each case represents the envelope of phase space of[rt , rsat] for a particular
aircraft leg. A zero skewness of both rt and rsat is assumed, such that the data points are symmetrically
distributed around the mid point of the ellipse. FromTompkins(2003).

These observational results were confirmed in a carefully analysed set of large-eddy simulations conducted by
de Roode et al.(2004). As the simulations progressed, starting from initially quasi-homogeneous initial condi-
tions,de Roode et al.(2004) found that the dominant scale of the cloud organisation andassociated temperature
and humidity fluctuations grew from the small eddy scale to the mesoscale, with the scale restricted only by the
domain size. Moreover, they confirmed that on the meso-scalethe temperature and humidity fluctuations were
of opposite sign with magnitudes such that the variability of the virtual potential temperatureθv was limited.
Thus it appears that mesoscale motions act to remove buoyancy fluctuations occurring due to the mesoscale
organisation of the water vapour and cloud field, and it is these correlations that should be included into a cloud
scheme rather than the fluctuations on the scale of turbulenteddies. The assumption that temperature fluctu-
ations negate the buoyancy perturbations associated with mesoscale variability of humidity and cloud water
was therefore used as the central axiom in the parametrization of subgrid temperature variability inTompkins
(2008).

Another practical aspect pointed out byTompkins(2003) is that, if the sole purpose of the parametrization of
subgrid-scale variability is to derive cloud cover, then ifthe cross-correlation termT ′

l q′t is small, and tempera-
ture and humidity perturbations are independent, then to a good approximationthe temperature perturbations
can be neglected altogether. This was due to two reasons. Firstly, one should consider that the source of (corre-
lated) temperature and humidity fluctuations are atmospheric motions, whether small or meso-scale, which are
dissipated by gravity wave dispersion and mixing, respectively. These dissipation processes operate on differ-
ent timescales, and thus cases where the cross-correlationT ′

l q′t is small tend to be those in which temperature
(equivalently saturation mixing ratio) fluctuations are also expected to be small, which was confirmed to be
the case in the observations ofTompkins(2003). The second reason is that ifT ′

l q′t is close to zero, the errors
in diagnosing cloud cover from neglecting temperature variability tend to cancel out, which was illustrated
in the schematic ofTompkins(2003) and reproduced here in Fig.13. The effectiveness of this cancellation
depends on the magnitude of the distribution higher order moments however, with less cancellation occurring
with strongly skewed distributions. That said, knowledge of temperature fluctuations may be required/useful
for other reasons. While small-scale temperature variability may have limited impact on radiative heating rates,
it may be useful for convective triggering decisions, or indeed in stochastic physics treatments (extending the
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Figure 13: Scatter-plot of temperature versus total water for nine selected 16 km legs from a flight on 29th

April, 1998 (seeTompkins(2003) for details on the data). Clear sky points are marked by a light X, while
dark crosses (+) represent cloudy points. The dotted and long dashed lines represent the predicted gradients
of the T , rt relationship for the clear and cloud points, respectively (see text for details of calculation). Note
that only the slopes of these lines is relevant; the lateral position relative to the data points has no physical
significance. The title gives the altitude of each leg, and the simple linear correlation coefficient for all the
points. These nine cases were selected for the high quality of the fit. FromTompkins(2003).

approach ofTompkins and Berner, 2008, for example).

7 Diagnostic versus Prognostic schemes

At this point we pause to consider the merits or otherwise of prognostic versus diagnostic cloud schemes, and
by this, we mean whether or not to include a prognostic equation for the central parameters of the scheme
in question. In the case of the statistical schemes this is likely (but not necessarily) to imply a memory (a
prognostic equation) for the higher order moments such as variance, where as in the Tiedtke Scheme approach
outlined below the prognostic variable is the cloud cover itself.

Irrespective of the variable in question, the underlying question is always whetherthe variable has a
fast equilibrating timescale relative to the timestep of the model. Let us take the case of turbulence
(Lenderink and Siebesma, 2000). The prognostic equation for variance is:

dσ2(qt)

dt
= −2w′q′t

dqt

dz
−

σ2(qt)

τ
(14)

The two terms on the right represent the creation of variancedue to a turbulent flux of humidity occurring in the
presence of a humidity gradient, and a dissipation term modelled by a Newtonian relaxation back to isotropy
with a timescale ofτ . This equation is highly simplified by the neglect of both turbulent and large-scale flow
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transport of variance, and also the horizontal gradient terms, but it serves its illustrative purpose.

It would be possible to introduce a prognostic predictive equation for total water variance along these lines.
However, if the dissipative timescaleτ is very short compared to the model timestep, then a very goodapprox-

imation could be obtained by assumingdσ2(qt )
dt = 0, giving

σ2(qt) = −2τw′q′t
dqt

dz
. (15)

A diagnostic approach has the advantage that it simplifies implementation, and saves computational cost and
memory. The simplification does not imply that the local cloud properties are independent of the local dynam-
ics; a scheme based on eqn.15can not be reduced to aRH scheme, since the variance in each gridbox is related
to the local turbulent flux. Note also that now, with such an approach, one can sensibly include the contribution
of temperature fluctuations due to turbulence, as done byRicard and Royer(1993).

For examples of this kind of approach, examine the diagnostic schemes in the literature that are de-
scribed by Bougeault (1982); Ricard and Royer(1993); Bechtold et al. (1995); Lohmann et al.(1999);
Chaboureau and Bechtold(2002). These schemes mostly restrict their concern diagnostic relationships for
variance to the influence of turbulence. For example, above the boundary layer,Lohmann et al.(1999) imposed
a fixed width distribution to compensate for the lack of consideration of other processes.

It is thus apparent that for generalized cloud situations, that include the evolution of clouds such as large-scale
cirrus, which may evolve over many hours or even days, it willnormally be necessary to resort to implementing
a prognostic approach.

8 A prognostic statistical scheme

To the author’s best knowledge, the first attempt to implement a fully prognostic statistical scheme into a GCM
was made byTompkins(2002). This modelled the total water fluctuations using a Beta distribution,

G(t) =
1

B(p,q)

(t −a)p−1(b− t)q−1

(b−a)p+q−1 (a≤ t ≤ b) (16)

whereaandbare the distribution limits andpandqare shape parameters (Fig.14)5 and the symbolB represents
the Beta function, and can be defined in terms of the Gamma function, Γ, as follows:

B(p,q) =
Γ(p)Γ(q)

Γ(p+q)
. (17)

The skewness (ς ) of the distribution is related to the difference between the two shapes parametersp andq,

ς =
2(q− p)

p+q+2

√
p+q+1

pq
, (18)

and thus ifp = q the distribution is symmetrical, but also both positive andnegatively skewed distributions are
possible. Asp andq tend to infinity the curve approaches the Normal distribution. The standard deviation of
the distribution is given by

σ(t) =
b−a
p+q

√
pq

p+q+1
(19)

Although this distribution is a 4-parameter function, a diagnostic closure such as imposingp+q=constant can
reduce it to a three parameter distribution (regrettably Tompkins instead used the much less elegantp=constant

5the original notation is repeated, but please note that the shape parameterq is not to be confused with mixing ratio,qv.
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Figure 14: Examples of the Beta distribution for various shape parameters. FromTompkins(2002). The
distribution minimum and maximum are referred to as a and b inthe main text.

closure, which unnecessarily restricted to distribution to positive skewness regimes). This avoids the necessity
of considering the fourth-order kurtosis budget and the distribution can be specified uniquely by the mean,
variance and skewness of total water. This is discussed further in the following section.

Tompkins(2002) attempted to introduce two additional prognostic equations to predict the evolution of the
PDF shape. Once the distribution shape is known, (i.e. distribution limits a andb and the shape parametersp
andq) the cloud cover can be obtained from

C = 1− I qs−a
b−a

(p,q), (20)

whereIx is the incomplete Beta function ratio defined as

Ix(p,q) =
1

B(p,q)

∫ x

0
tp−1(1− t)q−1dt, (21)

subject to the limitsI0(p,q) = 0 andI1(p,q) = 1.

Tompkins(2002) then attempted to parametrize the sources and sinks of variance and skewness separately from
physical processes such as convection, turbulence, microphysics and so on. However, there is one complication
that requires consideration, and is summarized by the following equation for cloud waterqc:

q̄c = (b−a)
p

p+q
(1− I (qs−a)

(b−a)

(p+1,q))+ (a−qs)(1− I (qs−a)
(b−a)

(p,q)), (22)

This is simply eqn.6, with the Beta distribution substituted forG(qt). This tells us that if the distribution
moments are known, then the cloud water is uniquely defined. Why is this a cause for concern? The reason
is thatmost cloud schemes already implement a separate prognosticequation for cloud liquid/ice water. In
other words, in partially cloudy conditions, if distribution momentsand the cloud liquid water are given from
the respective prognostic equations, then the problem is potentially over-specified. To clarify this we can
re-examine the simple 2-parameter triangular distribution in Fig. 15. The figure shows that the 2-parameter
distribution can be uniquely defined by giving either the mean and variance, or the mass mixing ratios of vapour
and cloud water separately.
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Figure 15: Schematic of the two ways of specifying the triangular distribution. Left Panel: The distribution
mean and variance is given. Right Panel: The mean vapour and cloud water (ice+liquid) are given. In both
cases the distribution is uniquely specified and the cloud cover can be diagnosed.

Thus a decision must be reached concerning the prognostic equation set to be used. The first option is to use
water vapour and cloud water separately to implicitly derive the variance (right panel of Fig.15). The advan-
tage of this approach is that one does not need to explicitly derive complex variance source/sink terms, such
as the impact of microphysics on variance. If, over a timestep, the microphysics reduces the cloud water (for
example by autoconversion to snow, or by settling out of the gridbox) then this implicitly renders a narrowing
of the distribution. However, it is clear that by working on the grid-mean cloud water the contribution to the
variance budget by nonlinear processes will be incorrect (as will the contribution to the cloud water budget itself
incidentally). Additionally it is much easier to ensure conservation of cloud water (presuming the numerics em-
ployed are designed to ensure conservation of prognostic quantities). The disadvantage is thatthe information
is only available in partially cloudy conditions. In clear sky conditions one only knows the distribution mean,
sinceqc = 0 identically (see schematic of Fig.16). Likewise in overcast conditions, whereqv = qs. In these
situations, the loss of information requires supplementary ad-hoc assumptions to be made, to close the system.
For example, one could resort to assuming a fixed distribution width in clear-sky conditions, thus returning to
cloud formation at a specified (RHcrit ). We will see below that this issue arises once again in theTiedtke(1993)
scheme, which resorts to such a solution.

The second approach is to abandon the separate cloud water prognostic variable in favour of a prognostic vari-
ance equation. This has the advantage that the distributionis alwaysknown, even in clear sky or overcast condi-
tions. The disadvantage is that all sources and sinks must now be parametrized in terms of variance sources and
sinks. For turbulence (Deardorff, 1974), and perhaps convective sources and sinks (Lenderink and Siebesma,
2000; Klein et al., 2005), this is relatively straight-forward. However, for the microphysical processes the prob-
lem quickly becomes complicated. For a microphysics conversion termM such as simple autoconversion terms
(the rate of conversion from liquid to rain), it is possible to derive the sink of variance6

dσ2(qt)

dt
= M′q′t =

∫
M′(qt)q

′
tG(qt)dqt , (23)

which analytically tractable for simple forms ofA andG(qt). Nevertheless, we can imagine more complicated
scenarios, such as ice settling handled by a semi-Lagrangian advection scheme, allowing settling from any

6Care that must be taken with regard to the numerics with long timesteps. Since autoconversion terms tend to be nonlinear they
usually reduce the variance. Even if this equation is integrated implicitly for stability, the limit for long timestepswill be zero, which is
unrealistic for partially cloudy conditions since the precipitation process does not affect the clear sky part of the domain. Thus instead
one should integrate this term implicitly for the cloudy portion [cld] of the gridcell and then combine the result with the clear sky
[clr] variance thus:σ2(qt) = C(q2

s +σ2(qt )[cld])+ (1−C)(q2
v[clr]+σ2(qt)[clr])−q2

t . The issue of numerics is revisited later in this
document.
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Figure 16: Schematic of the problem that arises if distribution width is derived from separate prognostic
equations for vapour and cloud water. The curve is not uniquely defined for overcast (blue PDF) or clear
sky (green PDF) conditions. For example, for the clear-sky case, there are any number of possible variances
(width) of the distribution that give the correct mean watervapour and zero cloud water. Two examples are
marked: a wider distribution (dot-dashed) or narrower (dotted).

particular gridbox to other all levels below it. Trying to parametrize this equivalently in terms of variance
sources and sinks is difficult. Moreover, by abandoning the prognostic equation for ice, any inaccuracies in the
handling of such a process via a variance equation are likelyto manifest themselves in a compromising of the
cloud mass conservation.

Tompkins(2002) tried to provide a solution for this dilemma by implementing a hybrid scheme. In partially
cloudy conditions variance is derived directly from the cloud water and vapour prognostic equations. In clear
sky and overcast conditions, the variance is prognosed using a subset of source and sinks terms, including
turbulence, dissipation, and a highly simplified sink term due to microphysics, which is necessary in overcast
conditions. The reader is referred toTompkins(2002) for details of these source and sinks terms, although
it should be noted that some of these, in particular the skewness budget terms from microphysics and deep
convection, have been justifiably criticized byKlein et al. (2005) for their ad hoc nature. Nevertheless, the
inclusion of even a reduced set of variance sources/sinks, especially from turbulence, is able to reproduce
the observations of turbulence increasing or decreasing variance according the mean humidity gradients, and
coincidentally creating cloud or breaking-up an overcast cloud deck (Fig.17).

8.1 Future developments of the Tompkins scheme

TheTompkins(2002) scheme has a number of shortcomings, not least the hybrid approach of using a contrast-
ing prognostic equation sets depending on the meteorological conditions, and the ad-hoc way in which some
of the source/sink terms are derived. Currently there is no scheme in existence to the author’s knowledge that
implements a fully prognostic statistical scheme with sources and sinks of the variance, skewness and other
necessary moments derived for each atmospheric process such as convection and complex cloud microphysics
fully from first principles. This section highlights some areas in which progress can be made.

8.1.1 The prognostic equation set

The scheme of Tompkins used abetadistribution simplified to 3 defining parameters, and thus can be defined
uniquely by expressing the mean, variance and skewness. Theskewness of this distribution can take on any
value in general, but if one restricts the distribution to the bell shaped regime (i.e.G(rt)→ 0 asqt → a,b) which
is demarked byp > 1 andq > 1 then the skewness is limited to be less than 2.
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Figure 17: Figure taken fromTompkins(2002) showing evolution of the boundary layer at a gridpoint
subject to stratocumulus cloud. The upper panel shows the cloud cover, while the lower shows the total
water distribution minimum (a), maximum (b) in addition to qs (marked rs in the plot, according the notation
used in that paper). In the earlier period, the scene is overcast and the whole of the PDF is moister than
qs. In this case the increase in variance from turbulence breaks up the cloud deck intermittently. In the
latter period instead the gridbox is relatively dry, and turbulence instead creates small cloud coverage;
representing the cloud capped thermals known as ’fair weather cumulus’.

The scheme of Tompkins used a closure which set the shape parameterp to a constant of 2. It then introduced
a prognostic equation forq. One problem of this closure is that negatively skewed distributions are forbidden
and the skewness is more strictly limited to

√
2. The equation introduced for the parameterq was rather ad hoc,

with a source and a sink term. The sink was parametrized as a Newtonian relaxation back to the symmetrical
PDF withq = p = 2. The source term was parametrized in an approximate way, relating the increase inq (and
thus indirectly skewness) to the detrainment of cloud condensate at a particular level.

Jeffery (personal communication) correctly pointed out the short-comings in theTompkins(2002) scheme and
went on to suggest an alternative closure ofp+q = K suggesting that the quiescent solution ofp= q= 5 gives
an improved fit to aircraft observations relative to the values ofp = q = 2 used byTompkins(2002). As well
as allowing both positive and negative skewness, this additive closure has the advantage that it can provide any
value of skewness. That said, it achieves this by abandoningthe Bell shape regime for the ’exponential regime’
at higher skewness values, which would imply a discrete transition of the PDF and discontinuities at the PDF
bounds.

Here we suggest an alternative modified closure to theTompkins(2002) scheme. The new closure restricts the
PDF form to the bell shaped regime, thus the PDF development is continuous, but with skewness permitted to
take on the maximum possible range of values for this case, namely ς ∈ (−2,2). Both positive and negative
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skewness values are possible with one combined shape parameter. The new closure relates the PDF shape
parametersp andq as follows:

(p−1)(q−1) = K (24)

whereK is a constant. Thus asq → ∞,ς → 2. The constantK determines the symmetrical Beta distribution
eventually adopted in the absence of other processes (the ’quiescent solution’). The choice ofK is based on
pragmatism. SettingK = 1 gives the solution ofp = q = 2 as inTompkins(2002), but leads to complex
relationship between skewness andq. If we instead selectK = 2, this renders a quiescent solution ofp = q =
1+

√
2, and conveniently gives

pq= p+q+1 (25)

which allows eqn18 to be greatly simplified. Substituting this relationship leads to the quadratic relationship
betweenq andς :

q2 +
2(ς +2)

ς −2
q−1 = 0. (26)

For the Bell shaped regime only positive roots are physically reasonable, which leads to

q =
(ς +2)+

√
2(ς2 +4)

2− ς
. (27)

Onceq is known,p is given simply from (25) as

p =
q+1
q−1

(28)

Thus by implementing such pragmatic closures the conversion between the statistical moments and the PDF
becomes tractable and analytical, implying a faster scheme, while the extension also permits negative skewness
in addition.

8.1.2 The convective and microphysics source terms

The second criticism of the Tompkins scheme is that the derivation of the sources and sinks of the prognostic
variables related specifically to deep convection and microphysics. These were derived in an indirect way, using
the sources and sinks of the microphysical variables provided by these respective schemes. The translation of
the humidity and cloud water tendencies into PDF moment tendencies was also approximated, due to the closure
form used as described in the previous section.

Klein et al. (2005) instead showed how one could improve on this approach and directly derive the sources
and sinks of variance, skewness and higher order moments from a standard mass flux convection scheme.
Considering the variance, this work pictures a convective updraught detraining air with properties with a certain
mean and variance of total water into an environment with contrasting properties, as depicted in Fig.18.

For the variance budgetKlein et al.(2005) described the two source terms due to a detrainment mass ofD as

∂σ2(qt)

∂ t
= D(qt d −qt)

2 +D(σ2(qt d)−σ2(qt)). (29)

The first term on the right describes the increases in variance in the environment due to the detrainment of air
with different mean propertiesqt d, while the second term describes the changes due to different variance in
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Figure 18: Schematic of a updraught detraining into the environment, with the shaded blocks illustrating
total water variability of each air mass. Figure reproducedfrom Klein et al.(2005).

the environment. There were also two terms relating to convective entrainment and one due to compensating
subsidence in the environment. The reader is referred toKlein et al.(2005) for details of the derivation.

Using a cloud resolving model to simulate deep convection and identify regions of updraught and environment
air within the domain,Klein et al. (2005) were able to derive the magnitude of the sources and sinks due
to these 5 terms, reproduced in Fig.19. The figure shows that the source of variance due to each of the
detrainment terms are comparable in magnitude. The concernthat this raises, is that most deep convective
parametrizations only provide the the updraught mean properties and not the sub-draught variability, implying
that terms such asσ2(qt d) are not readily available.Klein et al.(2005) examined the relationship between the
mean and variance in the cloud resolving model experiments (see Fig.20) and found that variance tended to
be positively correlated with updraught mean properties, as one would expect, and suggested using this as a
diagnostic closure forσ2(qt d).

The problem with the diagnostic closure forσ2(qt d) is that the relationship betweenσ2(qt d) andqt d is very
approximate, and Fig.20 reveals considerable scatter. Moreover, for higher order moments such as skewness
or kurtosis it is unlikely that any meaningful relationshipwith mean updraught properties holds.

An alternative approach therefore would be form a budget equation for the mass flux scheme updraught variance
along the same lines as suggested for the environment. We test this closure offline using the convection scheme
of ECMWF. Starting with a fixed arbitrary value of variance atcloud base related to the environmental mean
humidity7. The formulation ofKlein et al. (2005) is rewritten according to the form ofLewellen and Yoh
(1993), giving the updraught variancer ′2u k at any vertical model levelk due to an entrainment rateE as

qtu′2k = (1−∆tE)(qt uk−1 +qt
′2
u k−1)+ ∆tE(qt k +qt

′2
k)− (qt k)

2 (30)

The results of this offline closure are shown in Fig.21, which shows increasing variance with height within the
updraught. It is highly likely that this closure significantly over-estimates the sub-plume variance, especially
in the upper tropospheric deep convective cores, as this derivation only include the source term that increases
variance when drier air is entrained from the environment, and thereafter remains as a distinct updraught entity
without mixing with the pre-existing updraught air. The mixing of freshly entrained air parcels with updraught

7With a fully prognostic statistical scheme in place, the initial updraught variance could be set to the environmental value at cloud
base.
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Figure 19: CRM derived qt (r in the figure notation) standard deviation, and the derived source and sink
terms. The “predicted” time evolution of the standard deviation is made using the 5 source and sink terms
depicted, with the addition of a fixed-timescale Newtonian “return to isotropy” term. Figure reproduced
from Klein et al.(2005)

plumes would act as a variance sink that could be representedas a Newtonian relaxation return to isotropy term.
Note that this treatment of variance is at odds with the underlying bulk mass assumption of the base convection
scheme, which calculates the bulk mass flux profile and cloud top using an entraining plume with homogeneous
properties. In other words, a plume-based parametrizationapproach along the lines ofRaymond and Blyth
(1986) or Emanuel(1991) lends itself more readily to a self-consistent treatment of updraught variance than
the bulk mass-flux methodology.

8.1.3 Microphysics

Another complication of the statistical scheme approach isthe treatment of microphysics. Most existing cloud
schemes carry prognostic equations for cloud variables anddefine the tendencies of these cloud variables due to
microphysical processes directly. In a fully prognostic statistical scheme, the microphysical processes instead
have to be redefined in terms of sources and sinks of the PDF moments.

As stated inKlein et al.(2005), the tendency of the total water variance due to a microphysical processM = ∂qx
dt

that acts as a sink of total waterqt (i.e. autoconversion of liquid cloud water to rain droplets, which are not
included inqt ) is related to the correlationM′q′t integrated across the grid-cell, and was given earlier in Eqn.
23.
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Figure 20: Relationship between
√

σ2(qt d) andqt d from the CRM simulations ofKlein et al.(2005) (note
notation usage of r). Figure reproduced fromKlein et al.(2005)

Figure 21: Offline variance calculation using theTiedtke(1989) convective scheme
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It is clear that the tractability of this integral will depend on the PDF formG(qt) and the complexity of the
microphysical parametrizationM in question. For example, the autoconversion form ofSundqvist et al.(1989)
contains a squared exponential term inqt making the direct solution of Eqn.23 impossible for all but the
simplest PDF forms.

One possible avenue is to approximate the microphysical sink term by only considering the effect on variance
due to the reduction of themeanin-cloud water amount, neglecting the sub-cloud variations. This assumption
is perfect if the microphysical process is linear, with accuracy of the approximation decreases with increasing
nonlinearity of the process in question.

The assumption is equivalent to that of assumming a double delta function PDF for the total water, in which
the variance can be defined as

σ2(qt) = Cqt
2
c +(1−C)qe

2−qt
2, (31)

whereqt c is the mean total water in the cloudy region of the grid-cell and qe is given in Eqn.7. Assuming that
microphysical processes do not affect cloud fraction (∂C

∂ t = 0) we get

dσ2(qt)

dt
= C(1−C)(2qt c−qe)M (32)

Thus, we can see that by neglecting sub-cloud variability, the variance sink due to microphysics can be derived
irrespective of the complexity of the cloud water sink parametrizationM, but of course, for highly nonlinear
parametrizations, the approximation is quite severe.

As pointed out earlier, some ice processes, such as sedimentation, are much more complicated to represent in the
statistical scheme framework. Moreover, the ice variable is further complicated by the fact that ice nucleation
(homogeneous or heterogeneous) does not occur at relative humidities of 100% but at much higher thresholds
(e.g.Pruppacher and Klett, 1997; Kärcher and Lohmann, 2002; Gierens, 2003). However, it is not possible to
simply replace the lower integral limitqs with this higher threshold in the statistical scheme framework of Eqns.
5 and6, since after nucleation has occurred, ice crystal growth bydeposition (often rapidly) returns the in-cloud
humidity towards saturated conditions. This “hysteresis”behaviour implies that knowledge of the cloud parcel
(grid-cell) history is required to represent supersaturation in the statistical scheme approach.

We therefore suggest that the statistical scheme approach lends itself best to warm rain processes, where cloud
droplets can be assumed to be in suspension, and which form rapidly at a fixed threshold (and likewise evaporate
below this threshold). On the other-hand, the complications of the ice phase of both non-negligible sedimen-
tation rates of ice crystals and an hysteresis behaviour between the saturation and ice nucleation thresholds
imply that cloud ice crystals could be better handled as a (orseveral, if the crystal size spectra is to be resolved)
separate prognostic “bulk” variable(s), as is already donein many ice microphysical schemes. Thus, this hybrid
approach would introduce a prognostic equation forqt = qv +ql , with separate equations for ice, and possibly
other falling bulk quantities such as snow, graupel and rain.

9 The ECMWF prognostic cloud cover scheme

The aim here is not to describe theTiedtke(1993) scheme in detail, this is performed admirably by the work of
Tiedtke(1993); Gregory et al.(2000); Jakob(2000) and the online documentation. Instead this section briefly
places the Tiedtke scheme into the context of the cloud scheme family, in particular the statistical schemes. The
Tiedtke scheme has many merits and has proved to be very effective in its prediction of cloud characteristics
(e.g.Hogan et al., 2001).

The Tiedtke scheme chooses a different set of prognostic equations for cloud scheme, namely: water vapour,
cloud water and cloud cover. We saw in the last section how theformer two, vapour and cloud could be used to
equivalently specify the mean and variance of total water,in partially cloudy conditions. The Tiedtke scheme
takes this approach a step further by adding a third predicted equation, giving a memory for the cloud cover.
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We also learned in the previous section that such an approachhas some advantages, since it greatly simplifies
some of the source and sink derivations. A good example is thelink to the convection scheme. The convection
scheme provides a mass of detrained cloudy air, which is thensimply added directly to the respectively cloud
water and cover equations, without recourse to distribution functions.

This is not to say that the Tiedtke scheme does not use assumptions concerning the underlying distributions to
derive some of the sources and sinks of the prognostic equations. For example, the source of cloud water and
cloud cover from a gridbox cooling is derived assuming the clear sky humidity observes a uniform distribution
(note that an error in the original derivation ofTiedtke(1993) was corrected byJakob(2000)). The assumption
leads to a cloud fraction source of

∂C
∂qs

= −
(1−C)2

2(qs−qv)
(33)

This direct translation of PDF moment sources and sinks intoconsistent cloud cover and water sources and
sinks is discussed in far greater detail inWang and Wang(1999); Gregory et al.(2002); Larson(2004). In other
words, in many respectsthe Tiedtke(1993) approach is simply a variable transformation of the prognostic
statistical scheme approach.

Note that theTiedtke(1993) scheme does not parametrize all sources and sinks consistently with an underlying
distribution. For example, the horizontal subgrid-scale eddies act to homogenize the total water field and will
reduce the width of the distribution. Thus ifqt < qs then the cloud cover will reduce as a result, while with
qt > qs dissipation will increase cloud cover. The Tiedtke scheme instead always reduces cloud cover, in conflict
with any possible humidity distribution.

For the most part,if the Tiedtke scheme uses an underlying distribution assumption, it is usually that the clear
sky humidity fluctuations are distributed uniformly, whilethe cloudy portion is homogeneous (described by a
delta function). It is thus clear that the scheme is not reversible. If a gridbox is subjected to an equal magnitude
cooling followed by warmed over two consecutive timesteps,and all other processes (e.g. precipitation) are
neglected, there is a net creation of cloud, as illustrated in Fig. 22. The assumption that no sub-cloud variability
in condensate exists, and the resulting irreversibility ofthe scheme, is not necessarily physically wrong; it is
equivalent to the assumption that in-cloud mixing homogenizes in-cloud fluctuations on a fast time-scale com-
pared to the model timestep. However, observations in real clouds such as the examples fromWood and Field
(2000) reproduced in Fig.5 show that the turbulent entrainment process occurring in clouds can act to introduce
and increase sub-cloud variability.

One potential draw-back issue concerns self-consistency.With a pure statistical scheme approach, where the
PDF moments are predicted, the cloud water and cover are constrained to be consistent with each other, since
they are both derived from the same distribution. This is nottrue for the Tiedtke scheme, and it is not unusual
for cloud water and cover to be inconsistent, with only one ofthe two fields non-zero for instance. On the other
hand, such inconsistencies are always to be tackled in any approach. For example, with the statistical schemes,
it is possible for values of variance and skewness to arise that may not be consistent with the assumed underlying
distribution, or may give rise to a PDF that encompasses negative vapour amounts. These inconsistencies are
simply more ’apparent’ with the Tiedtke approach as they occur in bulk ’observable’ quantities.

Likewise, the apparent advantages of the Tiedtke approach,such as the simpler link to the convection scheme
and treatment of microphysics, exist due to the fact that allsub-cloud thermodynamic variability is neglected
(only the bulk volume of cloud air is required). As we saw earlier in the discussion of microphysics (re.
eqn. 32), the derivation of a prognostic statistical scheme is alsovastly simplified if sub-cloud variations are
neglected. In other words, statistical schemes are only more complicated as they aim to treat the higher order
moments of the cloud characteristics, not due to the methodology ethos itself.

In summary, statistical approaches and the Tiedtke approach are closely related, with the former carrying the
explicit properties of the thermodynamic PDFs, and the latter instead carrying the integral properties of the
PDFs (cloud cover and so on), simplifying the implementation but consequently implying an associatedloss
of information. The choice of scheme approach reduces to a balance between tractability, cost and the need to
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Figure 22: Schematic showing one reversibility issue with Tiedtke scheme. The upper panel shows the impact
of a cooling applied to a partially cloudy gridbox. The cooling reduces qs and thus condenses cloud water,
increasing the cloud fraction by the area contained betweenthe dotted and dashed lines. It is assumed
no rain is produced and over the subsequent timestep the gridbox is subjected to an equal and opposite
warming. One would expect the gridbox should return to the original state, but due to the assumption that
the cloud is well mixed and homogeneous, this is not the case (lower panel). The non-reversibility is not
necessarily a problem per se; it is consistent with the assumption that the in-cloud homogenization occurs on
fast timescales compared to the model timestep. If this weretrue in the atmosphere then the non-reversibility
of the scheme would be realistic. Observations indicate that clouds are far from the homogeneous entities
that the Tiedtke cloud scheme and the bulk mass flux convection schemes assume!

know the sub-grid fluctuations of thermodynamic properties.

10 Numerical issues

This lecture now touches briefly on the issue of scheme numerics, and does so since the solution methodology
is often omitted from the literature in articles describingcloud schemes. The importance of numerical issues
was highlighted by the workshop onThe numerics of physical parametrizationheld at ECMWF in 2004. The
examples here are taken from the numerics of theTiedtke(1993) scheme but the comments are valid in general.
In fact it should be emphasized thatTiedtke(1993) is one of the rare examples of an article that includes the
solution methodology for the prognostic equations implemented.

The Tiedtke (1993) cloud scheme solved the prognostic equation for a generic variableφ (cloud water and
cloud cover) using an implicit approach (see eqns 27/28 ofBeljaars et al., 2004, for details). Sources and
sinks are divided into explicit ’slow’ processesAi and implicit ’fast’ processesBi, such that

dφ
dt

= A+Bφ . (34)

ECMWF Seminar on Parametrization of Subgrid hysics Processes, 1-4 September 2008 53



TOMPKINS, A.M.: CLOUD PARAMETRIZATION

Tiedtke (1993) solves this equation exactly. As some of the parametrizations forB will be complicated, in
order to make this solution tractable, each parametrization is approximated by a first order dependence. In
other words, if a parametrization were to take the form

Bi =
∂φ
∂ t

= Kφη , (35)

whereη andK are real constants, then solution approximates the tendency by

Bi =
∂φ
∂ t

= Kφφη−1
t , (36)

whereφt is the fixed value ofφ at the beginning of timestept. In this wayTiedtke(1993) giving a solution in
terms of exponentials (see equations 37 and 38 of that paper)

φ t+∆t = φte
−B∆t +

A
B

(
1−e−B∆t.

)
(37)

The special caseF = 0 has to be treated separately.

To illustrate an example of how the specific solution of an equation set can result in a system very different in
practice to that described in the governing equations, we examine the treatment of ice sedimentation that was
added to theTiedtke(1993) scheme and described inGregory et al.(2000), and was valid until cycle 25r4.

The ice variable was diagnostically divided into two categories of large and small ice particle sizes. The mass
mixing ratio of small ice particles, defined as having a dimension less than the threshold of 100 microns (qi<100),
is given in equation 5 ofMcFarquhar and Heymsfield(1997), and repeated here for clarity:

qi<100 = 81.7(ρqi)
0.837 (38)

The mass is not allowed to exceedqi , and the modified constant 81.7 is simply due to the fact that
McFarquhar and Heymsfield(1997) use units ofgm−3. The large particles are assumed to fall out of a col-
umn as snow within one timestep, while the smaller ones are converted to snow if they fall into a clear region
or are allowed to sediment to the next layer if it is cloudy (using the maximum-random overlap rules for cloud
cover to determine this). The sedimentation fallspeeds forsmall ice particles are specified according to mass
mixing ratio and are given byHeymsfield and Donner(1990).

Although these ’rules’ governing the sedimentation of ice appear reasonable, (large-ice particles falling quickly,
small ones slowly) closer examination of the original numerical solution method outlined above reveals that the
behaviour of the scheme was very different in practice than that intended! The reason was that the implementa-
tion set the fall speed of large ice to that required to removethe entire ice contents of a grid-cell to the adjacent
cell below, i.e. the speed implied by the CFL criterion. However, the solution was then performed with the
exact solution methodology outlined above. The result was that the implied fall speed was actually often lower
for large ice than that assumed for small ice, especially at low resolutions that use longer timesteps (see figures
23 and24). For example, for the T95 model, which uses a one hour timestep, the effective fall speed for large-
ice in the upper troposphere is roughly 0.2 m s−1. It is immediately clear why this is unreasonable, since the
fallspeeds observed byHeymsfield and Donner(1990) exceed this level even for small ice mass mixing ratios.

Thus alternative numerical approaches are required. Semi-Lagrangian methods to treat the sedimenta-
tion/precipitation terms are efficient and can be non-diffusive, are commonly used to achieve numerical ac-
curacy for long timesteps (Leonard, 1991; Wallis and Manson, 1996) and were implemented into the scheme
of Lopez(2002). The disadvantage of these methods are the complexity of considering the interaction with
other fast processes during the descent. Time splitting is an alternative approach to treat fast processes and fast
precipitant fall-speeds. Again the consideration of the interaction with other processes complicates matters;
simply handling the sedimentation process itself using shorter sub-timesteps would lead to inaccurate solu-
tions. However, including the consideration of melting, autoconversion and evaporative processes would imply
a considerable portion of the cloud physics being run at short timesteps.
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Figure 23: The pre-25r4 model cycle fall speed adopted for small (dot-dash, radius less than 100 microns,
function of ice mass mixing ratio), large (dashed, functionof resolution and timestep only) and mean (solid)
diameter ice particles at various pressure levels. The figure assumes a 900s timestep as used by the TL511
model and the 60 level vertical grid operational until 2006

Thus in many schemes, and also in the ECMWF model post cycle 25r4, a forward in time, upstream implicit
method is applied. If we extend eqn.34 to include sedimentation/falling/advection at a velocityV

dφ
dt

= A+Bφ +
1
ρ

d(ρVφ)

dz
, (39)

then the upstream forward in time implicit solution is simply:

φn+1
j =

A∆t +
ρz−1Vz−1φn+1

z−1
ρz∆Z ∆t + φn

z

1+B∆t + ρzVz
ρz∆Z∆t

(40)

wheren is the timelevel andz the vertical coordinate. This is stable, but diffusive for species with fast fall
speeds. The use of this scheme greatly reduced the vertical resolution sensitivity of the cloud scheme, as
illustrated in fig.25.

The plan at ECMWF is to generalize this implicit treatment toimplement a multi-phase prognostic micro-
physics scheme, withm= 5 prognostic equations for water vapour, cloud liquid water, rain, cloud ice and snow
(i.e. the single cloud water equation is replaced by four variables), which leads to a generalized discretization
in which thei and j indices refer to theith microphysical category :

qn+1
i −qn

i

∆t
= Ai +

m

∑
j=1

Bi j q
n+1
j −

m

∑
j=1

B ji q
n+1
i +

ρz−1Viqn+1
i,z−1−ρViqn+1

i

ρ∆Z
. (41)

The subscriptz−1 refers to a term calculated at the model level above the present levelz for which all other
terms are calculated. The matrix̃B represents all the implicit microphysical pathways such that B jk > 0 rep-

ECMWF Seminar on Parametrization of Subgrid hysics Processes, 1-4 September 2008 55



TOMPKINS, A.M.: CLOUD PARAMETRIZATION

Figure 24: As Fig.23but for the 3600s timestep used for the TL95 resolution model with the same vertical grid.

resents a sink ofqk and a source ofq j . Matrix B̃ is a positive-definite off the diagonal, with zero diagonal
terms sinceB j j = 0 by definition. Some terms, such as the creation of cloud through condensation resulting
from adiabatic motion or diabatic heating, are more suitable for an explicit framework, and are retained in the
explicit termA.

Due to the cross-termsqn+1
j , eqn. 41 is rearranged to give a straight forward matrix equation. Providing the

solution method is robust, the choice for solution is not critical, in contrast to chemical models with typically
O(100) species, since in comparison the number of microphysical prognostic equations is small (m= 5 in the
first instance). The new scheme will use the LU decompositionmethod (Press et al., 1992). Matters have also
been simplified by the fact the advection terms due to convective subsidence (could this be eventually handled
in the convection scheme) and sedimentation/falling are all assumed to act in the downward direction, allowing
the solution to be conducted level by level from the model topdownwards.

The matrix on the left has the microphysical terms in isolation off the diagonal, with the sedimentation term on
the diagonal, thus the matrix equation for a 3-variable system is




1+ ∆t(V1
∆z +B21+B31) −∆tB12 −∆tB13

−∆tB21 1+ ∆t(V2
∆z +B12+B32) −∆tB23

−∆tB31 −∆tB32 1+ ∆t(V3
∆z +B13+B23)


 ·




qn+1
1

qn+1
2

qn+1
3


=

[
qn

1 + ∆t

(
A1+

ρz−1V1qn+1
1,z−1

ρ∆Z

)
,qn

2 + ∆t

(
A2+

ρz−1V2qn+1
2,z−1

ρ∆Z

)
,qn

3 + ∆t

(
A3+

ρz−1V3qn+1
3,z−1

ρ∆Z

)]
. (42)

There are two aspects that require attention. Firstly, although implicit terms are unable to reduce a cloud
category to zero, the explicit can, and often will, achieve this. Thus safety checks are required to ensure that
all end-of-timestep variables remain positive definite, inaddition to ensuring thermodynamic conservation.
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Figure 25: Vertical resolution sensitivity comparing the pre (left) and post (right) 25r4 cloud schemes. Five-
day mean profiles of cloud ice water obtained in an idealized cirrus case. An initial cirrus cloud is forced
by upper tropospheric ascent, using a 100 layer (Black solidlines) and 50 layer (red dotted lines) vertical
grid. Note that the differences in the profiles are due to altered physical processes in the cloud scheme and
not the numerical solution procedure, nevertheless, the reduction in vertical resolution sensitivity with the
implicit solution is notable.

Secondly, the temperature budget needs to be based on conserved variables when an implicit approach is used;
the prototype scheme uses the liquid water temperatureTL defined as:

TL = T −
Lv

Cp
(qliq +qrain)−

Ls

Cp
(qice+qsnow). (43)

The subscripts are self-explanatory. The temperature change is thus given by

∂T
∂ t

=
m

∑
j=1

L( j)
Cp

(
Dqj +

1
ρ

∂
∂z

(ρVjq j)+
dqj

dt

)
(44)

The second term on the right is the rate of change of speciesq j due toall processes, including the convective
detrainment termDqj and the advective flux terms, which are included separately since they represent a netTL

flux.

Results from the new five-phase scheme will be presented in a future manuscript.

11 Summary

In summary, this lecture has tried to summarize the various approaches to diagnosing the proportion of a grid
box covered by cloud in global models. The main point is that partial coverage can occur if and only if subgrid-
scale fluctuations of humidity and temperature exist. All cloud schemes that predict partial cloud cover therefore
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implicitly or explicitly make assumptions concerning the magnitude and distribution of these fluctuations; the
total water probability density function (PDF).

Simple diagnostic schemes were discussed that useRH as their main or only predictor for cloud cover. We
then discussed statistical schemes that explicitly specify the humidity PDF. We showed that if the moments of
such schemes are time-space invariant, then the cloud coverderiving from statistical schemes can be written
as diagnosticRH form. In other words, rather than using ad hoc relationships, one can derive aRH-scheme
to be consistent with an underlying PDF. It was pointed out that knowing the PDF for humidity and cloud
fluctuations gives vital extra information that can be used to correct biases in nonlinear processes such as
precipitation generation or interaction with radiation.

More complex statistical schemes were then discussed whichattempt to predict the sources and sinks of the
distribution moments, so that the PDF can realistically respond to the various relevant atmospheric processes.
The lecture dwelled on the choice of the prognostic variables, in particular whether it is preferable to predict
the PDF moments themselves, or instead to predict integrated and direct cloud quantities such as the cloud
liquid water. Advantages and potential drawbacks of each approach were presented. It was pointed out that
the Tiedtke scheme is essentially a manifestation of the second approach, where both cloud waterand cloud
cover are predicted, and where often an underlying assumption concerning the humidity and cloud distribution
is made to derive the sources and sinks of these prognostic variables.

Future developments of the statistical scheme approach were suggested, including the closure approach for the
PDF, and more centrally, the way in which the sources and sinks of the PDF moments due to processes such as
convection and microphysics could be derived.

It was finally highlighted that the liquid cloud water variable lends itself to the statistical scheme approach due
to the fact that it can be treated as if in suspension and also due to the fast nucleation/evaporation timescales.
The same is not true of cloud ice, implying that a hybrid scheme, with cloud ice treated as a separate prognostic
variable may be the solution.
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