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On an extension of the freak wave warning system and its verification.

Abstract

This memo discusses a number of updates to the freak wave warning system which were introduced in cycle
33R1 of the IFS. The list of changes is given below and they arediscussed in more detail in the remainder
of this memo. They are:

1. In shallow water it is well-known that forkD≃ 1.363 the effects of four-wave interactions vanish be-
cause of the generation of a wave-induced current. Following the work of Janssen and Onorato (2007),
a parametrization of this shallow water effect is introduced which affects both the time evolution of
the wave spectrum, and the determination of the kurtosis of the wave field.

2. Extension of the ECMWF freak wave warning system to two-dimensional propagation. Numerical
simulations and experimental evidence suggest that the kurtosis of the surface elevation then depends
on two parameters, namely the Benjamin-Feir Index (BFI) anda parameter which measures the im-
portance of directional width compared to the width of the frequency spectrum.

3. Introduction of two extreme wave parameters, namely the average maximum wave height and the
corresponding wave period. Following the work of Mori and Janssen (2006) it is suggested to use the
maximum wave height, observed during a period of lengthT as an indicator of how extreme the sea
state is. For known probability distribution of the sea surface elevation it is shown how to obtain an
estimate of the average maximum wave height.

A fairly extensive validation of products of the freak wave warning system is also presented, in particular
regarding the maximum wave height. A comparison of the expected maximum wave height against buoy ob-
servations shows a good agreement, while also the theoretical probability distribution function of maximum
wave height matches the observed distribution very well, inparticular in the extremes.

1 Introduction.

Recently, there has been considerable progress in the understanding of the occurrence of freak waves. The
notion of freak waves was first introduced by Draper (1965). Freak waves are waves that are extremely unlikely
as judged by the Rayleigh distribution of wave heights (Dean, 1990). In practice this means that when one
studies wave records of a finite length (say of 10-20 min), a wave is considered to be a freak wave if the wave
heightH (defined as the distance from crest to trough) exceeds the significant wave heightHS by a factor 2.
It should be clear that it is hard to collect evidence on such extreme wave phenomena because they occur so
rarely. Nevertheless, observational evidence from time series collected over the past decade does suggest that
for large surface elevations the probability distributionfor the surface elevation may deviate substantially from
the one that follows from linear theory with random phase, namely the Gaussian distribution (cf. e.g. Wolfram
and Linfoot, 2000). Also, there are now a number of recorded cases which show that the ratio of maximum
wave height and significant wave height may be as large as three (Stansell, 2005).

The increased understanding of the generation of freak waves follows from the present-day ability to simulate
these extreme events by means of the Zakharov equation (Zakharov, 1968, Janssen, 2003 (hereafter referred to
as J2003)). This is an approximate evolution equation whichis obtained from the exact equations for surface
gravity waves in the limit of small wave steepness. Yasudaet al (1992), Trulsen and Dysthe (1997) and Osborne
et al (2000) studied simplified versions of the Zakharov equation and it was found that these waves can be
produced by nonlinear self modulation of a slowly varying wave train. An example of nonlinear modulation
or focussing is the instability of a uniform narrow-band wave train to side-band perturbations. This instability,
known as the side-band, modulational or Benjamin-Feir (1967) instability, will result in focusing of wave
energy in space and/or time as is illustrated by the experiments of Lake et al (1977).

Therefore, in the context of the deterministic approach to wave evolution there seems to be a reasonable theoret-
ical understanding of why in the open ocean freak waves occur. In ocean wave forecasting practice one follows,
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On an extension of the freak wave warning system and its verification.

however, a stochastic approach because the phases of the individual waves are unknown. Clearly, in the context
of wave forecasting only statements of a probablistic nature can be made. As freak waves imply considerable
deviations from the Normal, Gaussian probability distribution function (pdf) of the surface elevation, the main
question therefore is whether the pdf of the surface elevation can be determined in a reliable manner. Following
and extending J2003 this is indeed possible. Traditionally, it is known that the surface elevation pdf deviates
from the Normal distribution because the actual shape of theocean waves deviates from the sinusoidal form
(this is reflected by the canonical transformation applied to the hamiltonian for water waves (Janssen, 2008).
However, there is also a dynamical cause for deviations fromNormality. J2003 showed that the deviations from
the Normal pdf of the surface elevation are also related to the presence of resonant and nonresonant four-wave
interactions. In fact, the kurtosis, which vanishes for a Gaussian distribution and is a measure for extreme
events, was found to be related to a six-dimensional integral involving the action density to the third power.

As a first step towards validation of Janssen’s approach, thekurtosis was evaluated from the theoretical expres-
sion and for uni-directional, narrow-band spectra it was found that the dynamical part of the kurtosis depends
on the square of the Benjamin-Feir Index (BFI). Here, the BFIis the ratio of the wave steepness to the spectral
bandwidth. This dependence on the BFI was confirmed by recentexperimental work done by Onoratoet al
(2005) in the Trondheim wave tank.

For operational implementation the expression for the kurtosis is far too involved, and clearly some simplifi-
cation is desirable. It is assumed that freak wave events most likely only occur for narrow band wave trains.
This corresponds to situations where both the frequency andangular distribution of the waves is narrow. In the
narrow-band approximation it is possible to simplify and evaluate the six-dimensional integral. In the present
operational system, the dependence on angular width was ignored, resulting in an expression for the kurtosis
which depends on the square of the BFI. However, from experimental evidence (Waseda, 2006; Onoratoet al.,
2009) and numerical simulations (Onorato and Mori, privatecommunication 2006) it is known that kurtosis
also depends in a sensitive manner on the angular width. Therefore, in this memo an extension of the kurtosis
calculation is presented, and the sensitive dependence on the angular width is confirmed. In fact, it is found
that when the relative angular width is larger than

√
2 times the relative frequency width, the sea state is in

a defocussing state and extreme waves are less likely to occur than normal. In the opposite case focussing is
found. Therefore, for almost uni-directional waves with a largeBFI freak waves are most likely to occur, in
agreement with the evidence from numerical simulations andwave tanks.

The general result for the kurtosis and its relation to the wave spectrum was originally derived for deep-water
waves, but Janssen and Onorato (2007) have shown how to extend it to shallow water. For narrow-band spectra,
it is then straightforward to parametrize the stabilizing effects of shallow water.

2 Nonlinear transfer in shallow water.

Finite-amplitude deep-water waves are subject to modulational instability which results in a nonlinear energy
transfer among the components in the wave spectrum, which eventually can lead to the formation of extreme
waves. However, in shallow water, finite-amplitude surfacegravity waves generate a current and deviations
from the mean surface elevation. This stabilizes the modulational instability, and as a consequence, in a fairly
wide range aroundkD = 1.363 the nonlinear transfer becomes small. In addition, while forkh> 1.363 there is
nonlinear focussing giving the possibility of the formation of extreme waves, in the opposite case the process
of nonlinear focussing ceases to exist. This is a well-knownproperty of surface gravity waves.

Janssen and Onorato (2007) have discussed the consequencesof the generation of a wave-induced current for
the evolution of the waves spectrum. Due to resonant four-wave interactions the rate of change of the action
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density spectrumN = gF(k)/ω (whereF is the wave variance spectrum) is given by

∂
∂ t

N4 = 4
∫

dk1,2,3T2
1,2,3,4δ (k1 +k2−k3−k4)Ri(∆ω , t) [N1N2(N3 +N4)−N3N4(N1 +N2)] , (1)

where for resonant wavesRi(∆ω , t) = πδ (ω1 + ω2−ω3−ω4) andT1,2,3,4 is a known interaction coefficient.
For wave forecasting purposes the evaluation of this three dimensional integral is too time consuming and in
practice the Direct-Interaction Approximation (DIA) of Hasselmannet al (1985) is used. In the direct interac-
tion approximation the strength of the nonlinear interactions is estimated using the narrow-band approximation
of Eq. (1). Hence, in DIA the nonlinear interactions scale with the scaling factorSgiven by

S=
k2T2

0,0,0,0

|ω ′′
0 |

,

whereω ′′
0 is the second derivative of angular frequency with respect to wavenumberk. The second derivative

stems from the delta-function for the frequencies in the limit of a narrow-band spectrum. For surface gravity
waves on water of finite depthD the dispersion relation reads

ω0 =
√

gk0T0, T0 = tanhx, x = k0D, (2)

while the first and second derivative become

vg = ω ′
0 =

1
2

c0

{

1+
2x

sinh2x

}

, c0 =
ω0

k0
, (3)

and

ω ′′
0 = − g

4ω0k0T0
×Ω′′, (4)

with

Ω′′ =
{

T0−x
(

1−T2
0

)}2
+4x2T2

0

(

1−T2
0

)

. (5)

Note that for any value of the depthD the second derivative is always negative. Finally, the narrow-band limit
of the interaction coefficient is given by

T0,0,0,0/k3
0 = Xnl =

9T4
0 −10T2

0 +9

8T3
0

− 1
k0D

{

(2vg−c0/2)2

c2
S−v2

g
+1

}

. (6)

with cS =
√

gD which is the shallow water wave velocity. Notice that the interaction coefficient consists of two
terms where the first term is connected with the nonlinear dispersion relation for surface gravity waves, while
the second term is due to effects of wave-induced current andcorresponding changes in the mean sea level.
These two terms are of definite sign so they may cancel each other, which, in fact, happens forx= k0D = 1.363.
Hence, for intermediate water depth waves the nonlinear interactions are expected to play a relatively minor
role. So far this property of the nonlinear transfer has not been incorporated in modern wave prediction models.

It is of interest to study the scaling factorS in the deep water limit first. Then,T0,0,0,0 → k3
0, ω ′′

0 →−g/4k0ω0,
while ω0 →

√
gk0. The scaling factor becomes, apart from a constant,

S=
ω19

0

g10 ,
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which is the usual scaling factor found in the deep-water DIA. In the general case one finds

S=
ω0k9

0

g

T0X2
nl

Ω′′ , (7)

and as a natural extension of the deep-water DIA towards shallow waters the scaling factor (7) has been intro-
duced into Cy 33R1 of the ECMWF wave model software. This scaling factor will give rise to an expected
reduction of the strength of the nonlinear transfer aroundk0D = 1.363, which has consequences for the fre-
quency downshift of the spectrum in shallow waters. As discussed in Janssen and Onorato (2007) there are also
implications for the determination of the surface elevation kurtosis (and therefore for the generation of extreme
events) as fork0D < 1.363 the nonlinear transfer gives rise to defocussing ratherthan focussing (as happens in
the opposite case ofk0D > 1.363).

3 Extension of freak wave warning system.

Before starting with a detailed calculation of the kurtosisof the sea surface and its dependence on the wave
spectrum, it is briefly mentioned that the starting point of ocean waves dynamics is the Hamiltonian formulation
of the nonlinear water wave equations. Assuming that the waves are weakly nonlinear and applying acanonical
transformation which removes most of the contributions by non-resonant interactions, one arrives at the well-
known Zakharov equation for the free wave part of the action variable. The properties of the Zakharov equation
have been studied in great detail by, for example, Crawfordet al. (1981) for deep-water waves and by Janssen
and Onorato (2007) for shallow-water waves. It describes all the known properties of weakly nonlinear waves
in deep and shallow water and is therefore a good starting point for further analysis.

Based on the above theoretical development it should be clear that the expression of the kurtosis of the pdf of
the surface elevation consists of two additive contributions. The first one was derived by Janssen (2003) and
reflects the effects of resonant and non-resonant four-waveinteractions, while the second contribution stems
from the canonical tranformation and reflects the contribution from asymmetries in the shape of the waves.
However, the contribution of the canonical transformationgives a very lengthy expression of several pages and
only for narrow band wave trains its form is known explicitely.1 First the definition of kurtosis used in this work
is introduced. Then the general expression of the contribution to the kurtosis by the dynamics of the waves is
presented and the limit of a narrow-band wave train is taken.The total kurtosis then consists of the sum of the
’dynamics’ contribution and the ’wave-shape’ contribution.

3.1 Kurtosis for narrow-band ocean waves.

There are several definitions of kurtosis possible. Here, itis defined in such a way that it is directly related to
the fourth cumulant of the pdf of the surface elevationη . Hence, the kurtosisC4 is defined as

C4 =
〈η4〉

3〈η2〉2 −1. (8)

The advantage of this definition of kurtosis (some call it the’excess’ kurtosis) is that for a Gaussian pdfC4

vanishes since for a Gaussian〈η4〉 = 3〈η2〉2. Hence,C4 measures deviations from the Gaussian sea state. In
other words, whenC4 > 0 the probability of extreme events is higher than expected from the Normal distribu-
tion, while whenC4 < 0 the probability of extreme events is lower than ’Normal’. On the other hand, as shown

1A compact expression for the contribution of the canonical transformation to the kurtosis of the sea surface was only obtained just
recently, cf. Janssen (2008).

4 Technical Memorandum No. 588



On an extension of the freak wave warning system and its verification.

in Janssen (2004), the four-wave interactions only occur because the fourth cumulant is finite, hence there is
a direct connection between the changes in the wave spectrumcaused by nonlinear four-wave interactions and
extreme sea states.

J2003 obtained an expression for the ’dynamics’ part of the kurtosisC4 in terms of the action density spectrum
N (cf. Eq. (29) of J2003). Denoting the variance of the surfaceelevation bym0 = 〈η2〉, one finds

C4 =
4

g2m2
0

∫

dk1,2,3,4T1,2,3,4δ1+2−3−4(ω1ω2ω3ω4)
1
2 G(∆ω , t)N1N2N3, (9)

where the transfer functionG is given by

G(∆ω , t) =
1−cos(∆ω t)

∆ω
. (10)

Here,∆ω = ω1 + ω2 −ω3 −ω4, T1,2,3,4 is a complicated, homogeneous function of the four wave numbers
k1,k2,k3,k4 which because of theδ -function enjoy the resonance conditionk1 + k2 = k3 + k4. In addition,
the angular frequencyω(k) obeys the dispersion relationω(k) =

√
gkT0, with k the magnitude of the wave

number vectork andT0 = tanh(kD), whereD is the water depth. Here only the deep-water limit,D → ∞, will
be discussed. The shallow water extension will be addressedin Section 3.5

Eq. (9) is valid for arbitrary two-dimensional action density spectra. Although, strictly speaking, the determi-
nation of the kurtosis involves an eight-dimensional integral in wave number space, the resonance conditions
restrict the evaluation to a six-dimensional subspace only. Nevertheless, for operational purposes this is still
far too time-consuming and in order to make progress, simplifying assumptions have to be made. Here, the so-
called narrow-band approximation is assumed which basically implies almost unidirectional waves that have a
sharply peaked frequency spectrum. In practice, around thepeak of the spectrum this is a valid approximation.

Define the wavenumber spectrum

F(k) =
ωN(k)

g

and perform the integration overk4, then

C4 =
4g

m2
0

∫

dk1,2,3T1,2,3,4

√

ω4

ω1ω2ω3
G(∆ω , t) F1F2F3.14

In the next step introduce the frequency spectrum

E(ω ,θ)dωdθ = F(k)dk,

hence,

C4 =
4g

m2
0

∫

dω1dω2dω3dθ1dθ2dθ3T1,2,3,4

√

ω4

ω1ω2ω3
G(∆ω , t) E1E2E3. (11)

Here,

ω4 = Ω(k4) =
√

g|k1 +k2−k3|.

For two-dimensional propagation this becomes

ω4 =
{

(ω2
1 + ω2

2 −ω2
3)2 +2ω2

1ω2
2 [cos(θ1−θ2)−1]−2ω2

1ω2
3 [cos(θ1−θ3)−1]

−2ω2
2ω2

3 [cos(θ2−θ3)−1]
}1/4

.
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Now the narrow-band approximation is applied, i.e. the spectrum is mainly concentrated atω = ω0 andθ = θ0,
and falls off rapidly, much faster than the other terms in theintegrand of Eq. (11). In that event, the transfer
coefficientT1,2,3,4 can be approximated by its narrow-band valuek3

0. In addition,ω4 is approximated. Denoting
the width of the frequency spectrum byσω and the angular width byσθ one may write for angular frequency
and direction

ω1 = ω0(1+ δων1), θ1 = θ0 + δθ φ1,

where in the narrow-band approximation the parametersδω andδθ , defined as

δω =
σω
ω0

, δθ = σθ , (12)

are small. The angular frequencyω0 may be defined in several ways. For example, one could take it as the peak
frequency. Here, for convenience it is defined by means of thefirst moment

ω0 =

∫

dωdθ ωE(ω ,θ)/m0.

Expandingω4 in the small parametersδω andδθ one finds up to third order

ω4 = ω0

{

1+ δω(ν1 + ν2−ν3)−δ 2
ω(ν3−ν1)(ν3−ν2)+

1
2

δ 2
θ (φ3−φ1)(φ3−φ2)

}

+O(δ 3).

As a consequence, the frequency mismatch∆ω becomes

∆ω = δ 2
ωω0{(ν3−ν1)(ν3−ν2)−R(φ3−φ1)(φ3−φ2)}+O(δ 3), (13)

where the parameterR has been introduced which measures the importance of the angular width with respect
to the frequency width,

R=
1
2

δ 2
θ

δ 2
ω

.

Introducing the integral steepness parameter

ε = k0
√

m0.

and applying the narrow-band approximation toC4 the result becomes

Cdyn
4 = 4ε2ω0

∫

dν1dν2dν3dφ1dφ2dφ3 G(∆ω , t) Ê1Ê2Ê3. (14)

where∆ω is given by Eq. (13), and the spectrumE is now regarded as a function ofν andφ . Also, the spectrum
has been normalised in such a way thatm0 = 1, henceÊ1 = E(ν1,φ1)/m0.

Eq. (14) is the general expression for the dynamics part of the kurtosis of a narrow-band wave train (for this
reason the label ’dyn’ is temporarily added). As explained in the beginning of this section, there is also a
contribution due to the asymetrical shape of the waves related to the canonical transformation. For a narrow-
band wave train one can write down the canonical transformation explicitely and the resulting kurtosis may be
evaluated. As a result one finds (Janssen, 2008)

C4 = Cdyn
4 +6ε2.
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Therefore, for a narrow-band wave train the wave-shape contribution to the kurtosis is known in terms of the
moments of the spectrum, and it is straightforward to evaluate its contribution.

Concentrate once more on the ’dynamics’ contribution. Distinguish now two cases namely short times and
large times. In addition, when required, the two-dimensional spectrum is approximated by a Gaussian, i.e.

Ê(ν ,φ) =
1

2π
e−

1
2(ν2+φ2), (15)

with

ν =
ω −ω0

σω
, φ =

θ −θ0

σθ
(16)

This is for the purposes of nonlinear focussing calculations an adequate approximation of the true spectrum as
most of the action occurs near the peak of the spectrum.

3.2 Kurtosis for short times.

For short times the resonance functionG behaves as

lim
t→0

G(∆ω , t) =
1
2

∆ω t2,

and the kurtosis becomes

C4 = 2ε2ω0 t2
∫

dν1dν2dν3dφ1dφ2dφ3 ∆ω Ê1Ê2Ê3.

Introducing the dimensionless timeτ according to

τ = ω0δ 2
ω t,

and making use of the expression for the frequency mismatch,Eq. (13), the kurtosis now becomes

C4 = τ2BFI2
∫ ∞

−∞
dν1,2,3dφ1,2,3 {(ν3−ν1)(ν3−ν2)−R(φ3−φ1)(φ3−φ2)} Ê1Ê2Ê3, (17)

whereBFI is the Benjamin-Feir Index, defined as

BFI =
ε
√

2
δω

. (18)

Note that in the spirit of the narrow-band approximation theintegration is taken from−∞ to ∞ which introduces
an error which is exponentially small. For short times it is seen that apart from a quadratic dependence on
dimensionless timeτ the kurtosis depends on two dimensionless parameters, namely the Benjamin-Feir Index
and the parameterR which measures the importance of directional width. More qualitative statements can be
made by evaluating the integral in Eq. (17). One immediately finds for arbitrary narrow-band spectra the simple
result

C4 = τ2BFI2(1−R) .

since, thanks to the use of the mean frequencyω0 as a typical frequency, by definition integrals involving odd
powers inν and/orφ vanish.

This result clearly shows that directional effects play an important role as depending on the size ofR there
is even an initial evolution towards negative kurtosis, resulting in defocussing rather than focussing. In other
words, whenδθ <

√
2δω kurtosis is positive corresponding to nonlinear focussingand hence an increased

probability of extreme waves , while for large angular width(δθ >
√

2δω ) kurtosis is negative and extreme
waves occur less likely than ’Normal’.

Technical Memorandum No. 588 7



On an extension of the freak wave warning system and its verification.

3.3 Kurtosis for large times.

For large times the resonance functionG behaves as

lim
t→∞

G(∆ω , t) =
P

∆ω
, (19)

where the symbolP denotes the principle value integral. The integral contains a singularity at∆ω = 0 and the
principle value simply means that one makes in the integration contour a cut of size 2ε around the singularity
in a symmetrical fashion and the limitε → 0 is taken afterwards.

Using (19) the kurtosis becomes

C4 = 4ε2ω0P

∫

dν1dν2dν3dφ1dφ2dφ3
Ê1Ê2Ê3

∆ω
.

Substitution of the expression for the frequency mismatch (13) gives

C4 = 2BFI2
P

∫ ∞

−∞
dν1,2,3dφ1,2,3

Ê1Ê2Ê3

(ν3−ν1)(ν3−ν2)−R(φ3−φ1)(φ3−φ2)
. (20)

Not much progress has been made with this general expressionfor the kurtosis of narrow-band waves. The
only general result found thus far assumes that the spectrumhas the same form in frequency and direction, i.e.
Ê(ν1,φ1) = Ê(φ1,ν1). Under this condition it can be shown by means of interchanging integration variables
(ν1 ↔ φ1, etc) that the following relation holds forC4:

C4(BFI,R) = − 1
R

C4(BFI,
1
R

). (21)

This is a powerful relation because once one knowsC4 for R< 1, Eq. (21) immediately gives the kurtosis for
R> 1. Clearly, once more it is seen thatR= 1 plays, just as in the short time limit a special role. Substituting
R= 1 in (21) one immediately finds thatC4 vanishes,

C4(BFI,R= 1) = 0. (22)

It can also be shown that atR= 1 the kurtosisC4 must change sign.2 Therefore, depending on the value ofR
there will be nonlinear focussing (C4 > 0) or nonlinear defocussing (C4 < 0).

The integral in (20) has been evaluated for the special case of the Gaussian spectrum (15) in Appendix A. To
good approximation it is found that

C4 = J(R) BFI2, (23)

where forR< 1

J(R) =
1

(2π)2

1−R
R+R0

, (24)

with R0 = 3
√

3/4π3, while J(R) for R> 1 follows from relation (21).

Eqns. (23-24) show that for large times the kurtosis depends on the squareof the BFI and on the ratio of
directional width and frequency width through the parameter R. Just as in the short time limit and in agreement
with Eq. (22) kurtosis is seen to vanish forR= 1.

2The argument for this so far goes as follows, and it holds for symmetrical spectra: IfR vanishes then (15) will have a certain sign,
while for largeR it will have the opposite sign. This suggests a change of signsomewhere in theR-domain. For symmetrical spectra
the only candidate so far isR= 1.
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3.4 Nonlinear Schr̈odinger Equation simulations.

In the previous section an expression for the large time value of the kurtosis was obtained for stationary spectra.
However, the assumption that the spectrum does not change intime is not always correct as was found out when
Onorato and Mori (private communication, 2006) did±20,000 simulations with the Nonlinear Schrödinger
Equation (which follows from the narrow-band limit of the Zakharov equation). In particular, whenR > 1
initially, hence the frequency width smaller than the directional width, there are due to the Benjamin-Feir
Instability rapid changes (broadening in the frequency direction) such that in the course of time the kurtosis flips
from negative to positive. This property is illustrated in Fig. 1 where for simulations of the two-dimensional
NLS equation over a fixed time interval of 100 periods the maximum of the kurtosis as function of BFI andδθ
is shown suggesting that the maximum is always positive.

0
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0.8
1

0

0.5

1
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0.2

0.4
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Figure 1: Maximum kurtosis C4 as function of BFI and of dimensionless angular widthδθ .
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3.5 Operational Implementation of kurtosis calculation.

Based on the numerical evidence displayed in Fig.1 N. Mori found the following fit for the maximum of the
kurtosis

Cdyn
4 =

0.031
δθ

× π
3
√

3
BFI2, (25)

therefore, finite directional widthδθ is seen to give a considerable reduction in kurtosisCdyn
4 . Including the

contribution from the shape of the waves the total kurtosis becomes now

C4 = Cdyn
4 + αε2. (26)

where for deep-waterα = 6.

This result holds for deep-water waves. The extension to shallow water is achieved by means of a redefinition
of the Benjamin-Feir Index.3 Recall (see J2003) that this dimensionless parameter just expresses the balance
between nonlinearity and dispersion. For the general, shallow- water case this gives a new parameter which is
calledBS. It is defined as (Janssen and Onorato, 2007)

B2
S = −BFI2×

(

vg

c0

)2 gXnl

kω0ω ′′
0
, (27)

where the relevant symbols are defined in Eqns. (2)-(6) andBFI is given by Eq. (18). The extension of the
kurtosis calculation towards shallow water is now simply achieved by replacing in Eq. (25) BFI2 by B2

S. Note
that in the deep-water limit it can readily be shown that the second part of the expression forB2

S becomes−1,
therefore in this limitB2

S reduces to the usual definition for theBFI, cf. Eq. (18). Studying now the dependence
of B2

S on depth it is seen that for decreasing dimensionless depthk0D the square of the Benjamin-Feir index is
slowly decreasing until aroundk0D = 1.363 when there is a rapid transition from positive to negative values.
Hence fork0D < 1.363 the kurtosis may become negative which implies that there are less extreme events than
the norm, while in the opposite case there are more frequent extreme events.

3.5.1 Determination of the BFI andδθ .

The estimation of the Benjamin-Feir Index requires knowledge of the significant steepnessε and the spectral
width δω in frequency space. In addition, an estimate of the directional width δθ is required as well. Here,
a description is given of a robust method to estimate theBFI for modelled and observed spectra, which was
introduced in cycle 26R3 of the IFS. In particular, the estimation of the width of observed frequency spectra is
not a trivial task, because observed spectra show considerable noisy behaviour around the peak of the spectrum
(which is frequently ill-defined).

Janssen and Bouws (1986) have developed a robust method to estimate the width of observed spectra, which
was applied to frequency spectra obtained from a waverider located at IJmuiden over a fifteen year period.
Following Goda these authors used the peakedness factorQp defined as

Qp =
2

m2
0

∫

D

dω ωE2(ω)

where Janssen and Bouws (1986) chose, after extensive experimentation, as integration domainD all frequen-
cies for whichE(ω) > 0.25E(ωp). However, in cycle 26R3D was taken over all frequencies, because this

3 Also the parameterα needs adjustment for the shallow water case, but this has notbeen introduced yet
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was thought to be more robust . The advantage of this integralmeasure is that, because of the dependence on
the square of the frequency spectrum, peaks in the spectrum are emphasized. Janssen and Bouws (1986) also
explored alternative integral measures such as one based onthe second moment of the wave spectrum, but these
alternatives give more emphasis to the high-frequency partof the spectrum and are therefore more sensitive to
high-frequency noise.

In the kurtosis calculation of the previous section it has been assumed that around the peak the spectrum has
a Gaussian shape (15), and therefore it makes sense to evaluateQp also for a Gaussian. In fact, Janssen and
Bouws (1986) checked from the observed spectra that to a goodapproximation the spectra are symmetrical
around the peak and that the Gaussian approximates the observed spectral shape well. In the narrow-band
approximation one finds to high accuracy

Qp =
1

δω
√

π
(28)

whereδω is the relative width defined in Eq. (12). A robust method to estimate the relative spectral width now
is to determine the spectralQp and to invert Eq. (28), hence

δω ,obs=
1

Qp,obs
√

π

As a consequence, the observed BFI becomes

BFI = k0m1/2
0 Qp,obs

√
2π

The modelled BFI is calculated in an identical fashion through the peakedness factorQp and the integral steep-
nessε . However, further inspection of the results shows that for simple JONSWAP spectra the procedure
overestimates the width of the frequency spectrum. For example for a young windsea case with overshoot
parameterγ ≃ 3.3 the procedure underestimates the value of theBFI by a factor of two. In cycle 33R1 it was
therefore decided to restrict the integration domain ofQp to the peak region, by reverting back to the origi-
nal approach of Janssen and Bouws (1986), and this restriction in the domain alleviates the underestimation
problem with theBFI.

The directional widthδθ at the peak of the spectrum may be estimated by the usual approach, i.e.

δθ =
√

2(1−M1)

whereM1 = I1/m0 andI1 =
∫

dωdθ cos(θ)E(ω ,θ), but it won’t always provide the sharpest estimate of direc-
tional width near the peak.

An alternative approach to estimation of the frequency and directional width of the two-dimensional model
spectrum is to fit the one-dimensional frequency and directional spectra with a parabola thus giving sharp
estimates forδω andδθ . In fitting the parabola also a sharper estimate of the peak period Tp may be provided
as up to now the peak period did correspond to the maximum of the one-dimensional frequency spectrum so
Tp could only assume discrete values because of the discretization of the wave spectrum in frequency space.
However, occasionally the fitting procedure may fail because, e.g., the peak of the spectrum is erratic. Therefore
from cycle 33R1 and onwards the widths are determined by taking the minimum value from the integral method,
i.e. Qp andM1, and from the fitting procedure. Nevertheless, because of the relatively coarse discretization of
the spectrum, narrow spectra are too wide in the present version of the ECWAM model. To accomodate for
this, the constant has been increased in the expression for the kurtosis, Eq. (25), by a factor of two from 0.031
to 0.062.
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Figure 2: Map of analyzed maximum wave height for the10th of February 2007.

4 Maximum wave height and period.

In this memo a simple measure for extreme sea states will be introduced. It is common to define as a freak
wave a wave whose height is at least 2.2 times the significant wave height. This is a very discrete and singular
approach, which is in practice not easy to verify. Nevertheless, it is desirable to be able to quantify extreme sea
states and to be able to validate them against observations in a meaningful manner. It is then natural to consider
the concept of maximum wave height, a concept which is well-known in engineering practice. It should be
realized, as also pointed out extensively by Mori and Janssen (2006), that the maximum waveheightHmax not
only depends on the shape of the probability distribution function of the sea surface, but also on the number of
waves at hand. Consider now a time series of wave heights of lengthT involving a number ofN waves. A good
estimate of the maximum wave height is the expectation valuefor maximum wave height denoted by〈Hmax〉.
As an extension of Goda’s work for Gaussian sea states,〈Hmax〉 will be determined for a pdf with finite kurtosis
and the result will be compared with observations of maximumwave height from buoys. The agreement is
good, and therefore this measure for maximum wave height hasbeen introduced into the operational ECMWF
wave forecasting system.

Before proceeding it is mentioned that there is an importantcaveat. It is well-known that for narrow-band wave
trains the probability density function (pdf) of wave height is the Rayleigh distribution. This was shown a long
time ago by Longuet-Higgins (e.g. 1957). He noted that it is in general straightforward to obtain the statistical
properties of the envelope of a wave train, even for broad-band wave trains. For a Gaussian sea state the pdf of
the envelope is found to be the Rayleigh distribution. The statistical properties of waveheight are much harder
to obtain. For narrow-band wave trains it can be argued that waveheight is twice the envelope and thus wave
height will then follow the Rayleigh distribution as well. However, for broad-banded wave trains the pdf of
wave height is not known.

One may wonder why it is so difficult to obtain the pdf of wave height for general spectra of finite width. An
important reason for this is that, at least in a theoretical context, wave height is anill-definedquantity, in contrast
to, for example, the envelope of a wave train. Analyzing a time series it is fairly easy (see for example Appendix
B) to construct at any point in time the envelope of a wave train, however, this is not possible for the wave height
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of a wave train (except of course in the narrow-band approximation). In practice, researchers obtain the wave
height distribution by means of the zero-crossing method. This is a very elegant method, which is easily
implemented: Search for two consecutive zero-upcrossingsin the time series and determine the wave height
from the difference of the maximum and the minimum of the surface elevationη in the corresponding time
interval. Thus, wave height is determined by sampling with the zero-crossing frequency(m2/m0)

1/2 (with mn

thenth moment of the wave spectrum). However, what about sampling with other frequencies, corresponding to
different (spatial) scales. For higher sampling frequency, wave heights are expected to be reduced compared to
lower sampling frequency because one would expect that at smaller scales wave heights are smaller. Therefore
wave height depends on the choice of spatial and temporal scale, and hence the wave height pdf will depend on
the way one samples the time series.

For the envelope distribution there is much less of a problem, because the envelope is a continuous function of
time. By sampling at a sufficiently high frequency one simplygets the ’usual’ pdf for envelope. In fact, in the
Appendix B a review of the derivation of the pdf of the envelope is given and it will be shown that for linear
waves the pdf is always Rayleigh, despite claims by Longuet-Higgins (1983) to the contrary. This derivation
is based on the joint probability distribution of envelope and period, which does depend on spectral width, but
the marginal distribution law for the envelope can be shown to be independent of the spectral width parameter
ν2 = m0m2/m2

1−1. In addition it will be shown that this theoretical joint pdf is in perfect accord with the one
obtained from numerical simulations of the surface elevation for a Gaussian sea state.

Finally, one may wonder why one is interested so much more in the waveheight distribution rather than the
envelope probabilities. If one is interested in extreme forces on structures such as oil riggs or ships than one
would expect that the quantity of interest is something likethe energy of the waves, which is closely related
to the square of the envelope. For extreme cases the square ofthe wave height would underestimate the force
on structures (as the pdf of wave height falls below the Rayleigh distribution, while the pdf of the envelope
is Rayleigh). In other words, there is a case to concentrate on the envelope distribution rather than the wave
height distribution. Alternative arguments to use the envelope rather than wave height are presented in Longuet-
Higgins (1984).

Therefore, the theoretical developments will all concern the (statistical) properties of the envelope of a wave
train and wave height is defined as twice the envelope. Details of the theoretical development and its verification
against Monte Carlo simulations are presented in Appendix B. In order to obtain an expression for the expection
value of maximum wave height the work of Mori and Janssen (2006) is followed closely. One may then take
the following steps

1. Start from the pdf of surface elevationη , which is the well-known Gram-Charlier expansion, i.e. pdf
depends on skewness and kurtosis, which are assumed to be small.

2. Obtain the pdf of ’wave height’ defined as twice the envelope. Here the envelopeρ follows implicitely
by writing the surface elevation signal as

η = ρ cosφ

with φ the local phase of the wave train. Local wave height is then defined asH = 2ρ and the wave
height distribution in terms of wave height normalized withthe significant wave height becomes:

p(H) = 4H exp(−2H2) [1+C4AH(H)] (29)

where

AH(H) = 2H4−4H2+1

Note that because of symmetries the pdf ofH does not contain skewness.
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3. The maximum wave height distribution is obtained by simply writing down the probability that for given
number of independent wavesN the maximum wave height has a certain chosen value. The maximum
wave height distributionpm(Hmax) becomes

pm(Hmax) = N [1−P(Hmax)]
N−1 p(Hmax)

where, withBH(H) = 2H2
(

H2−1
)

,

P(H) =

∫ ∞

H
dh p(h) = exp(−2H2)(1+C4BH(H))

is the exceedence probability of wave height,N is the number of waves, andp(Hmax) follows from Eq.
(29). In the continuum limit this becomes

pm(Hmax) = N p(Hmax)×exp[−NP(Hmax)] (30)

Notice that the maximum wave height distribution involves adouble exponential function.

4. The expectation value of maximum wave height follows from

〈Hmax〉 =

∫ ∞

0
dHmaxHmax pm(Hmax) (31)

Notice thatHmax = F[C4(BFI,R),N], whereN = TD/Tp with Tp the peak period andTD the duration
of the timeseries. By making this choice for the number of waves N it is tacitly assumed that two
successive ’waves’ are uncorrelated. This assumption is hard to justify because the correlation between
two following waves may be of the order of 50 %. It would be moreappropriate to correct for this
correlation thereby either reducing the number of degrees of freedom or reducing the variance of the pdf.

The integral in (31) may be evaluated in an approximate fashion for largeN and smallC4. Details of this
calculation are given in Appendix C. The main result becomes

〈Hmax〉 =
√

〈z〉, (32)

where

〈z〉 = ẑ0 +
γ
2

+
1
2

log

[

1+C4

{

2ẑ0(ẑ0−1)− γ(1−2ẑ0)−
1
2
(γ2 +

π2

6
)

}]

, (33)

with ẑ0 = 1
2 logN and γ = 0.5772 is Euler’s constant. An estimate of the sharpness of theestimate for the

expectation value of maximum wave height may be given as well. This follows immediately from the widthσ
of the maximum wave height distribution. For linear waves its widthσ is approximately (see Appendix C for
the details)

σ
〈Hmax〉

≃ π
2
√

6
(

logN+ 1
2γ

) , (34)

and clearly, the longer the time series of independent events, the sharper the estimate for maximum wave height
becomes.

Next it is discussed how the corresponding maximum period was obtained. As reported in Appendix B, so far
only the case of linear waves has been worked out, so this still requires extension into the nonlinear regime.
The period is estimated using the joint pdf of normalized envelope,

R=
ρ√
2m0

,
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Figure 3: Map of analyzed kurtosis C4 for the10th of February 2007.

and normalized period

T =
τ
τ
,

where the periodτ = 2π/ω = −2π/φ̇ , and the mean periodτ = 2πm0/m1. This joint pdf reads

p(R,T) =
2

νπ1/2

R2

T2 exp

{

−R2

[

1+
1

ν2

(

1− 1
T

)2
]}

,

whereν is the width parameter as introduced by Longuet-Higgins (1983),

ν = (m0m2/m2
1−1)1/2.

For given normalized envelope height wave period follows from the conditional distribution of wave periods
p(T|R) = p(R,T)/p(R), or,

p(T|R) =
R

νπ1/2T2
exp

[

−R2

ν2

(

1− 1
T

)2
]

,

The expectation value of the period then becomes

〈T〉 =
R

νπ1/2

∫ ∞

−∞

dT
T

exp

[

−R2

ν2

(

1− 1
T

)2
]

.

Introducing the parameter∆ = ν/R the above integral may be evaluated for small∆ in an approximate fashion
with the result

〈T〉 = 1+
1
2

∆2+
3
4

∆4 + ...,
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Figure 4: The left panel shows the dependence of kurtosis C4 on the Benjamin-Feir Index, while the right panel shows
the dependence of C4 on the wave age parameter cp/U10.

and the maximum period then follows fromτmax= τ〈T〉. Finally, the small parameter∆ involves the ratio ofν
andR= Rmax. While ν follows in a straightforward fashion from the first three moments of the wave spectrum,
Rmax requires knowledge of the value of the envelope at the extreme. Explicitely,

Rmax=
√

2
Hmax

HS
.

Let us now discuss some characteristic properties of the newfreak wave warning system. In Fig.2 an example
of a maximum wave height map is shown for a big storm in the North Atlantic that occurred on the 10th of
February 2007. Here, the maximum wave height refers to time series with a durationTD of 3 hrs and the
number of wavesN follows from the relationN = TD/Tp, whereTp is the peak period. The maximum of
significant wave height in the North Atlantic was 15.9 m at that time while the extremum in maximum wave
height is found to be 31.6 m. Notice, however, the dependenceof the estimate of the maximum wave height
on the number of waves in the time series of durationTD. Although according to Eq. (33) it only depends on
the logarithm ofN, nevertheless forTD = 20 min maximum wave height will decrease on average by about
20% giving an extreme value of 26.5 m. Inspecting the kurtosis map shown in Fig.3, however, it is found that
regarding maximum wave height, the extreme event in the North Atlantic was not exceptional as the kurtosis
C4 was only about 0.06 corresponding to a normalized maximum wave heightHmax/HS of only 1.95. In order
to appreciate that such a condition is not exceptional the left panel of Fig. 4 shows the relation betweenC4

andBFI obtained from the global field at 2007021000 UTC. For displaypurposes the original 0.5◦ field was
subsampled to 1.5◦. Typically, maximum values of kurtosis are around 0.2 at values ofBFI of the order 1. It
is also of interest to study under what kind of meteorological conditions exceptional waves may occur. Some
information on this is provided by the right panel of Fig.4, which shows kurtosis plotted against the wave
age parametercp/U10. In particular for young windsea withcp/U10 < 1 large values of kurtosis, and hence
abnormal sea states, are possible according to the present approach. Young windseas typically occur in fetch-
limited conditions, when the wind just start blowing or during the passage of a front when the wind turns by a
significant amount.

According to Eqns. (32)-(33) the normalised maximum wave height depends on two parameters namely the
number of wavesN and the kurtosis parameterC4. Fig. 5 shows the dependence of kurtosis on these two
parameters as obtained from the global field of Fig.2. In particular, the figure in the right panel, which
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Figure 5: The left panel shows the kurtosis dependence of theexpectation value of normalised maximum wave height
〈Hmax〉 while the right panel shows the dependence of〈Hmax〉 on the number of waves N in the timeseries of duration
of 3 hrs through the parameter

√

logN/2. The full line shows the relation between Hmax and the number of waves for
vanishing kurtosis.

shows normalised maximum wave height as function of
√

logN/2, is illuminating. A comparison with the
corresponding relation for vanishing kurtosis immediately shows the importance of nonlinearity on the estimate
of maximum wave height. While for this synoptic case the fullline never meets the criterium for freak waves
to occur (recall the condition for freak waves isHmax/HS > 2.2), when effects of nonlinearity through a finite
value of kurtosis are included thereare a number of cases that meet the criterion for extreme events.The
question now is how realistic is the ECMWF freak wave warningsystem.

4.1 Verification aspects and maximum wave height verification.

It is clear that for operational applications a choice for the length of the timeseries needs to be made. Buoy time
series are typically 20-30 minutes long so initially it was thought that, in order to validate the model results
against buoy data, it would make sense to take this period as the length of the time series. However, for practical
application a timescale related to the changes in the synoptic conditions seems more appropriate. This would
mean a much longer duration of say 3 hrs. A compromise was found by choosing a duration of 3 hrs, while for
validation purposes 6 consecutive buoy observations were collected making up an observed duration of about
3 hrs. The observed maximum wave height is then the maximum ofthe 6 consecutive maximum wave height
observations.

In the data set currently used in the ECMWF wave verification system (Bidlotet al., 2005; Bidlotet al., 2007)
only Canada (Meds) and Norway (Oceanor) supply buoy observations of maximum waveheight. Inspecting
the distributions for normalised maximum wave height of MEDS buoys and Oceanor buoys it was found that
they belong to two different populations: the mean value of normalised maximum wave height of the Oceanor
buoys was considerably smaller than the mean value from the MEDS buoys. It is suspected that this is related
to a different length of the time series used (17.5 min. (Oceanor) versus 30 min. (MEDS)) and possibly to a
different procedure to obtain an estimate of maximum wave height. Because the majority of maximum wave
height measurements is from MEDS, only the latter data will be considered for the validation of the probability
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Figure 6: Validation of analyzed maximum wave against observed maximum wave height from a number of buoys that
report maximum wave height (the buoy list is shown as well). Period is February 2006 until January 2008. For a
comparison of the quality of the Hmax estimates the validation of model wave height against buoy data is shown as well.

distribution function, although for the verification of maximum wave height all data will be used.4 The MEDS
buoys have a single accelerometer and the maximum wave height is obtained by taking twice the maximum of
a surface elevation timeseries obtained at all the times where acceleration is minimal. This procedure does not
give the maximum of envelope wave height but there is no otherroutinely observed information on maxima
available. Nevertheless, this may give rise to problems in the interpretation of the comparison between model
and observations.

First results of a comparison of modelled and observed maximum wave height are shown in Fig.6. For a
first comparison the agreement between modelled and observed maximum wave height is quite impressive.
The relative positive bias is about 5% while the scatter index is about 19%. For comparison the scatter index
for significant wave height for the same set of buoys and period is about 13%. This impressive agreement
is puzzling, because for starters actually apples and pearsare being compared, since the model value is an
expectation while the buoy value is instantaneous. This puzzle was solved when it was realized that the pdf
of maximum wave height is fairly narrow. For linear waves itswidth σ is approximately given by Eq. (34).
Clearly, the longer the length of the time series the sharperthe estimate of maximum wave height becomes. For

4The MEDS data have the additional advantage that also one-dimensional spectra are reported. These are needed later to determine
theBFI.
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a 3 hour duration and a peak period of 10 s one findsσ/〈Hmax〉 ≃ 0.08, therefore the maximum wave height
distribution is indeed fairly narrow as the scatter index has the much larger value of 19%.

4.2 Verification of the probability density function.

Nevertheless, it is emphasized that apples and pearsare being compared. This is clearly visible in the plot of
the geophysical5 distribution of normalised (by significant wave height) expectation value and a comparison
with the graph of the distribution of the actual, observed value of the normalised maximum wave height, as
shown in the left panel of Fig.7. The width of the modelled maximum wave height distribution, being about
0.05, is much smaller than the width of the observed distribution, which is about 0.16 and it is evident that
there is no resemblance between the two distributions. The reason for this discrepancy is most likely that the
observed distribution is a single realisation which is not necessarily representative for the area of interest, while
the modelled distibution is based on the expectation value of the normalised maximum wave height.

1.5 2 2.5
Hmax/Hs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

N
or

m
al

is
ed

 d
is

tr
ib

ut
io

n

buoys
model

Comparison to Canadian off-shore buoys
from February 2006 to January 2008

1.5 2 2.5
Hmax/Hs

0

0.5

1

1.5

2

2.5

3

3.5

4

N
or

m
al

is
ed

 d
is

tr
ib

ut
io

n

buoys
model, random draw, 100 min.
model, random draw, 100 min., C4=0

Comparison to Canadian off-shore buoys
from February 2006 to January 2008

Figure 7: The left panel shows the comparison between observed Hmax/HS distribution and the modelled distribution
of the expected normalised maximum wave height. The right panel shows in stead of the distribution of the expected
maximum wave height the model distribution obtained by a random draw of Hmax for given number of waves and given
kurtosis. The right panel also shows the impact of nonlinearity on the maximum wave height distribution by means of a
plot of the case of zero kurtosis. The length of the timeseries is 100 min. which is thought to match the length of the buoy
time series.

The question now arises whether it is possible to simulate the observed distribution of normalised maximum
wave height. This turns out to be possible indeed and in orderto understand the method that will be followed, it
is important to return to the basic mechanism of freak wave generation. As already discussed in the Introduction
freak waves are regarded to be the result of a nonlinear focussing phenomenon but it should be realized, as
pointed out in J2003, that the focussing is the most efficientwhen the phases of the waves involved in the
focussing are chosen appropriately (constructive interference). However, in the field there is no knowledge of
the phases and for practical purposes the phases are chosen in analmostrandom manner. Nonlinearity will give
rise to a certain degree of correlation between the waves andfor this reason the adjective almost, and the effects

5There is a need now to make a distinction between the maximum wave height pdf and the geophysical distribution of maximum
wave height. In principle the geophysical distribution follows from the combination of the maximum wave height pdf and the geo-
physical distribution of the number of wavesN and the kurtosisC4. Only when the latter distributions are much more narrow than the
maximum wave height pdf the geophysical distribution will coincide with the maximum wave height pdf. For brevity the adjective
geophysical will be dropped
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of small nonlinearity on the pdf are given in Eqns. (29) and (30).

A way to simulate the observed distribution of maximum waveheight is therefore to start from the theoretical
pdf of maximum wave height (30), the explicit form of which is given in Eq. (C1), and to generate from
this pdf for given number of wavesN and given kurtosisC4 a random draw of normalised maximum wave
height. The usual procedure for this is detailed in AppendixC and basically one obtains a random draw of
maximum waveheight from the condition that the cumulative distribution is a random number between 0 and
1. For duration a 100 min period has been chosen as this is thought to match the length of the buoy time
series appropriately, despite the fact that according to the data provider the length of the time series is 30
min. 6 The resulting modelled distribution function is plotted inthe right panel of Fig.7 and the very good
agreement with the observed distribution is to be noted, in particular in the extremes. For reference, also
the model distribution according to linear theory (i.e.C4 = 0) is plotted and although linear theory gives a
reasonable agreement with the observations it is noted thatextremes are underestimated by linear theory. This
underestimation of the extremes has some practical consequences. It is common to define a freak wave as an
event withHmax/HS > 2.2. Integrating the nonlinear and the linear distribution from 2.2 until infinity one finds
that according to linear theory 4.5% of the cases are freak wave events while according nonlinear theory 7.5%
of the cases are freak waves which amounts to an increase of 60%. According to the observations 8.5% of the
cases are freak waves, therefore nonlinear theory underestimates the number of freak waves somewhat.

The slight underestimation by nonlinear theory is more pronounced when a plot of the logarithm of the distri-
bution is made as shown in Fig.8 and is compared to the logarithm of the observed distribution.7 It is evident
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Figure 8: The logarithm of maximum wave height distributionobtained by a random draw of Hmax for given number of
waves and given kurtosis as compared to the observed maximumwave height distribution.

6Note that according to Fig.6 the model overestimates maximum wave height by 5%. This overestimation can be removed by
reducing the number of degrees of freedomN or equivalently by shortening the length of the timeseries from 180 min. to 100 min. This
reduction in the number of degrees of freedom is in qualitative agreement with the correlation between two successive waves.

7This comparison was restricted to cases with a significant wave height larger than 2 m because buoys might have problems with
accurately representing low sea states. This is also evident in the next section where buoys are not representing high frequencies very
well. This reduces the number of collocations from 32,000 to16,000. Nevertheless there are still about 1,300 cases thatsatisfy the
freak wave criterion ofHmax/HS > 2.2
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that the really extreme events withHmax/HS> 2.5 are seriously underestimated by the present nonlinear theory,
although in the range of 1.9 until 2.5 there is good agreement. The reason for the discrepancy between model
and observations is not clear at present. Noting that this isa first, preliminary comparison a number of detailed
studies of the buoy time series need to be carried out. A first look at the time series for maximum wave height
suggests that these really extreme events are present only for a very short time. However, at present there is no
criterion to decide whether these cases can be regarded as outliers or not. Also, the buoys are giving maximum
wave height based on twice the crest value which may be an overestimate of envelope wave height. On the
other hand, the discrepancy for very extreme normalised maximum wave heights may also be an indication that
the Gram-Charlier expansion for the pdf of the surface elevation is not adequate for these extremes. This is
further discussed at the end of this section. In Fig.8 also the logarithm of the pdf according to linear theory
has been plotted and it is suggested that linear theory underestimates the extremes to a considerable extent, as
differences with the observations start already atHmax/HS = 2.

The estimate for the number of freak waves can also be obtained in an analytical manner. A straightforward
integration of the pdf on maximum wave height fromz1/2

c = Hmax/HS = 2.2 to infinity gives

J =
∫ ∞

Hmax=2.2
dHmax pm(Hmax) = 1−exp

[

−Ne−2zc (1+C4B(zc))
]

, (35)

whereB(z) = 2z(z−1). Although the number of wavesN is fairly large, typicallyN = O(1000), the criterion
for a freak wave,zc = 2.22, is such thate−2zc is tiny so that the productNe−2zc may be regarded as small. In
that event the first exponential in (35) may be replaced by its argument and to a good approximation one finds

J = Ne−2zc (1+C4B(zc)) .

The above expression gives the number of freak waves for a particular realization. In order to be able to
relate this to the geophysical results displayed in Fig.7 and8 the ensemble average is taken. As a priori a
correlation between the number of waves and the nonlinearity of the wave field is not expected it is found that
〈NC4〉 = 〈N〉〈C4〉 8and therefore the ensemble average ofJ becomes

〈J〉 = 〈N〉e−2zc (1+ 〈C4〉B(zc)) .

For the present synoptic case it is found that for a 100 minutetime window 〈N〉 = 593 while 〈C4〉 = 0.021
only. As a consequence, including finite kurtosis effects one finds that the number of freak waves is 6.6% while
according to linear theory the number of freak waves is only 3.7%, hence nonlinearity increases the number of
freak waves by 70%. Note that these results are in close agreement with the results from Fig.7. Although the
average value of the kurtosis is small it is multiplied byB(zc) = O(40) which is fairly big, therefore even small
nonlinear effects may have a significant impact on the numberof freak waves.

Finally it is remarked that also for the pdf itself it is of interest to obtain the average pdf over the geophysical
distribution. For the extreme states the surprising resultis then obtained that the tail of the distribution depends
on the average value of kurtosis. This is surprising becausemost researchers would expect that the tail of the
distribution is determined by the extreme values of the kurtosis. In order to understand this a bit better consider
the pdf of maximum wave height, given in Eq. (C1), and consider the limit of extreme values of normalised
maximum wave heighty = Hmax/HS. Then the pdf of maximum wave height is approximately

pm(y) ≈ 4Nye−2y2
[1+C4AH(y)] , y >> 1, (36)

in other words, for extreme values the pdf of maximum wave height is apart from the factorN just given by wave
height distribution (29). Clearly, the geophysical ensemble average ofpm depends on the average value of the

8 In fact this assumption can immediately be checked using thepresent synoptic condition. One finds〈(N − 〈N〉)(C4 −
〈C4〉)〉/(〈N〉〈C4〉) ≈ 0.1 which is small enough so that the assumption of decorrelation applies.
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kurtosisC4 and not on the extreme values. Apparently the effects of the random draw are overwhelming. Most
cases encountered have a small value of kurtosis, but because of the random draw there is a finite probability
that a large value of normalised maximum wave height is obtained. The contribution by the small kurtosis
cases apparently dominates the one from the large kurtosis cases even in the tail of the geophysical distribution
of maximum wave height. Therefore, strictly speaking the present model for extreme waves has not yet been
validated for large values of the kurtosis.

Furthermore, Eq. (36) shows that in essence the tail of the maximum wave height distribution is given by the
wave height distribution which follows in a straightforward fashion from the Gram-Charlier expansion of the
surface elevation pdf. Although the tail of the observed distribution function is exponential, an inspection of
(36) reveals that for large values of normalised maximum wave height the model pdf drops off faster, suggesting
that the Gram-Charlier expansion may be problematic in thisvery extreme range withy > 2.5. The shape of
the wave height pdf has shown good agreement with observations from a wave tank for example, but the very
extreme range withy > 2.5 has never been validated.

1.6 1.7 1.8 1.9 2 2.1
sqrt(log(N)/2)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
_m

ax
/H

_S

1.6 1.7 1.8 1.9 2 2.1
sqrt(log(N)/2)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
_m

ax
/H

_S

Figure 9: The left Panel shows the dependence of Hmax/HS, obtained as a random draw from the pdf (30), on the number
of waves N in the timeseries of duration of 100 min through theparameter

√

logN/2. The full line shows the relation
between expected Hmax and the number of waves for vanishing kurtosis. The right Panel shows the corresponding scatter
diagram as found from the buoy observations.

4.3 Finding empirical relations.

It is concluded from the above discussion that the statistics of observed extreme waves may be well simulated by
using kurtosis and the number of waves from our wave forecasting system, provided the normalised maximum
wave height is drawn in a random manner from the theoretical pdf (30). This implies that using our approach it
is possible to simulate how certain observed relations or scatter diagrams will look like. A prominent example
is the relation between maximum wave height and the number ofwaves. Ignoring nonlinear effects for the
moment one would expect, based on Eqns. (32)-(33) a definite relation between the expectation value of
normalised wave height and the number of waves since〈Hmax〉 = ((logN+ γ)/2)1/2, and even in the presence
of nonlinearity there seems to be a reasonable correlation between the two as follows from the right panel of
Fig. 5. Randomness, however, seems to destroy such a relation. In order to show this the scatter plot of the right
panel of Fig.5 was redone, but now using a random draw of maximum wave height. The result is given in the
left panel of Fig9 and compared with Fig.5 there is a considerable increase in scatter. This also follows from a
linear fit to the data, as for the expectation value of maximumwave height a correlation of 92% is found while
the random draw only gives a correlation of 30%. The observations, shown in the right panel, give a similar
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scatter, but evidently high frequencies (≈ 0.5Hz), corresponding to(logN/2)1/2 ≈ 2, are under represented by
the buoy data. Presumably this is because buoys are insensitive to these high frequencies.

From this large drop in correlation it follows that it will beextremely difficult to try to obtain empirical relations
from observations. An exception is perhaps the validation of maximum wave height against observations as
shown in Fig.6. Using a random draw of maximum wave height the scatter indexonly increases from 19% to
22%, apparently because the scatter of the random noise is small compared to the scatter index itself.
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Figure 10: Dependence of observed Hmax/HS on observed Benjamin-Feir Index. Modelled random draw of normalised
maximum wave height (based on timeseries of 3 hrs which are reduced in length by 40 %) against the Benjamin-Feir
Index is shown as well. The error bars are an indication of theerror in normalised maximum wave height.

Alternatively one may perform a careful averaging of the data to reduce the effects of randomness. Burgerset
al. (2008) collected in the order of 2 years of observations of the ratioHmax/HS obtained from AUK platform
in the central North Sea and collocated these observations with archived values of theBFI from the ECMWF
model. Their results suggest that there may indeed a relation between normalised maximum wave height and
a spectral shape parameter such as theBFI. Their work was redone using the present data set. The present
results are given in Fig.10. Here, observed normalised maximum wave height against observedBFI9 (black
squares) is plotted, while for comparison purposes also thecorresponding model relation between the average
of a random draw of normalised maximum wave height and the averageBFI (red squares) is shown. A similar
average relation is found when the expectation value of maximum wave height is taken but the error bars are
much smaller. The present results are in agreement with Burgerset al. (2008). The plot seems to confirm
that the model for extreme sea states even gives reasonable results for fairly extreme values of theBFI and the
kurtosis.

Finally, it is emphasized that Fig.10 only gives an indication that the normalised maximum wave height

9as determined from the observed one-dimensional spectra using the integral method of§3.6
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depends on some nonlinear aspects of the sea state. As a proxyfor nonlinearity theBFI was used. However,
inspecting the model for the kurtosis given in Eq. (26), the situation is somewhat more complicated. It is evident
that parameters such as the wave steepnessε and the directional widthδθ are important as well. Furthermore,
the observations ofHmax are obtained from the maximum crest, which implies that observations should also
depend on the skewness.

5 Conclusions.

This report describes an update of the ECMWF freak wave warning system and its first, still preliminary
validation against observations of maximum wave height. This version became operational in June 2008.

The freak wave warning system has been extended by includingeffects of directionality in the estimation
of the kurtosis of the surface elevation pdf, while also the contribution of bound waves to the kurtosis has
been introduced. Furthermore, a parametrisation of shallow water effects in the kurtosis calculation has been
introduced. Next, we two new output parameters have been discussed, namely maximum wave height and the
corresponding period, which provide some simple measures for extreme sea states. The maximum wave height
pdf, which includes nonlinear effects, was obtained following the work of Mori and Janssen (2006).

A preliminary extensive validation of the maximum wave height product was performed as well. The present
system is capable of giving realistic estimates of extreme ocean wave events. However, because of the nature
of these events, only probablistic statements can be issued. This is evident from the validation of the modelled
maximum wave height distribution function against individual observed events as a random draw from the
theoretical pdf was required in order to get a good match withthe observed pdf.

Figure 11: Comparison of observed and modelled expectationvalue of maximum wave height. Time interval for the
model pdf is 18 mins, consistent with a 40 % reduction of the number of degrees of freedom. Period is February 2006 until
January 2008.

The main output of the warning system is the expectation value of maximum wave height over a three hour time
interval. Unfortunately, we cannot validate the quality ofthis parameter as no observations of the expectation
value over a three hour interval are available to us. Nevertheless, one can make the compromise to consider
the expectation value of normalised maximum wave height over the much shorter period of 30 mins. The
observed estimate for the expectation value of maximum waveheight now follows from the average of the 6
successive observations (rather then taking the maximum ofthe 6 observations as done in section 4.1). Again
it is suspected that correlation effects are relevant and therefore the number of degrees of freedom in the model
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Figure 12: Comparison of observed and modelled expectationvalue of normalised maximum wave height distribution.
The model time interval is 18 mins.

pdf is reduced by 40%. This choice provides an unbiased estimate of modelled maximum wave height. The
resulting comparison between modelled and observed maximum wave height is shown in Fig.11 while the
comparison between modelled and observed geophysical distribution of normalised maximum wave height
is shown in Fig.12. Again for the much shorter time series there is a good agreement between modelled and
observed maximum wave height, while, as expected, the averaging procedure applied to the observations results
in a much sharper geophysical distribution function. No doubt, if there would have been more independent
observations available at the relevant synoptic times thiswould have resulted in a even sharper distribution
function. Therefore, the expectation value of maximum waveheight over the shorter time interval seems to
be a valuable product, and by extrapolation it is expected that the same holds true for the present operational
product, which is the expectation value of maximum wave height over a three hour interval.

For a first validation, it is believed that some promising results have been obtained. Nevertheless, a number of
issues need to be clarified. For example, the effects of correlation between successive waves on the probability
distribution function of maximum wave height have to be estimated. Presently it is assumed that two wave
events are not correlated, but this assumption is hard to justify as the correlation between two successive waves
may be of the order of 50 %. However, to estimate effects of correlation is not a trivial task. A first step was
taken by Kimura (1980) and Longuet-Higgins (1984) who, following the work of Uhlenbeck (1943) and Rice
(1945), studied the joint probability distributionp(ρ1,ρ2) of the envelopeρ1 at timet and the envelopeρ2 at
time t + τ and its dependence on correlation. One of the interesting conclusions from their work is that for
finite correlationκ the variance of the pdf, usually given bym0, is reduced by the factor

√
1−κ2. Although the

effect of correlation is only of second order, this still maygive a considerable shift in the maximum wave height
pdf of the order of 5−10% towards lower normalised maximum wave height. The task to estimate effects of
correlation is, unfortunately, nontrivial as the joint pdfof N−1 somewhat correlated events is required.

Furthermore, it is required to study in what manner the Gram-Charlier expansion for the pdf of the surface ele-
vation may be extended into the regime of very extreme events. The Gram-Charlier expansion is an expansion
of the pdf in terms of the Gaussian distribution and its derivatives. Although this set of basis functions is or-
thogonal it is by no means certain that this gives a uniformlyvalid expansion for extreme values. Furthermore,
for large values of the kurtosis the pdf may become negative,which is a highly undesirable property of the
expansion.

Also, and this is work still in progress, more realistic estimates of the canonical part of the kurtosis need to be
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developed. Presently, the narrow-band approximation is used where the canonical part of the kurtosis is given
by 6ε2 (see Eq. (26)), but it is already known from Janssen (2008) that for realistic spectra the contribution of
bound waves to the kurtosis may increase by a factor of two.

Finally, according to the buoy observations there are freakwaves in 8.5% of the cases, while according to
nonlinear theory there are freak waves in 7.5 % of the cases. This does not imply, of course, that this is the
frequency of “monster waves” as one still needs to multiply this number by the frequency of occurrence of large
significant wave height events. Adopting as criterion of an extreme event that significant wave height should be
larger than 8 m, then according to the available informationfrom altimeter satellite data and first-guess wave
model results the probability that on a global scale significant wave height is larger than 8 m equals 0.003.
Therefore, the probability of having “monster waves” somewhere on the globe is about 0.00024.
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Appendices.

A Evaluation of Eq. (20).

The integral in (20) is now evaluated for the special case of the Gaussian spectrum (15). Substituting (15) into
(20) one finds

C4 = J(R) BFI2,

where

J(R) =
2

(2π)3P

∫ ∞

−∞
dν1,2,3dφ1,2,3

e−
1
2(ν2

1+φ2
1+ν2

2+φ2
2+ν2

3+φ3
3 )

(ν3−ν1)(ν3−ν2)−R(φ3−φ1)(φ3−φ2)

Note that the integral contains singularities and is 6-dimensional. This therefore presents a challenge when
evaluated on the computer. It was decided to do some analytical work first.

A.1 Step 1.

In the first step it is realized that although the integral is 6-dimensional, the denominator is essentially 4-
dimensional as it depends on the difference variablesν3− ν1, ν3 − ν2, φ3 − φ1, andφ3− φ2 only. Therefore
introduce new variables according to

x1 =
ν1−ν3√

3
, x2 =

ν2−ν3√
3

, ν3

x3 =
φ1−φ3√

3
, x4 =

φ2−φ3√
3

, φ3

and the integration over the variablesν3 andφ3 can be performed immediately. The eventual result is

J(R) =
2

(2π)2P

∫ ∞

−∞
dx1,2,3,4

e−(x2
1+x2

2−x1x2)−(x2
3+x2

4−x3x4)

x1x2−Rx3x4

which reduces the dimension of the integration by two but thesingularities have not yet been removed.

A.2 Step 2.

In the next step introduce polar coordinates, which is always a good idea when dealing with Gaussians. Hence
introduce

x1 = ρ1 cosθ1, x2 = ρ1sinθ2, x3 = ρ2 cosθ2, x4 = ρ2sinθ2,

and introduce the new variables

z1 = ρ2
1 , z2 = ρ2

2 , φ1 = 2θ1, φ2 = 2θ2.

The result forJ becomes

J(R) =
1

4π2

∫ 2π

0
dφ1,2

∫ ∞

0
dz1,2

e−z1(1− 1
2 sinφ1)−z2(1− 1

2 sinφ2)

z1 sinφ1−Rz2sinφ2
(A1)
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hence this involves much simpler exponential functions. Infact, it turns out that the integrations overz1 andz2

can be performed. In order to see this introduce the double integral

I =

∫ ∞

0

dz1,2

z1−βz2
e−a1z1−a2z2,

wherea1 = 1−sinφ1/2, a2 = 1−sinφ2/2, andβ = Rsinφ2/sinφ1. Introduce the transformation

v =
z1

βz2
−1,

then the integral can be rewritten as

I = P

∫ ∞

−1

dv
v

∫ ∞

0
dz2 e−z2(a1β+a1βv+a2),

which simplifies the problem considerably because the singularity becomes a fixed point. In addition one may
perform immediately the integration overz2 with the result

I = P

∫ ∞

−1

dv
v

1
a2 + βa1 + βa1v

,

which is an almost trivial integral overv. Evaluation of the integral gives10

I =
1

a2 + βa1
log| a2

βa1
|. (A2)

The result has an interesting structure because when the denominator vanishes,a2 + βa1 → 0, at the same
time |a2/βa1| → 1. Hence the logarithm approaches 0 giving forI a finite answer,I → −1. Therefore, the
integration overz1 andz2 has removed the singularity. Nevertheless, the numerical evaluation has to be done
with care. When the denominator is sufficiently small, the appropriate limit forI is taken.

The integralJ(R) in (A1) now becomes (making use of the definitions fora1, a2 andβ ),

J(R) =
1

4π2

∫ 2π

0
dφ1dφ2 f (s1,s2,R),

where

f (s1,s2,R) =
1

s1(1− 1
2s2)+Rs2(1− 1

2s1)
log

∣

∣

∣

∣

∣

s1(1− 1
2s2)

Rs2(1− 1
2s1)

∣

∣

∣

∣

∣

, (A3)

and the notations1 = sinφ1, ands2 = sinφ2 has been introduced.

A.3 Numerical computation.

Still some development is required, because as (A3) stands, it is not easy to take the limit for smallR, because
R appears in an awkward manner in the logarithm. Therefore, the integration domain has been splitted in two
parts, one from(0,π) and one from(π,2π). In the last domain a new variable is introduced in such a way that
the integration range shifts to(0,π). Thus, takeφ = θ + π and as a consequence the sin-function changes sign
since sinφ = −sinθ . As a result,J(R) will consist of four contributions involving the functionf (±s1,±s2,R)

10because the integrand is locally an odd function ofv the principle value integral will not give a contribution related to the singularity
atv = 0.
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with all combinations of the sign (hence the expression forJ(R) becomes invariant for the sign of the sin-
function). Finally, the integration domain(0,π) is splitted into two domains, namely(0,π/2) and(π/2,π).
Applying the transformationφ = π − θ maps it to the former domain, while sinφ = sinθ . This reduction of
the integration domain by a factor of two increases the integrand by a factor of 4. The eventual result is

J(R) =
1

π2

∫ π/2

0
dφ1dφ2{ f (+s1,+s2)+ f (−s1,−s2)+ f (−s1,+s2)+ f (+s1,−s2)} (A4)

where for brevity the dependence onRhas been dropped. The result (A4) has the advantage that with the same
resolution the numerical evaluation is four times faster. In addition, it is now possible to take the small and
largeR-limit.

For example, consider the smallR-limit. Taking the limitR→ 0 before hand in the denominator, the integrand
of (A4) becomes

+
1

s1(1− 1
2s2)

log

∣

∣

∣

∣

∣

s1(1− 1
2s2)

Rs2(1− 1
2s1)

∣

∣

∣

∣

∣

− 1

s1(1+ 1
2s2)

log

∣

∣

∣

∣

∣

s1(1+ 1
2s2)

Rs2(1+ 1
2s1)

∣

∣

∣

∣

∣

− 1

s1(1− 1
2s2)

log

∣

∣

∣

∣

∣

s1(1− 1
2s2)

Rs2(1+ 1
2s1)

∣

∣

∣

∣

∣

+
1

s1(1+ 1
2s2)

log

∣

∣

∣

∣

∣

s1(1+ 1
2s2)

Rs2(1− 1
2s1)

∣

∣

∣

∣

∣

Because of the common front factor the first and the third termmay be combined and it is seen that the log(1/R)
factor will drop out. The same remark applies to the second and the fourth term. As a result, the integrand
becomes after some algebra

+
2

s1(1− 1
4s2

2)
log

∣

∣

∣

∣

∣

(1+ 1
2s1)

(1− 1
2s1)

∣

∣

∣

∣

∣

and in the limitR→ 0 J(R) becomes

J(R) =
2

π2

∫ π/2

0

dφ2

1− 1
4s2

2

∫ π/2

0

dφ1

s1
log

∣

∣

∣

∣

∣

(1+ 1
2s1)

(1− 1
2s1)

∣

∣

∣

∣

∣

and the problem has been reduced to some standard integrals.The integral overφ1 is, using Gradshteyn and
Ryzhik (1965) (4.397.1), equal toπ2/6, while the integral overφ2 equalsπ/

√
3) (using Gradshteyn and Ryzhik

(1965) (2.562)). Combining results one finds

lim
R→0

J(R) =
π

3
√

3
, (A5)

a result that agrees with Mori and Janssen (2006). In a similar vein one may consider the largeR-limit, and one
finds

lim
R→∞

J(R) = − 1
R

π
3
√

3
,

Furthermore, the only additional analytical result is thatfor R= 1 J(R) indeed vanishes, a finding in agreement
with the general result (22).

Thus far we haven’t been able to do the integral analytically.11 Therefore, the integral has been computed on
the computer. This was not as straightforward a task as it might seem. A very important element of a succesful

11 We even tried it with Maxima, but rather then replying that itcannot find the answer it returns the original integral (a strange way
of admitting defeat!).
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Figure 13: The integral J(R) as function of R for N= 36. The parametrization of the integral, labeled with ’Fit’ isshown
as well.

integration is that the integrand is regularized in the manner prescibed below Eq. (A2). The other important
element is that the integration is done over a fixed interval(ε ,π/2) with ε << 1. The integrand was discretized
in the following manner:

φ (n)
1,2 = n∆φ + ε , n = 0,N,

wheren = N corresponds toφ1,2 = π/2 and∆φ is given by

∆φ =
π/2− ε

N
.

ForN = 36 the result of theJ(R)-computation is shown for the range 0< R< 1 in Fig. 13. The number of grid
points was varied fromN = 18 toN = 180 but the results forJ(R) are found to be fairly insensitive to variations
in N.

By some trial and error the following fit to the numerical datawas tried:

J(R) =
1

(2π)2

1−R
R+R0

, (A6)

whereR0 = 3
√

3/4π3. This fit was inspired by the conditions thatJ(R) should vanish forR = 1 while it
should reach the limit (A5) for vanishingR. Also, the numerical result suggested that the fit should behave in
a hyperbolic fashion, for this reason the denominator. The factor 1/(2π)2 is unexplained. Nevertheless, the
agreement between the numerical results and the fit is impressive.

In order to emphasize the good agreement results of the kurtosis calculation as function of the dimensionless
widthsδω andδθ for a steepnessε = 0.1 are shown in Fig.14. The right panel shows the fit (A6) where forR> 1
the relationJ(R) = −J(1/R)/R was used which follows from (21), while the left panel shows the numerical
result forN = 36. The agreement is more than satisfactory, and it suggeststhat if spectra are stationary on a
long time scale then the fit (A6) is a good candidate for operational implementation of the two-dimensional
kurtosis calculation.
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Figure 14: Dependence of kurtosis C4 on dimensionless frequency widthδω and angular widthδθ for a dimensionless
steepnessε of 0.1. The right figure is based on fit (A6) while the left figure is from numerical integrations with N= 36.

B Joint distribution of envelope height and period.

B.1 Theory

In order to obtain the joint pdf of envelope and period there is a need to describe a procedure how to obtain
from a given time seriesη(t) the envelopeρ and local phaseφ .

Attention is restricted to analytic functionsZ(t) = η + iξ . These functions have the remarkable property that if
the real part ofZ is known then the imaginary part ofZ is given by the Hilbert transform of its real part. Thus,

ξ = ℑ(Z) = ±H(η) = ± 1
π

∫

dτ
η(τ)

t − τ
, (B1)

where the integral is a principle value integral and the± sign depends on the chosen assumed behaviour of the
complex functionZ for large arguments (cf. remark below). Envelopeρ and phaseφ are now defined as

ρ eiφ = Z(t) = η + iξ ,

therefore

η = ρ cosφ , ξ = ρ sinφ . (B2)

Envelope and phase follow now at once fromη andξ ,

ρ =
√

η2 + ξ 2, φ = arctan(ξ/η). (B3)

In this fashion (and this is of course very well-known) one may obtain from a real time series envelope and phase
of a wave train. This is a very general approach. For a narrow-band wave train (but note that this assumption
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will not be made here)ρ will be a slowly varying function in time and space. In those circumstances it is
costumary to introduce the local angular frequency through

ω = −∂φ
∂ t

, (B4)

and for a narrow-band wave train the local frequency is also slowly varying. The key-point is now that the
notion of a local frequency is generalized by applying the same definitions also for a wave train with a broad-
banded spectrum. Hence, for any time seriesη envelope and phase are obtained from Eq. (B3) whereξ is the
Hilbert transform ofη . The joint pdf of envelopeρ and periodT is then easily obtained by making use of the
local frequencyω of Eq. (B4) and the definitionT = 2π/ω .

Remarks on the procedure

It is indeed a remarkable result that one may construct a complex signalZ from its real part and the Hilbert transform of
its real part, but there is also a caveat. A unique solution can only be found provided one makes an assumption regarding
the behaviour of the complex functionZ(z) for large complexz.

It is quite amazing that given a functiong(x) on the real axis, it is possible to find a unique analytical function f (z) =
g(z)+ ih(z), wherez= x+ iy. This is simply not possible unless some conditions on the behaviour of f (z) for largezare
imposed. To illustrate the point consider the functiong(x) = cosx. There are at least two complex functionsf (z) that give
the same function on the real axis, namelyf (z) = exp(iz) and f (z) = exp(−iz). So the solution is not unique unless one
imposes an additional condition on the behaviour off (z). Imposing the condition thatf (iy) vanishes sufficiently rapidly
for y→ ∞ will give rise to the unique solutionf (z) = exp(iz), while the condition thatf (iy) will vanish sufficiently rapidly
for y→−∞ will give rise to the second solutionf (z) = exp(−iz).

This has consequences for the extension of a real signal in the complex domain. In order to show this start from the
Cauchy theorem. Consider an integral in the complex z-planeof the form

∫

C

f (z)
z−z0

dz,

If f (z) is analytic andC is a piecewise smooth closed contour in an open domain, then according to the Cauchy integral
theorem

∫

C

f (z)
z−z0

dz= 2π i f (z0),

if z0 is insideC. If z0 is outsideC then the singular integral vanishes.

The result in Eq. (B1) now follows by making a special choice of the contourC. Consider a contourC that consists of a
semicircleΓR with radiusR and the real axis from−R to +R, henceC = ΓR+ [−R,R]. First suppose thatf (z) vanishes
sufficiently rapidly fory→ ∞ so that the contribution from the semicircle in the upper half-plane,Γu

R vanishes. In the limit
R→ ∞ one then finds

P
∫ ∞

−∞

f (ξ )

ξ −x
dz= π i f (x),

Writing f (x) = g(x)+ ih(x) one immediately finds from the real part of the above equationthat

h(x) =
1
π

P
∫ ∞

−∞

g(ξ )

x− ξ
dz.

corresponding to the+ sign result of Eq. (B1).

However, if one now assumes on the other hand thatf (z) vanishes sufficiently rapidly fory → −∞ then in order that
the contribution along the semicircle vanishes one has to close the contourC by choosing a semicircleΓl

R in the lower
half-plane. The end result is a− sign difference as

h(x) = − 1
π

P
∫ ∞

−∞

g(ξ )

x− ξ
dz.
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Therefore the extension of a real function into the complex plane is not unique, and results will depend on assumptions
regarding the behaviour of the complex function for largez.

In order to obtain the joint pdf of envelope and period the work of Longuet-Higgins (1983) is followed, with
corrections provided by Xuet al. (2004). Starting point is the assumption thatη(t) is a stationary Gaussian
process. Sincėη, ξ andξ̇ are linear transforms ofη their joint pdf is gaussian and therefore can be expressed
as

p(x) =
1

(2π)2|Σ|1/2
exp

{

−1
2

xTΣ−1x
}

,

wherex = (η ,ξ , η̇ , ξ̇ ), and the covariance matrix is given byΣi j = 〈xix j〉. Fortunately, a number of elements
in the correlation matrixΣ vanish, and the elements with a finite value are:

Σ11 = Σ22 = m0, Σ14 = Σ41 = −m1, Σ23 = Σ32 = m1, Σ33 = Σ44 = m2.

With this choice ofΣ the determinant|Σ| becomes

|Σ| = ∆2, ∆ = m0m2−m2
1,

and the joint pdf becomes

p(x) =
1

(2π)2∆
exp

{

− 1
2∆

[

m2(η2 + ξ 2)+m0(η̇2 + ξ̇ 2)−2m1(ξ η̇ −ηξ̇ )
]

}

.

From this the joint pdf ofρ ,φ , ρ̇ , φ̇ is found by the usual transformation rule, i.e.

p(ρ ,φ , ρ̇ , φ̇ ) = p(x) J,

where the JacobianJ = ∂ (η ,ξ , η̇, ξ̇ )/∂ (ρ ,φ , ρ̇ , φ̇ ) follows from the transformation given in Eq. (B2). One
findsJ = ρ2, and the joint pdf becomes

p(ρ ,φ , ρ̇ , φ̇ ) =
ρ2

(2π)2∆
exp

{

− 1
2∆

[

m2ρ2+m0(ρ̇2 + ρ2φ̇2)+2m1ρ2φ̇
]

}

. (B5)

The joint pdf ofρ andφ̇ is then found by integrating Eq. (B5) overρ̇ from−∞ to +∞ and overφ from 0 to 2π.
The result is

p(ρ , φ̇ ) =
ρ2

√
2πm0∆

exp

{

−ρ2

2∆
(

m2 +m0φ̇2 +2m1φ̇
)

}

.

Finally, it is then straightforward to obtain the joint pdf of normalized envelope,

R=
ρ√
2m0

,

and normalized period

T =
τ
τ
,
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where the periodτ = 2π/ω = −2π/φ̇ , and the mean periodτ = 2πm0/m1. The eventual result is

p(R,T) =
2

νπ1/2

R2

T2 exp

{

−R2

[

1+
1

ν2

(

1− 1
T

)2
]}

, (B6)

whereν is the width parameter as introduced by Longuet-Higgins (1983),

ν = (m0m2/m2
1−1)1/2.

There are two marginal distribution laws. The first one is thepdf of the envelope and is obtained by integration
over periodT. The result is

p(R) = 2R e−R2
, (B7)

hence the envelopeR follows theRayleighdistribution, independent of the width of the spectrum. Thesecond
marginal distribution law is the pdf of the period, and is obtained by integration over the envelope with the
result

p(T) =
1

2νT2

[

1+
1

ν2

(

1− 1
T

)2
]−3/2

, (B8)

which shows, as to be expected, a sensitive dependence on thewidth of the spectrum.

Comments

1 Longuet-Higgins (1983) derived the joint pdf for envelopeand period by considering only positive pe-
riodsT. Ignoring negative periods will result in an envelope distribution which shows slight deviations
from the Rayleigh statistics. However, for finite band-width spectra there is a finite but small probabil-
ity that periods become negative. Including these negativeperiods, as done here will then result in the
Rayleigh distribution for the envelope (see Xuet al., 2004).

2 Xu et al. (2004) claim that there is an additional multiplicative factor in the joint pdf of envelope and
period. Presumably this is connected to their definition of wave periodτ = 2π/|ω | which involves the
absolute value oḟφ . Their definition differs from the present one, as here negative frequencies and periods
are allowed reflecting the fact that waves may propagate to the right or to the left.

B.2 Monte Carlo simulations

In order to show the general validity of the result (B6) Monte Carlo simulations have been performed for linear
wave trains. Introduce the complex representationZ of a train of surface gravity waves

Z(t) = ∑
k

ake
−i(ωkt+θk), (B9)

whereωk = (gk)1/2 is the dispersion relation for surface gravity waves,θk is a randomly chosen phase, andak

is drawn from a given wavenumber spectrum with peak wavenumberkp = 1 using a Rayleigh distribution. Two
discretisations of the wave number haven been chosen, namely a linear grid,

k = α n, n = 0,N
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whereN+1 is the number of wave components andα is a fraction of the widthσk of the spectrum (typically
α = 0.025σk andN = 100), and a logarithmic grid

k = k0(1+ α)n, n = 0,N

wherek0 is the start wave number (typicallyk0 = 0.1, andα = 0.7σk).

The surface elevationη given by

η =
1
2

(Z+Z∗)

can then be shown to follow a Normal distribution.
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Figure 15: Envelopeρ and local frequencyω for a narrow-band (top,ν = 0.24) and a broad-band (bottom,ν = 0.40)
signal.

The complex functionZ of Eq. (B9) has the property that it vanishes forℑ(t)→−∞, hence in order to determine
the auxiliary variableξ I take the minus sign in Eq. (B1). Hence,

ξ = −H(η), (B10)

and since it is straightforward to show that

H(e−iωkt) = ie−iωkt ,

one finds

ξ = − i
2

(Z−Z∗) .
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Therefore, in the context of a linear wave solution with constant amplitudesak it is straightforward to obtain
the auxiliary variableξ , using the Hilbert transform. It is remarkable, that the pair (η ,ξ ) just corresponds to
the canonical variables of the Hamiltonian formulation of water waves.

Using (B10) and (14) envelopeρ and phaseφ follow from Eq. (B3) while the local frequency follows from Eq.
(B4). For the Pierson-Moskowitz spectrum on the logarithmic grid an example of results for envelope and local
frequency is shown in Fig.15. Shown are two cases. The first case is a Pierson-Moskowitz spectrum where
the spectrum is cut-off at twice the peak frequency, giving aspectral widthν = 0.24,, while the second case
has the cut-off at 8 times the peak frequency, which givesν = 0.40. It is evident that the broad-band spectrum
gives a more erratic behaviour in time of the envelope and thelocal frequency. In addition, note the occasional
occurrence of negative local frequencies.
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Figure 16: Joint pdf of envelope wave height H/HS (with H = 2ρ) and period T/T01 for a narrow-band (top,ν = 0.24)
and a broad-band (bottom,ν = 0.40) case. For comparison the theoretical distribution is shown as well.

Fig. 16 shows for the same two cases a comparison of the theoretical joint pdf of envelope wave height and
period with the numerical simulation. The agreement is almost perfect, even for the broad band case. In order
to simulate the pdfη andξ have been calculated for a 100 member ensemble and each timeseries was 1000
wave periods long. The pdf was determined by counting the number of times the envelope wave height 2ρ and
local periodT entered a certain wave-height, period bin.
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Finally, Fig. (17) shows for the broad-band case only a comparison of the numerically simulated marginal
distribution laws with the theoretically ones, given in (B7) and (B8)
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Figure 17: Comparison of simulated (black) and theoretical(red) marginal distribution laws for envelope wave height
and period. The spectrum corresponds to the broad-band case(ν = 0.40).

It is concluded that there is good agreement between the theoretical probability distributions and the results
obtained with Monte Carlo simulations. This implies that the time series analysis here, which is based on the
simple description thatη = ρ cosφ , where the local frequency follows from the time derivativeof the phase,
seems to work, even for broad-banded spectra.
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C Evaluation of Eq. (31) and additional results.

The maximum wave height distribution becomes explicitely

p(y) = 4Nye−2y2
[1+C4AH(y)]e−Ne−2y2

[1+C4BH(y)], (C1)

whereAH = 2y4 − 4y2 + 1 andBH = 2y2
(

y2−1
)

, illustrating that the maximum wave height distribution is
indeed a double exponential. For analysis purposes it is more convenient to introduce the parameterz,

z= y2

and to introduce the function

G (z) = −Ne−2z(1+C4B) , B = 2z(z−1) . (C2)

Then the maximum wave height distribution assumes the simple form

p(z) =
dG

dz
exp(G ). (C3)

Now quantities such as the expectation value ofy and the widthσ of the distribution are evaluated. Anticipating
that the widthσ of the distribution function (C3) is small,〈y〉 is determined by means of the approximation
〈y〉 ≃ 〈z〉1/2, and afterwards it is shown thatσ is indeed small. The expectation value of〈z〉 can be found in the
limit of large N and smallC4 in the following manner. By definition

〈z〉 =

∫ ∞

0
dz zp(z).

Changing from integration variablez to x = −G gives

〈z〉 =

∫ N

0
dx z(x)e−x. (C4)

andz= z(x) is obtained by solving the relation betweenx andz, i.e.

x = Ne−2z(1+C4B(z))

with a perturbation approach. Take the log and rearrange, then

z=
1
2

log

(

N
x

)

+
1
2

log(1+C4B(z))

and for smallC4 one finds in good approximation

z= z0 +
1
2

log(1+C4B(z0)) , z0 =
1
2

log

(

N
x

)

(C5)

As a consequence, using (C5) in (C4) gives

〈z〉 =

∫ N

0
dx

[

z0 +
1
2

log(1+C4B(z0))

]

e−x = z1 +z2 (C6)

Consider the first integral

z1 =
∫ N

0
dx z0e−x =

1
2

∫ N

0
dx e−x (logN− logx) =

1
2

logN− 1
2

∫ N

0
dx e−x logx
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The second integral turns out to be relatively small. It is connected to the exponential integral Ei(x) and to the
logarithm of the Gamma functionΓ(z). According to Gradshteyn and Ryzhik (1965) one has

∫ N

0
dx e−x logx = Ei(x)− γ −e−N logN

whereγ = 0.5772 is Euler’s constant and

Ei(−x) ∼ e−x
∞

∑
k=1

(−1)k (k−1)!
xk = O(

e−N

N
) → 0.

Hence, apart from exponentially small terms one finds
∫ N

0
dx e−x logx = −γ

and therefore

z1 =
1
2

(logN+ γ)

Consider now the second integral in (C6),

z2 =
1
2

∫ N

0
dx log[1+C4B(z0)]e

−x

Utilizing once more the assumption thatC4 is small the logarithm is expanded. Elimination ofz0 and rearrange-
ment then gives

z2 =
C4

2

{

2ẑ0(ẑ0−1)+ (1−2ẑ0)
∫ ∞

0
dx e−x logx− 1

2

∫ ∞

0
dx e−x log2x

}

whereẑ0 = 1
2 logN, and the upper boundN is replaced by∞ as this only introduces an exponentially small term.

Integrals involving exponentials and logarithms are related to the Gamma functionΓ(z) and its derivatives,

Γ(1+z) =

∫ ∞

0
tze−tdt =

∫ ∞

0
ezlogte−tdt,

and therefore

d
dz

Γ
∣

∣

∣

∣

z=0
=

∫ ∞

0
logt e−tdt,

d2

dz2 Γ
∣

∣

∣

∣

z=0
=

∫ ∞

0
log2 t e−tdt.

It may be shown thatΓ′(1) = −γ , andΓ′′(1) = γ2+ π2

6 . Now, returning to the logarithmic form one finds forz2

z2 =
1
2

log

[

1+
C4

2

{

2ẑ0(ẑ0−1)− γ(1−2ẑ0)−
1
2
(γ2 +

π2

6
)

}]

.

Finally, combining the results forz1 andz2 one finds for〈z〉

〈z〉 = ẑ0 +
γ
2

+
1
2

log

[

1+
C4

2

{

2ẑ0(ẑ0−1)− γ(1−2ẑ0)−
1
2
(γ2 +

π2

6
)

}]

,
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with ẑ0 = 1
2 logN, while the expectation value ofHmax is given by〈z〉1/2. The analytical result has been com-

pared with results of numerical computations of〈Hmax〉 and the agreement is astonishingly good. Notice that
the assumption has been made that the kurtosis is small, in agreement with the assumptions on weakly nonlin-
ear waves. Therefore, in the operational model, when〈Hmax〉 is computed, the kurtosis is resticted to the range
−0.33< C4 < 1.

Next, a sketch is given of how the widthσ of the maximum wave height distribution has been obtained. By
definition

〈z〉 = σ2 + 〈z1/2〉2,

therefore the expectation value ofHmax denoted by〈z1/2〉 and defined as

〈z1/2〉 =
∫ N

0
dx z1/2e−x =

1√
2

∫ N

0
dx e−x

√

(logN− logx)+C4B(z0)

is needed. This integral can be evaluated for largeN and smallC4. In particular a Taylor expansion of the
square root term is performed where the logN-term is the dominant term. Although for largex the logx term
is of a similar magnitude, the contributions for largex to the integral are exponentially small because of the
exponential. The integrations can then be performed in a similar fashion as before, and for linear waves (i.e.
C4 = 0) the relative widthσ/〈Hmax〉 becomes

σ
〈Hmax〉

≃ π
2
√

6
(

logN+ 1
2γ

) .

For typical choices of the number of waves,N = 1000, the relative width is found to be around 9%. The
difference between〈z〉1/2 and〈z1/2〉 then turns out to be less than 1%. In this sense the maximum wave height
distribution is narrow, allowing a meaningful comparison with observations as described in the main text.

From the pdf ofHmax it is possible to obtain random draws of maximum wave height using the cumulative
distribution, defined as

P(y) =

∫ y

0
dy p(y) =

∫ z

0
dz p(z)

where once morez= y2 is introduced. Making use of the form of the pdf given in Eq. (C3) the integration can
be performed with the result

P(y) = eG (z)−eG (0) = eG (z) −e−N

whereG (z) is given in (C2), andG (0) = −N. Now P(y) is in the range of 0 to 1 and the random draw ofz
follows from the inverse cumulative distribution

G (z) = log(P(y)+e−N) = log(r +e−N),

where r is drawn from the uniform distribution (0,1). An explicit expression for z is now obtained by an
iteration process that is identical to the one used for evaluating the integrals in the beginning of this Appendix.
Hence, writeG (z) = G0(z)G1(z) whereG0(z) = −Nexp(−2z) andG1(z) = 1+C4B(z), then the random draw
for z, denoted byzr , is approximately given by

zr = −1
2

log

(

− log(r +e−N)

NG1(z0)

)

,

wherez0 = −0.5log
(

− log(r +e−N)/N
)

. Note that the exponentially small terme−N needs to be retained
because otherwisezr might become negative. The random draw for normalisedHmax then follows fromHmax=√

zr .
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