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On an extension of the freak wave warning system and its verifation. cECMWF

Abstract

This memo discusses a number of updates to the freak wavéngaystem which were introduced in cycle
33R1 of the IFS. The list of changes is given below and theyd@m®ussed in more detail in the remainder
of this memo. They are:

1. In shallow water it is well-known that fdD ~ 1.363 the effects of four-wave interactions vanish be-
cause of the generation of a wave-induced current. Foliptyia work of Janssen and Onorato (2007),
a parametrization of this shallow water effect is introdlieéhich affects both the time evolution of
the wave spectrum, and the determination of the kurtosiseofviave field.

2. Extension of the ECMWF freak wave warning system to twoetisional propagation. Numerical
simulations and experimental evidence suggest that thediaof the surface elevation then depends
on two parameters, namely the Benjamin-Feir Index (BFI) apérameter which measures the im-
portance of directional width compared to the width of thegjfrency spectrum.

3. Introduction of two extreme wave parameters, namely tlegage maximum wave height and the
corresponding wave period. Following the work of Mori andsken (2006) it is suggested to use the
maximum wave height, observed during a period of lerigéms an indicator of how extreme the sea
state is. For known probability distribution of the sea aaé elevation it is shown how to obtain an
estimate of the average maximum wave height.

A fairly extensive validation of products of the freak wavaming system is also presented, in particular
regarding the maximum wave height. A comparison of the eiguemaximum wave height against buoy ob-
servations shows a good agreement, while also the thealrptibability distribution function of maximum
wave height matches the observed distribution very welparticular in the extremes.

1 Introduction.

Recently, there has been considerable progress in theatadding of the occurrence of freak waves. The
notion of freak waves was first introduced by Draper (1965¢ak waves are waves that are extremely unlikely
as judged by the Rayleigh distribution of wave heights (D€&90). In practice this means that when one
studies wave records of a finite length (say of 10-20 min), gews considered to be a freak wave if the wave
heightH (defined as the distance from crest to trough) exceeds thdisamt wave heightHs by a factor 2.

It should be clear that it is hard to collect evidence on sudheme wave phenomena because they occur so
rarely. Nevertheless, observational evidence from tilmeseollected over the past decade does suggest that
for large surface elevations the probability distributfonthe surface elevation may deviate substantially from
the one that follows from linear theory with random phasenely the Gaussian distribution (cf. e.g. Wolfram
and Linfoot, 2000). Also, there are now a number of recordesks which show that the ratio of maximum
wave height and significant wave height may be as large as (Btansell, 2005).

The increased understanding of the generation of freak svialiews from the present-day ability to simulate
these extreme events by means of the Zakharov equation d#akH 968, Janssen, 2003 (hereafter referred to
as J2003)). This is an approximate evolution equation wisiabtained from the exact equations for surface
gravity waves in the limit of small wave steepness. Yasidd (1992), Trulsen and Dysthe (1997) and Osborne
et al (2000) studied simplified versions of the Zakharov &qunaand it was found that these waves can be
produced by nonlinear self modulation of a slowly varyingverdrain. An example of nonlinear modulation
or focussing is the instability of a uniform narrow-band wdrain to side-band perturbations. This instability,
known as the side-band, modulational or Benjamin-Feir 7)196stability, will result in focusing of wave
energy in space and/or time as is illustrated by the expettsnef Lake et al (1977).

Therefore, in the context of the deterministic approachduenevolution there seems to be a reasonable theoret-
ical understanding of why in the open ocean freak waves otitacean wave forecasting practice one follows,
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however, a stochastic approach because the phases of ithduatiwaves are unknown. Clearly, in the context
of wave forecasting only statements of a probablistic matan be made. As freak waves imply considerable
deviations from the Normal, Gaussian probability distiidw function (pdf) of the surface elevation, the main
question therefore is whether the pdf of the surface elewaian be determined in a reliable manner. Following
and extending J2003 this is indeed possible. Traditiondlig known that the surface elevation pdf deviates
from the Normal distribution because the actual shape obtean waves deviates from the sinusoidal form
(this is reflected by the canonical transformation appleethe hamiltonian for water waves (Janssen, 2008).
However, there is also a dynamical cause for deviations fammality. J2003 showed that the deviations from
the Normal pdf of the surface elevation are also relatedagtlesence of resonant and nonresonant four-wave
interactions. In fact, the kurtosis, which vanishes for aig#&n distribution and is a measure for extreme
events, was found to be related to a six-dimensional inkégralving the action density to the third power.

As a first step towards validation of Janssen’s approactkuttesis was evaluated from the theoretical expres-
sion and for uni-directional, narrow-band spectra it wamftibthat the dynamical part of the kurtosis depends
on the square of the Benjamin-Feir Index (BFI). Here, the iBFhe ratio of the wave steepness to the spectral
bandwidth. This dependence on the BFI was confirmed by remgygrimental work done by Onoraés al
(2005) in the Trondheim wave tank.

For operational implementation the expression for thedsistis far too involved, and clearly some simplifi-
cation is desirable. It is assumed that freak wave events likel/ only occur for narrow band wave trains.
This corresponds to situations where both the frequencyaagdlar distribution of the waves is narrow. In the
narrow-band approximation it is possible to simplify andleate the six-dimensional integral. In the present
operational system, the dependence on angular width wasednresulting in an expression for the kurtosis
which depends on the square of the BFI. However, from exmariat evidence (Waseda, 2006; Onoretal.,
2009) and numerical simulations (Onorato and Mori, privadenmunication 2006) it is known that kurtosis
also depends in a sensitive manner on the angular width.efdrer in this memo an extension of the kurtosis
calculation is presented, and the sensitive dependendeecangular width is confirmed. In fact, it is found
that when the relative angular width is larger tha@ times the relative frequency width, the sea state is in
a defocussing state and extreme waves are less likely to dtao normal. In the opposite case focussing is
found. Therefore, for almost uni-directional waves wittaegeBF| freak waves are most likely to occur, in
agreement with the evidence from numerical simulationsveane tanks.

The general result for the kurtosis and its relation to theeaspectrum was originally derived for deep-water
waves, but Janssen and Onorato (2007) have shown how taeéktershallow water. For narrow-band spectra,
it is then straightforward to parametrize the stabiliziffig&ts of shallow water.

2 Nonlinear transfer in shallow water.

Finite-amplitude deep-water waves are subject to moduratiinstability which results in a nonlinear energy
transfer among the components in the wave spectrum, whiehteaily can lead to the formation of extreme
waves. However, in shallow water, finite-amplitude surfgcavity waves generate a current and deviations
from the mean surface elevation. This stabilizes the maiduial instability, and as a consequence, in a fairly
wide range aroundlD = 1.363 the nonlinear transfer becomes small. In addition,evoit kh > 1.363 there is
nonlinear focussing giving the possibility of the formatiof extreme waves, in the opposite case the process
of nonlinear focussing ceases to exist. This is a well-knpvaperty of surface gravity waves.

Janssen and Onorato (2007) have discussed the conseqoéttoegeneration of a wave-induced current for
the evolution of the waves spectrum. Due to resonant fowevilteractions the rate of change of the action
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density spectrunN = gF (k) /w (whereF is the wave variance spectrum) is given by

%Nzl = 4/dk1’273T12’273’45(k1 +ko—ks— k4)R| (A&),t) [NlNz(N3 + N4) — N3N4(N1 + Nz)] , (1)
where for resonant wave® (Aw,t) = 1md(w; + wp, — w3z — au) and Ty 234 is @ known interaction coefficient.
For wave forecasting purposes the evaluation of this thimermkional integral is too time consuming and in
practice the Direct-Interaction Approximation (DIA) of belmanret al (1985) is used. In the direct interac-
tion approximation the strength of the nonlinear inte@tiis estimated using the narrow-band approximation
of Eg. (1). Hence, in DIA the nonlinear interactions scale with thalieg factorS given by

k2Toz,o,o,o
o Jagl
wherewy is the second derivative of angular frequency with respeetavenumbek. The second derivative

stems from the delta-function for the frequencies in thetlwha narrow-band spectrum. For surface gravity
waves on water of finite depth the dispersion relation reads

wo = /gkoTo, To = tanhx, x = koD, (2)
while the first and second derivative become
, 1 2 Wy
= = — 1 [r—
Vg Wy 200 + sinh [ Co kO ) (3)
and
// g 1
= — x Q" 4
wh AonkoTo (4)
with
2
Q" ={To—x(1-T&)} +#°T¢ (1-T§). (5)

Note that for any value of the depihthe second derivative is always negative. Finally, theavedipand limit
of the interaction coefficient is given by

2
L OTA-10T2+9 1 {(ZVQ—C()/Z) +1}. ©)

3 _
TO,O,O,O/ko =Xn = T - @ C%— Vs

with cs = /gD which is the shallow water wave velocity. Notice that themttion coefficient consists of two
terms where the first term is connected with the nonlinegred&on relation for surface gravity waves, while
the second term is due to effects of wave-induced currentcangsponding changes in the mean sea level.
These two terms are of definite sign so they may cancel eaeh othich, in fact, happens far= koD = 1.363.
Hence, for intermediate water depth waves the nonlineardntions are expected to play a relatively minor
role. So far this property of the nonlinear transfer has eetrbincorporated in modern wave prediction models.

It is of interest to study the scaling factBin the deep water limit first. Thedp 00 — kg wfy — —9g/4kow,
while wy — +/gky. The scaling factor becomes, apart from a constant,

19
o @

— 10
glO
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which is the usual scaling factor found in the deep-water .Diithe general case one finds

S_ aok3 ToX3
g Q// )

(7)

and as a natural extension of the deep-water DIA toward$oshalaters the scaling facto) has been intro-
duced into Cy 33R1 of the ECMWF wave model software. Thisisgdiactor will give rise to an expected
reduction of the strength of the nonlinear transfer arokgial = 1.363, which has consequences for the fre-
quency downshift of the spectrum in shallow waters. As dised in Janssen and Onorato (2007) there are also
implications for the determination of the surface elevatiartosis (and therefore for the generation of extreme
events) as fokgD < 1.363 the nonlinear transfer gives rise to defocussing rdbiar focussing (as happens in
the opposite case &HD > 1.363).

3 Extension of freak wave warning system.

Before starting with a detailed calculation of the kurtosighe sea surface and its dependence on the wave
spectrum, it is briefly mentioned that the starting pointadan waves dynamics is the Hamiltonian formulation
of the nonlinear water wave equations. Assuming that theewave weakly nonlinear and applyinganonical
transformation which removes most of the contributions bg-resonant interactions, one arrives at the well-
known Zakharov equation for the free wave part of the actemable. The properties of the Zakharov equation
have been studied in great detail by, for example, Crawébia. (1981) for deep-water waves and by Janssen
and Onorato (2007) for shallow-water waves. It describethalknown properties of weakly nonlinear waves
in deep and shallow water and is therefore a good starting fani further analysis.

Based on the above theoretical development it should be ttlabthe expression of the kurtosis of the pdf of
the surface elevation consists of two additive contrimgioThe first one was derived by Janssen (2003) and
reflects the effects of resonant and non-resonant four-iveeeactions, while the second contribution stems
from the canonical tranformation and reflects the contidoufrom asymmetries in the shape of the waves.
However, the contribution of the canonical transformatires a very lengthy expression of several pages and
only for narrow band wave trains its form is known expligitélFirst the definition of kurtosis used in this work

is introduced. Then the general expression of the conioibubd the kurtosis by the dynamics of the waves is
presented and the limit of a narrow-band wave train is taikéx. total kurtosis then consists of the sum of the
'dynamics’ contribution and the 'wave-shape’ contributio

3.1 Kurtosis for narrow-band ocean waves.

There are several definitions of kurtosis possible. Heiig,defined in such a way that it is directly related to
the fourth cumulant of the pdf of the surface elevatiprHence, the kurtosi€, is defined as

4

_n9 4
3(n?)?
The advantage of this definition of kurtosis (some call it #rcess’ kurtosis) is that for a Gaussian |@if

vanishes since for a Gaussian®) = 3(n?)2. Hence,C4 measures deviations from the Gaussian sea state. In

other words, wheig, > 0 the probability of extreme events is higher than expeatech the Normal distribu-
tion, while whenC, < 0 the probability of extreme events is lower than 'Normalh the other hand, as shown

Cy4

(8)

1A compact expression for the contribution of the canonicaigformation to the kurtosis of the sea surface was onkiéd just
recently, cf. Janssen (2008).
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in Janssen (2004), the four-wave interactions only occaabse the fourth cumulant is finite, hence there is
a direct connection between the changes in the wave specused by nonlinear four-wave interactions and
extreme sea states.

J2003 obtained an expression for the 'dynamics’ part of theokisC, in terms of the action density spectrum
N (cf. Eq. (29) of J2003). Denoting the variance of the surfeegation bymy = (n2), one finds

4 1
Cs= m / dk1234T12340142 3 4(Wipwson)? G(Aw,t)NiNaN3, 9)

where the transfer functioB is given by

1-—coqAwt)
G(Aw,t) = ey (20)
Here,Aw = w1 + wp — w3 — wy, T1234 is a complicated, homogeneous function of the four wave rumb
k1,k2, ks, k4 Which because of thé-function enjoy the resonance conditi@a+ k, = k3 + k4. In addition,
the angular frequency(k) obeys the dispersion relatian(k) = +/gkTo, with k the magnitude of the wave
number vectok andTp = tanh(kD), whereD is the water depth. Here only the deep-water limDit~ oo, will
be discussed. The shallow water extension will be addraasgdction 3.5

Eq. ) is valid for arbitrary two-dimensional action density spa. Although, strictly speaking, the determi-
nation of the kurtosis involves an eight-dimensional inéé@ wave number space, the resonance conditions
restrict the evaluation to a six-dimensional subspace. dibvertheless, for operational purposes this is still
far too time-consuming and in order to make progress, sfyiplj assumptions have to be made. Here, the so-
called narrow-band approximation is assumed which bdgiraplies almost unidirectional waves that have a
sharply peaked frequency spectrum. In practice, aroungehk of the spectrum this is a valid approximation.

Define the wavenumber spectrum

and perform the integration ovky, then

49/ [
Co= -9 [ dkizsTiosa ) G(Aw.t) FyFoFs.14
4 e 123234/ -0 ( ) FiF2F3

In the next step introduce the frequency spectrum

E(w, 6)dwdd = F (k)dk,

hence,

49/ [y
Cs= —= [ dwdwprdasd6,d6,d65T G(Aw,t) E1EEs. 11
i w1 dwpdwzdB,d6>,d605 Ty 2 3 4 ol (Aw,t) E1E5E3 (11)

Here,
Wy = Q(k4) =/ g|k1+ ko — k3|
For two-dimensional propagation this becomes

= {(wf + wZ — w3)? + 2wl w? [cos B1 — 6,) — 1] — 2wiw? [cog 6y — 63) — 1]
— 2032 [cog 6, — 6s) — 1] }*.
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Now the narrow-band approximation is applied, i.e. the spatis mainly concentrated ai = ap andf = 6y,
and falls off rapidly, much faster than the other terms inittiegrand of Eq. 11). In that event, the transfer
coefficientTy 2 3 4 can be approximated by its narrow-band vatgleln addition, wy is approximated. Denoting
the width of the frequency spectrum loy, and the angular width bgy one may write for angular frequency
and direction

W = wy(1+ OwVv1), 61 = Bo+ dp @,

where in the narrow-band approximation the parameigranddg, defined as

g,
8= 32, 8 = 00, (12)

are small. The angular frequenay may be defined in several ways. For example, one could taketliegpeak
frequency. Here, for convenience it is defined by means dfittstenoment

W = /dwde WE (w,0) /Mo,
Expandingwy in the small parametei&,, anddg one finds up to third order

1
et = { 1 (v +V2 = v0) 8300~ ) (s = va) + 5550~ @) (@1 @)} + (5.
As a consequence, the frequency mismatahbecomes

Aw= S50 {(vs—v1)(Vs—V2) —R(@gs— @) (@ — @)} + O(3°), (13)

where the parameté& has been introduced which measures the importance of théaarvgidth with respect
to the frequency width,

13

R==-=2.
252

Introducing the integral steepness parameter

£ = Koy/IMo.

and applying the narrow-band approximatiorCiothe result becomes
C" = 4¢2ay / dv1dvodvadgdgpdes G(Aw, t) E1EoEs. (14)

whereAw is given by Eq. 13), and the spectruri is now regarded as a function vfand@. Also, the spectrum
has been normalised in such a way tmgt= 1, hencekE; = E(v1, @) /mo.

Eq. (14) is the general expression for the dynamics part of the kigtof a narrow-band wave train (for this

reason the labeldyn is temporarily added). As explained in the beginning oftkection, there is also a

contribution due to the asymetrical shape of the wavesawlt the canonical transformation. For a narrow-
band wave train one can write down the canonical transfoomaixplicitely and the resulting kurtosis may be
evaluated. As a result one finds (Janssen, 2008)

Cs=CP"+6e2
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Therefore, for a narrow-band wave train the wave-shaperibatibn to the kurtosis is known in terms of the
moments of the spectrum, and it is straightforward to evalita contribution.

Concentrate once more on the 'dynamics’ contribution. iBgstish now two cases namely short times and
large times. In addition, when required, the two-dimenai@pectrum is approximated by a Gaussian, i.e.

~ 1 11,2
— = a3 (V)
E(v, ) = 5 & 2V, (15)
with

Ow Op

This is for the purposes of nonlinear focussing calculaian adequate approximation of the true spectrum as
most of the action occurs near the peak of the spectrum.

3.2 Kurtosis for short times.

For short times the resonance functi@rbehaves as
1
lim G(Aw,t) = =Awt?
and the kurtosis becomes
Cy= 2520(.{) t2/ dV]_dedVg,dQD_Ld@d@, Aw Elézég,.

Introducing the dimensionless tinteaccording to

T=wd3t,
and making use of the expression for the frequency mismgigh(13), the kurtosis now becomes
Cs= TZBFlz/ dvi23d@r23 {(V3—v1)(va—V2) — R(@s— @) (g5 — @)} ErEoEs, (17)
whereBF1 is the Benjamin-Feir Index, defined as
BFI = £V2, (18)
Ow

Note that in the spirit of the narrow-band approximationitiiegration is taken from-oo to co which introduces

an error which is exponentially small. For short times itées that apart from a quadratic dependence on
dimensionless time the kurtosis depends on two dimensionless parameters, némeBenjamin-Feir Index
and the parametd® which measures the importance of directional width. Morelitative statements can be
made by evaluating the integral in EQ.7J. One immediately finds for arbitrary narrow-band spedieasimple
result

Cs=T°BFI?(1-R).

since, thanks to the use of the mean frequemgys a typical frequency, by definition integrals involvingdod
powers inv and/org vanish.

This result clearly shows that directional effects play mpartant role as depending on the sizeRothere

is even an initial evolution towards negative kurtosisuhésg in defocussing rather than focussing. In other
words, whendg < /26, kurtosis is positive corresponding to nonlinear focussangl hence an increased

probability of extreme waves , while for large angular widfls > v/25,,) kurtosis is negative and extreme

waves occur less likely than 'Normal'.
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3.3 Kurtosis for large times.

For large times the resonance functi@rbehaves as
P
lim G(Aw,t) = — 19
lim G(Aw,t) = . (19)

where the symbaf”? denotes the principle value integral. The integral comstaisingularity a\co = 0 and the
principle value simply means that one makes in the integmatontour a cut of size€2around the singularity
in a symmetrical fashion and the limdt— O is taken afterwards.

Using (19) the kurtosis becomes

===
Cs = 46207 / dvadvaduadedpdey = 2=,
Substitution of the expression for the frequency mismat& gives
===

(20)

_oge2p [
C4=2BFI*Z /700 dviz3d@r 23 (Vs—v1)(Vs—V2) —R(@s— @) (@ — @)

Not much progress has been made with this general expre&sitine kurtosis of narrow-band waves. The
only general result found thus far assumes that the spedtasnthe same form in frequency and direction, i.e.
E(v1, @) = E(qr,v1). Under this condition it can be shown by means of interchamgitegration variables
(v1 < @, etc) that the following relation holds f@:

1

C4(BFI,R) = —%Q(BFI,ﬁ). (21)

This is a powerful relation because once one knGwfor R < 1, Eq. 1) immediately gives the kurtosis for
R > 1. Clearly, once more it is seen tHat= 1 plays, just as in the short time limit a special role. Substig
R=1in (21) one immediately finds th&, vanishes,

C4(BFI,R=1) =0. (22)

It can also be shown that BRt= 1 the kurtosi<C4 must change sigh.Therefore, depending on the valueRf
there will be nonlinear focussing€4 > 0) or nonlinear defocussing4 < 0).

The integral in 20) has been evaluated for the special case of the Gaussiamspdt5) in Appendix A. To
good approximation it is found that

Cs = J(R) BFI2, (23)
where forR< 1
1 1-R
R) = = 24
IR (2m2R+Ry’ (24)

with Ry = 3v/3/4m, while J(R) for R > 1 follows from relation 21).

Eqgns. 23-24) show that for large times the kurtosis depends on the scpfattee BFI and on the ratio of
directional width and frequency width through the paramBteJust as in the short time limit and in agreement
with Eq. 22) kurtosis is seen to vanish f&= 1.

2The argument for this so far goes as follows, and it holds yorraetrical spectra: IR vanishes thenl®) will have a certain sign,
while for largeR it will have the opposite sign. This suggests a change of signewhere in th&domain. For symmetrical spectra
the only candidate so far R= 1.

8 Technical Memorandum No. 588
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3.4 Nonlinear Schibdinger Equation simulations.

In the previous section an expression for the large timeavafiihe kurtosis was obtained for stationary spectra.
However, the assumption that the spectrum does not chanigesiis not always correct as was found out when
Onorato and Mori (private communication, 2006) di@0,000 simulations with the Nonlinear Schrodinger
Equation (which follows from the narrow-band limit of the Kkearov equation). In particular, wheR> 1
initially, hence the frequency width smaller than the di@tal width, there are due to the Benjamin-Feir
Instability rapid changes (broadening in the frequencgalion) such that in the course of time the kurtosis flips
from negative to positive. This property is illustrated iig.F1 where for simulations of the two-dimensional
NLS equation over a fixed time interval of 100 periods the mmaxh of the kurtosis as function of BFI ardg

is shown suggesting that the maximum is always positive.

Empirical

1.2

081
<~ 0.6+
041
0.2

O>

0.6 '
0.4
0.2

BFI

Figure 1. Maximum kurtosis £as function of BFI and of dimensionless angular widgh
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3.5 Operational Implementation of kurtosis calculation.

Based on the numerical evidence displayed in BigN. Mori found the following fit for the maximum of the
kurtosis

0031 T gpp2 (25)
%  3V3

therefore, finite directional widtid is seen to give a considerable reduction in kurt@¥". Including the
contribution from the shape of the waves the total kurtosisoimes now

dyn _
C, =

Cs=C{"+ae?. (26)
where for deep-watear = 6.

This result holds for deep-water waves. The extension thoshavater is achieved by means of a redefinition
of the Benjamin-Feir IndeX. Recall (see J2003) that this dimensionless parameterjpstsses the balance
between nonlinearity and dispersion. For the generall@shalvater case this gives a new parameter which is
calledBs. It is defined as (Janssen and Onorato, 2007)

2
> o2 (Voo 9%l
BZ= —BFI X<CO> Ko (27)

where the relevant symbols are defined in Eqr&-(§) andBFI is given by Eqg. 18). The extension of the
kurtosis calculation towards shallow water is now simpligsiaeed by replacing in Eq.26) BF 12 by B%. Note
that in the deep-water limit it can readily be shown that theosd part of the expression fB§ becomes-1,
therefore in this IimiBg reduces to the usual definition for tB&1, cf. Eq. (L8). Studying now the dependence
of B on depth it is seen that for decreasing dimensionless dgptithe square of the Benjamin-Feir index is
slowly decreasing until arounihD = 1.363 when there is a rapid transition from positive to negatiglues.
Hence forkgD < 1.363 the kurtosis may become negative which implies thaethes less extreme events than
the norm, while in the opposite case there are more frequédrnee events.

3.5.1 Determination of the BFI andp.

The estimation of the Benjamin-Feir Index requires knogkedf the significant steepnessand the spectral
width J,, in frequency space. In addition, an estimate of the diraatiovidth &y is required as well. Here,

a description is given of a robust method to estimateBRé for modelled and observed spectra, which was
introduced in cycle 26R3 of the IFS. In particular, the estion of the width of observed frequency spectra is
not a trivial task, because observed spectra show conbidaraisy behaviour around the peak of the spectrum
(which is frequently ill-defined).

Janssen and Bouws (1986) have developed a robust methotintatesthe width of observed spectra, which
was applied to frequency spectra obtained from a wavermlsatéd at IJmuiden over a fifteen year period.
Following Goda these authors used the peakedness f@gtdefined as

_2 2
Qp—m%/@dwwE (w)

where Janssen and Bouws (1986) chose, after extensivaragpéation, as integration domain all frequen-
cies for whichE(w) > 0.25E(w,). However, in cycle 26R37 was taken over all frequencies, because this

3 Also the parametem needs adjustment for the shallow water case, but this haseeot introduced yet

10 Technical Memorandum No. 588
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was thought to be more robust . The advantage of this integealsure is that, because of the dependence on
the square of the frequency spectrum, peaks in the specteiengphasized. Janssen and Bouws (1986) also
explored alternative integral measures such as one bagbed eacond moment of the wave spectrum, but these
alternatives give more emphasis to the high-frequencyqfdhte spectrum and are therefore more sensitive to
high-frequency noise.

In the kurtosis calculation of the previous section it hasrbassumed that around the peak the spectrum has
a Gaussian shapé¥9), and therefore it makes sense to evalu@gealso for a Gaussian. In fact, Janssen and
Bouws (1986) checked from the observed spectra that to a gpprbximation the spectra are symmetrical
around the peak and that the Gaussian approximates thevetisgvectral shape well. In the narrow-band
approximation one finds to high accuracy

B 1
T T

whered,, is the relative width defined in Eq1®). A robust method to estimate the relative spectral width no
is to determine the spectr@l, and to invert Eq. 28), hence

Qp (28)

5 1
) bs= < =
P Qpobsy/T

As a consequence, the observed BFI becomes

BFI = ko “Qp.onsv/27T

The modelled BFl is calculated in an identical fashion tigtothe peakedness factQp and the integral steep-
nesse. However, further inspection of the results shows that fompse JONSWAP spectra the procedure
overestimates the width of the frequency spectrum. For el@ifor a young windsea case with overshoot
parametery ~ 3.3 the procedure underestimates the value oBtRé by a factor of two. In cycle 33R1 it was
therefore decided to restrict the integration domairQgfto the peak region, by reverting back to the origi-
nal approach of Janssen and Bouws (1986), and this restrictithe domain alleviates the underestimation
problem with theBFI.

The directional widthdg at the peak of the spectrum may be estimated by the usualabprioe.
g =+/2(1—M;)

whereM; = 1;/mg andl; = [ dwdB cos0)E(w, 8), but it won't always provide the sharpest estimate of direc-
tional width near the peak.

An alternative approach to estimation of the frequency anectional width of the two-dimensional model
spectrum is to fit the one-dimensional frequency and daeti spectra with a parabola thus giving sharp
estimates fod,, anddg. In fitting the parabola also a sharper estimate of the peakg&, may be provided
as up to now the peak period did correspond to the maximumeobtie-dimensional frequency spectrum so
Ty could only assume discrete values because of the disdietizaf the wave spectrum in frequency space.
However, occasionally the fitting procedure may fail beeaesy., the peak of the spectrum is erratic. Therefore
from cycle 33R1 and onwards the widths are determined bypdgekie minimum value from the integral method,
i.e. Qp andMg, and from the fitting procedure. Nevertheless, becauseeafeatively coarse discretization of
the spectrum, narrow spectra are too wide in the presenioness the ECWAM model. To accomodate for
this, the constant has been increased in the expressioneféwuttosis, Eq.45), by a factor of two from 0.031
to 0.062.
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Figure 2: Map of analyzed maximum wave height for16& of February 2007.

4 Maximum wave height and period.

In this memo a simple measure for extreme sea states willtbedirced. It is common to define as a freak
wave a wave whose height is at least 2.2 times the significamé Wweight. This is a very discrete and singular
approach, which is in practice not easy to verify. Nevegheg| it is desirable to be able to quantify extreme sea
states and to be able to validate them against observati@seaningful manner. It is then natural to consider
the concept of maximum wave height, a concept which is wadvkn in engineering practice. It should be
realized, as also pointed out extensively by Mori and Jang2@06), that the maximum waveheighf,ax not
only depends on the shape of the probability distributiarcfion of the sea surface, but also on the number of
waves at hand. Consider now a time series of wave heightaigfii@ involving a number oN waves. A good
estimate of the maximum wave height is the expectation viauenaximum wave height denoted Biay) -

As an extension of Goda’s work for Gaussian sea stéitéga, Will be determined for a pdf with finite kurtosis
and the result will be compared with observations of maximuawe height from buoys. The agreement is
good, and therefore this measure for maximum wave heighibées introduced into the operational ECMWF
wave forecasting system.

Before proceeding it is mentioned that there is an impotaneat. It is well-known that for narrow-band wave
trains the probability density function (pdf) of wave heighthe Rayleigh distribution. This was shown a long
time ago by Longuet-Higgins (e.g. 1957). He noted that ihigeneral straightforward to obtain the statistical
properties of the envelope of a wave train, even for broautilveave trains. For a Gaussian sea state the pdf of
the envelope is found to be the Rayleigh distribution. Tltistical properties of waveheight are much harder
to obtain. For narrow-band wave trains it can be argued tlaaetheight is twice the envelope and thus wave
height will then follow the Rayleigh distribution as well. ovever, for broad-banded wave trains the pdf of
wave height is not known.

One may wonder why it is so difficult to obtain the pdf of wavéghe for general spectra of finite width. An
important reason for this is that, at least in a theoretioatext, wave height is ati-definedquantity, in contrast
to, for example, the envelope of a wave train. Analyzing atseries it is fairly easy (see for example Appendix
B) to construct at any point in time the envelope of a wavattabwever, this is not possible for the wave height
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of a wave train (except of course in the narrow-band appration). In practice, researchers obtain the wave
height distribution by means of the zero-crossing methotiis Ts a very elegant method, which is easily
implemented: Search for two consecutive zero-upcrossimdjse time series and determine the wave height
from the difference of the maximum and the minimum of the acafelevatiom in the corresponding time
interval. Thus, wave height is determined by sampling whta zero-crossing frequengyn,/mp)Y/? (with my,
then™ moment of the wave spectrum). However, what about samplitigother frequencies, corresponding to
different (spatial) scales. For higher sampling frequen@we heights are expected to be reduced compared to
lower sampling frequency because one would expect that@tesnscales wave heights are smaller. Therefore
wave height depends on the choice of spatial and temporial, soed hence the wave height pdf will depend on
the way one samples the time series.

For the envelope distribution there is much less of a problenause the envelope is a continuous function of
time. By sampling at a sufficiently high frequency one simgédys the 'usual’ pdf for envelope. In fact, in the
Appendix B a review of the derivation of the pdf of the enveldg given and it will be shown that for linear
waves the pdf is always Rayleigh, despite claims by Longligtins (1983) to the contrary. This derivation
is based on the joint probability distribution of envelopel g@eriod, which does depend on spectral width, but
the marginal distribution law for the envelope can be shawbe independent of the spectral width parameter
v = momz/m{ — 1. In addition it will be shown that this theoretical jointfdd in perfect accord with the one
obtained from numerical simulations of the surface elevator a Gaussian sea state.

Finally, one may wonder why one is interested so much moraemwtaveheight distribution rather than the
envelope probabilities. If one is interested in extremedsron structures such as oil riggs or ships than one
would expect that the quantity of interest is something the energy of the waves, which is closely related
to the square of the envelope. For extreme cases the squtdre whve height would underestimate the force
on structures (as the pdf of wave height falls below the Rglyleistribution, while the pdf of the envelope

is Rayleigh). In other words, there is a case to concentnatih® envelope distribution rather than the wave
height distribution. Alternative arguments to use the @pe rather than wave height are presented in Longuet-
Higgins (1984).

Therefore, the theoretical developments will all concdra (statistical) properties of the envelope of a wave
train and wave height is defined as twice the envelope. Baibihe theoretical development and its verification
against Monte Carlo simulations are presented in Appendir Brder to obtain an expression for the expection
value of maximum wave height the work of Mori and Janssen §2@9followed closely. One may then take
the following steps

1. Start from the pdf of surface elevation which is the well-known Gram-Charlier expansion, i.e. pdf
depends on skewness and kurtosis, which are assumed to e sma

2. Obtain the pdf of 'wave height’ defined as twice the enveloHere the envelopg follows implicitely
by writing the surface elevation signal as

n = pcosy

with @ the local phase of the wave train. Local wave height is thdmeé asH = 2p and the wave
height distribution in terms of wave height normalized witike significant wave height becomes:

p(H) = 4H exp(—2H?) [1+CaAn (H)] (29)
where
Ay(H)=2H*—4H? 11

Note that because of symmetries the pdHofloes not contain skewness.
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3. The maximum wave height distribution is obtained by simpliting down the probability that for given
number of independent wavésthe maximum wave height has a certain chosen value. The maxim
wave height distributiorpm(Hmax) becomes

pm(Hmax) =N [1— P(Hmax)]Nil p(Hmax)
where, withBy (H) = 2H? (H2 - 1),

P(H) = /:dh p(h) = exp(—2H?) (1+CaBu(H))

is the exceedence probability of wave heidiitis the number of waves, ama(Hmax) follows from Eq.
(29). In the continuum limit this becomes

Pm(Hmax) = N p(Hmax) < exp[—NP(Hmax)] (30)
Notice that the maximum wave height distribution involvedoaible exponential function.

4. The expectation value of maximum wave height follows from
<Hma><> :/O deameax pm(Hmax) (31)

Notice thatHmax= F[C4(BFI,R),N], whereN = Tp /T, with T, the peak period andp the duration
of the timeseries. By making this choice for the number of egl\ it is tacitly assumed that two
successive 'waves’ are uncorrelated. This assumptionristogustify because the correlation between
two following waves may be of the order of 50 %. It would be mappropriate to correct for this
correlation thereby either reducing the number of degré&sedom or reducing the variance of the pdf.

The integral in 81) may be evaluated in an approximate fashion for laxgand smallC,. Details of this
calculation are given in Appendix C. The main result becomes

(Hmaw) = V/(2), (32)

where
@ =20+ ¥+ Slog [1+C4{220(2o—1)—V(1—2fo)—%(vz+§)H , (33)

with 25 = %IogN andy = 0.5772 is Euler's constant. An estimate of the sharpness oéstienate for the
expectation value of maximum wave height may be given as whlk follows immediately from the widtr
of the maximum wave height distribution. For linear waveswidth g is approximately (see Appendix C for
the detalils)

o - T
(Hmay — 2v/6(logN + 3y)

and clearly, the longer the time series of independent sytrd sharper the estimate for maximum wave height
becomes.

(34)

Next it is discussed how the corresponding maximum periosl eiiained. As reported in Appendix B, so far
only the case of linear waves has been worked out, so thigegiilires extension into the nonlinear regime.
The period is estimated using the joint pdf of normalizedetope,

R—_P
V2mo'
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KURTOSIS on 2007021000 STEP=00

Figure 3: Map of analyzed kurtosis,@or the 10" of February 2007.

and normalized period

where the period = 271/w = —271/ 9, and the mean pericti= 2rmmg/my. This joint pdf reads

(1)}

wherev is the width parameter as introduced by Longuet-Higgin88)9

2 R
p(R,T) — Wﬁexp{—Rz

v = (momp/mé — 1)¥/2.

For given normalized envelope height wave period follovesrirthe conditional distribution of wave periods

P(TIR) = p(R,T)/p(R), or,
R R2 1\?
HTIR) :Wexp[_ﬁ (+-7) ] |

The expectation value of the period then becomes

R /[odT R2 1\?
= mn mTeXp[_ﬁ<1_?> ]

Introducing the parametér = v /R the above integral may be evaluated for smaith an approximate fashion
with the result
1 3

TY=1+2A24+ A%
(T) AT A
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Figure 4: The left panel shows the dependence of kurtosiznGhe Benjamin-Feir Index, while the right panel shows
the dependence of®n the wave age parameteg &J1o.

and the maximum period then follows fromax= T(T). Finally, the small parametér involves the ratio o/
andR = Ryax While v follows in a straightforward fashion from the first three memts of the wave spectrum,
Rmnaxrequires knowledge of the value of the envelope at the exrdirplicitely,

H
RmaX: \/E max.
Hs

Let us now discuss some characteristic properties of thefreak wave warning system. In Fig.an example

of a maximum wave height map is shown for a big storm in the INétlantic that occurred on the $0of
February 2007. Here, the maximum wave height refers to tienes with a duratiofp of 3 hrs and the
number of wavesN follows from the relationN = Tp /Ty, whereT,, is the peak period. The maximum of
significant wave height in the North Atlantic was 15.9 m at tirme while the extremum in maximum wave
height is found to be 31.6 m. Notice, however, the dependehtiee estimate of the maximum wave height
on the number of waves in the time series of durafign Although according to Eq.3Q) it only depends on
the logarithm ofN, nevertheless folflp = 20 min maximum wave height will decrease on average by about
20% giving an extreme value of 26.5 m. Inspecting the kustasap shown in Fig3, however, it is found that
regarding maximum wave height, the extreme event in thelN&tfantic was not exceptional as the kurtosis
C, was only about 0.06 corresponding to a normalized maximukeweaightHmax/Hs of only 1.95. In order

to appreciate that such a condition is not exceptional tfigpnel of Fig. 4 shows the relation betwedty
andBFI obtained from the global field at 2007021000 UTC. For disglagposes the original 025ield was
subsampled to 1°5 Typically, maximum values of kurtosis are around 0.2 atgalofBFI of the order 1. It

is also of interest to study under what kind of meteoroldgiceditions exceptional waves may occur. Some
information on this is provided by the right panel of Fid, which shows kurtosis plotted against the wave
age parameterp/Uio. In particular for young windsea witb,/U1o < 1 large values of kurtosis, and hence
abnormal sea states, are possible according to the prggaoiaah. Young windseas typically occur in fetch-
limited conditions, when the wind just start blowing or duyithe passage of a front when the wind turns by a
significant amount.

According to Eqgns. 32)-(33) the normalised maximum wave height depends on two paraseéenely the
number of wavedN and the kurtosis paramet€,. Fig. 5 shows the dependence of kurtosis on these two
parameters as obtained from the global field of FR. In particular, the figure in the right panel, which
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Figure 5: The left panel shows the kurtosis dependence oftpectation value of normalised maximum wave height
(Hmax While the right panel shows the dependencéttfiay on the number of waves N in the timeseries of duration
of 3 hrs through the parametgy/logN/2. The full line shows the relation betweem4l and the number of waves for
vanishing kurtosis.

shows normalised maximum wave height as function 4bgN/2, is illuminating. A comparison with the
corresponding relation for vanishing kurtosis immediagtlows the importance of nonlinearity on the estimate
of maximum wave height. While for this synoptic case the link never meets the criterium for freak waves
to occur (recall the condition for freak wavesHgax/Hs > 2.2), when effects of nonlinearity through a finite
value of kurtosis are included theege a number of cases that meet the criterion for extreme everte.
question now is how realistic is the ECMWF freak wave warrgggtem.

4.1 \Verification aspects and maximum wave height verificatio.

Itis clear that for operational applications a choice fer lgngth of the timeseries needs to be made. Buoy time
series are typically 20-30 minutes long so initially it wasught that, in order to validate the model results
against buoy data, it would make sense to take this peridtedength of the time series. However, for practical
application a timescale related to the changes in the sinopihditions seems more appropriate. This would
mean a much longer duration of say 3 hrs. A compromise wasifoyrthoosing a duration of 3 hrs, while for
validation purposes 6 consecutive buoy observations watected making up an observed duration of about
3 hrs. The observed maximum wave height is then the maximutimeo® consecutive maximum wave height
observations.

In the data set currently used in the ECMWF wave verificatigiesn (Bidlotet al., 2005; Bidlotet al., 2007)
only Canada (Meds) and Norway (Oceanor) supply buoy obsensgof maximum waveheight. Inspecting
the distributions for normalised maximum wave height of MEEBuoys and Oceanor buoys it was found that
they belong to two different populations: the mean valueasfmralised maximum wave height of the Oceanor
buoys was considerably smaller than the mean value from B ®buoys. It is suspected that this is related
to a different length of the time series used (17.5 min. (@oBaversus 30 min. (MEDS)) and possibly to a
different procedure to obtain an estimate of maximum waveghte Because the majority of maximum wave
height measurements is from MEDS, only the latter data wikkbnsidered for the validation of the probability
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Comparison against Canadian (MEDS) and Norwegian (Oceanor) buoys:

All buoys 20060202 to 20080131

/| ENTRIES:

1950 enTRIES = 36520

661 MODEL MEAN = 2.44 STDEV = 1.273

224 BUOY MEAN= 2.37 STDEV = 1.325
LSQ FIT: SLOPE = 0.933 INTR = 0.228

76 RMSE = 0.324 BIAS = 0.069

26 CORR COEF = 0.971 SI= 0.134
SYMMETRIC SLOPE = 1.013

Model analysis

H, (0001 od wave)

w

NB: Hs and Hmax as recomputed
o from archived spectra.

2 4 6 8 10
H<(m) buoy

N
N

ENTRIES = 32495

MODEL MEAN = 4.89 STDEV = 2.495
BUOY MEAN= 4.54 STDEV = 2.584
LSQ FIT: SLOPE = 0.911 INTR= 0.750
RMSE = 0.922 BIAS = 0.348

CORR COEF = 0.944 SI = 0.188
SYMMETRIC SLOPE = 1.051

Model analysis

Model Hmax is the expected
value in a 3 hour record

Hmax (m) (0001 od wave)

Maximum wave height (m)27buoy

Buoys used:

MEDS: 44137,44138, 44139, 44140, 44150, 44251, 44255, 46036, 46132, 46147,46184,
46205, 46206, 46207, 46208.

Oceanor: LFB1, LFB2

Figure 6: Validation of analyzed maximum wave against obsgimaximum wave height from a number of buoys that
report maximum wave height (the buoy list is shown as welBriod is February 2006 until January 2008. For a
comparison of the quality of theidx estimates the validation of model wave height against batg i$ shown as well.

distribution function, although for the verification of mieum wave height all data will be usédThe MEDS
buoys have a single accelerometer and the maximum wavethgigbtained by taking twice the maximum of
a surface elevation timeseries obtained at all the timesenveceleration is minimal. This procedure does not
give the maximum of envelope wave height but there is no athatinely observed information on maxima
available. Nevertheless, this may give rise to problemééninterpretation of the comparison between model
and observations.

First results of a comparison of modelled and observed maxirwave height are shown in Fig. For a
first comparison the agreement between modelled and oliseregimum wave height is quite impressive.
The relative positive bias is about 5% while the scatterrideabout 19%. For comparison the scatter index
for significant wave height for the same set of buoys and degcabout 13%. This impressive agreement
is puzzling, because for starters actually apples and @earbeing compared, since the model value is an
expectation while the buoy value is instantaneous. Thiglpuzas solved when it was realized that the pdf
of maximum wave height is fairly narrow. For linear wavesyisith o is approximately given by Eq.34).
Clearly, the longer the length of the time series the shatmeestimate of maximum wave height becomes. For

4The MEDS data have the additional advantage that also enerdiional spectra are reported. These are needed lat¢etmie
theBFI.
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a 3 hour duration and a peak period of 10 s one fiod8Hmay ~ 0.08, therefore the maximum wave height
distribution is indeed fairly narrow as the scatter index thee much larger value of 19%.

4.2 Verification of the probability density function.

Nevertheless, it is emphasized that apples and @earfseing compared. This is clearly visible in the plot of
the geophysicaldistribution of normalised (by significant wave height) exmtion value and a comparison
with the graph of the distribution of the actual, observetli®af the normalised maximum wave height, as
shown in the left panel of Fig7. The width of the modelled maximum wave height distributibring about
0.05, is much smaller than the width of the observed distrdytiwhich is about A6 and it is evident that
there is no resemblance between the two distributions. @&ason for this discrepancy is most likely that the
observed distribution is a single realisation which is rextessarily representative for the area of interest, while
the modelled distibution is based on the expectation vaitieeonormalised maximum wave height.

Comparison to Canadian off-shore buoys Comparison to Canadian off-shore buoys
from February 2006 to January 2008 from February 2006 to January 2008
8 T T T T T 4 T T T T T
7.5
@——@ buoys @——@® buoys

== model, random draw, 100 min.
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Figure 7: The left panel shows the comparison between obddfax/Hs distribution and the modelled distribution
of the expected normalised maximum wave height. The rightlp#hows in stead of the distribution of the expected
maximum wave height the model distribution obtained by @aoamdraw of kax for given number of waves and given
kurtosis. The right panel also shows the impact of nonlifigan the maximum wave height distribution by means of a
plot of the case of zero kurtosis. The length of the timesési@00 min. which is thought to match the length of the buoy
time series.

The question now arises whether it is possible to simulageotiserved distribution of normalised maximum
wave height. This turns out to be possible indeed and in dodenderstand the method that will be followed, it
is important to return to the basic mechanism of freak wavegaion. As already discussed in the Introduction
freak waves are regarded to be the result of a nonlinear $oayphenomenon but it should be realized, as
pointed out in J2003, that the focussing is the most efficrdmén the phases of the waves involved in the
focussing are chosen appropriately (constructive intenige). However, in the field there is no knowledge of
the phases and for practical purposes the phases are chasmlmostrandom manner. Nonlinearity will give
rise to a certain degree of correlation between the wave$oariis reason the adjective almost, and the effects

5There is a need now to make a distinction between the maximave Weight pdf and the geophysical distribution of maximum
wave height. In principle the geophysical distributionidals from the combination of the maximum wave height pdf amel geo-
physical distribution of the number of waviisand the kurtosi€,. Only when the latter distributions are much more narrovn titee
maximum wave height pdf the geophysical distribution wiircide with the maximum wave height pdf. For brevity theeatiyve
geophysical will be dropped
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of small nonlinearity on the pdf are given in Eqn29) and 30).

A way to simulate the observed distribution of maximum wanight is therefore to start from the theoretical
pdf of maximum wave height3Q), the explicit form of which is given in Eq. GQ1), and to generate from
this pdf for given number of waveld and given kurtosi€, a random draw of normalised maximum wave
height. The usual procedure for this is detailed in Apper@lignd basically one obtains a random draw of
maximum waveheight from the condition that the cumulatiigribution is a random number between 0 and
1. For duration a 100 min period has been chosen as this igihdo match the length of the buoy time
series appropriately, despite the fact that according ¢odta provider the length of the time series is 30
min. ® The resulting modelled distribution function is plottedtive right panel of Fig.7 and the very good
agreement with the observed distribution is to be noted,airtiqular in the extremes. For reference, also
the model distribution according to linear theory (i€ = 0) is plotted and although linear theory gives a
reasonable agreement with the observations it is notecextie@mes are underestimated by linear theory. This
underestimation of the extremes has some practical coasegs. It is common to define a freak wave as an
event withHnax/Hs > 2.2. Integrating the nonlinear and the linear distributiaonir2.2 until infinity one finds
that according to linear theory3Po of the cases are freak wave events while according namltheory 75%

of the cases are freak waves which amounts to an increaséaf A6cording to the observations5346 of the
cases are freak waves, therefore nonlinear theory unteetss the number of freak waves somewhat.

The slight underestimation by nonlinear theory is more pumted when a plot of the logarithm of the distri-
bution is made as shown in Fi§.and is compared to the logarithm of the observed distribuftitt is evident

|'|'|'|'|'J

G—o buoys
— model, random draw, 100 min
— . linear model, random draw, 100 m

log10 (pdf)
o
[EEY

0.01

| | | | | | | | | | N
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Hmax/Hs

Figure 8: The logarithm of maximum wave height distributaitained by a random draw of 4 for given number of
waves and given kurtosis as compared to the observed maxivaumheight distribution.

6Note that according to Fig6 the model overestimates maximum wave height by 5%. Thisestienation can be removed by
reducing the number of degrees of freeddrar equivalently by shortening the length of the timeseniesf180 min. to 100 min. This
reduction in the number of degrees of freedom is in quali¢ézdigreement with the correlation between two successivesva

"This comparison was restricted to cases with a significanewight larger than 2 m because buoys might have probleths wi
accurately representing low sea states. This is also avidéne next section where buoys are not representing hegfufncies very
well. This reduces the number of collocations from 32,0006@00. Nevertheless there are still about 1,300 casesdliafy the
freak wave criterion oHmax/Hs > 2.2
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that the really extreme events withnax/Hs > 2.5 are seriously underestimated by the present nonlineanjthe
although in the range of 1.9 until 2.5 there is good agreeniem reason for the discrepancy between model
and observations is not clear at present. Noting that tladirst, preliminary comparison a number of detailed
studies of the buoy time series need to be carried out. A fiolt at the time series for maximum wave height
suggests that these really extreme events are presentoordywéry short time. However, at present there is no
criterion to decide whether these cases can be regardedliassoor not. Also, the buoys are giving maximum
wave height based on twice the crest value which may be arstimiate of envelope wave height. On the
other hand, the discrepancy for very extreme normalisedmmaxr wave heights may also be an indication that
the Gram-Charlier expansion for the pdf of the surface ¢lewds not adequate for these extremes. This is
further discussed at the end of this section. In E@lso the logarithm of the pdf according to linear theory
has been plotted and it is suggested that linear theory estimates the extremes to a considerable extent, as
differences with the observations start alreadiafy/Hs = 2.

The estimate for the number of freak waves can also be oltamnan analytical manner. A straightforward
integration of the pdf on maximum wave height fra%ﬁz = Hmax/Hs = 2.2 to infinity gives

J= /H 722deax Pm(Hmax) =1— eXp[—Ne_zzc (1+C4B(Zc))] ) (35)

whereB(z) = 2z(z— 1). Although the number of waves is fairly large, typicallyN = ¢/(1000), the criterion
for a freak wavez. = 2.22, is such thae %% is tiny so that the produd¥e %> may be regarded as small. In
that event the first exponential i8%) may be replaced by its argument and to a good approximatierfinds

J=Ne % (1+C4B(z)).

The above expression gives the number of freak waves for tecylar realization. In order to be able to
relate this to the geophysical results displayed in Figand 8 the ensemble average is taken. As a priori a
correlation between the number of waves and the nonliryeafrithe wave field is not expected it is found that
(NC4) = (N)(Cy4) 8and therefore the ensemble averagd bécomes

(J) = (N)e 2% (1+ (C4)B(Z)) -

For the present synoptic case it is found that for a 100 mitiote window (N) = 593 while (C4) = 0.021
only. As a consequence, including finite kurtosis effecis famds that the number of freak waves i6% while
according to linear theory the number of freak waves is onf/8 hence nonlinearity increases the number of
freak waves by 70%. Note that these results are in close mgrgevith the results from Figi. Although the
average value of the kurtosis is small it is multipliedB{z.) = ¢'(40) which is fairly big, therefore even small
nonlinear effects may have a significant impact on the nurabgeak waves.

Finally it is remarked that also for the pdf itself it is of émest to obtain the average pdf over the geophysical
distribution. For the extreme states the surprising resulften obtained that the tail of the distribution depends
on the average value of kurtosis. This is surprising beceuss researchers would expect that the tail of the
distribution is determined by the extreme values of thedsist In order to understand this a bit better consider
the pdf of maximum wave height, given in EqCY), and consider the limit of extreme values of normalised
maximum wave heighy = Hmax/Hs. Then the pdf of maximum wave height is approximately

Pm(Y) ~ 4Nye Y [1+CaAu(y)], y >> 1, (36)

in other words, for extreme values the pdf of maximum wavglitgs apart from the factdy just given by wave
height distribution 29). Clearly, the geophysical ensemble averageptlepends on the average value of the

8 In fact this assumption can immediately be checked usingptiesent synoptic condition. One findgN — (N))(C4 —
(C4)))/({N){C4)) ~ 0.1 which is small enough so that the assumption of decoroela@pplies.
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kurtosisC,4 and not on the extreme values. Apparently the effects ofahdam draw are overwhelming. Most
cases encountered have a small value of kurtosis, but lecddise random draw there is a finite probability
that a large value of normalised maximum wave height is abthi The contribution by the small kurtosis
cases apparently dominates the one from the large kurtases@ven in the tail of the geophysical distribution
of maximum wave height. Therefore, strictly speaking thespnt model for extreme waves has not yet been
validated for large values of the kurtosis.

Furthermore, Eq.36) shows that in essence the tail of the maximum wave heighilaison is given by the
wave height distribution which follows in a straightforwafashion from the Gram-Charlier expansion of the
surface elevation pdf. Although the tail of the observedritiistion function is exponential, an inspection of
(36) reveals that for large values of normalised maximum wavght¢he model pdf drops off faster, suggesting
that the Gram-Charlier expansion may be problematic inulig extreme range withi > 2.5. The shape of
the wave height pdf has shown good agreement with obsengafiom a wave tank for example, but the very
extreme range witly > 2.5 has never been validated.

3

X X 21 16 17 18 19 2 21
sqrt(log(N)/2) sqrt(log(N)/2)

Figure 9: The left Panel shows the dependencegf}Hs, obtained as a random draw from the p80j, on the number
of waves N in the timeseries of duration of 100 min throughpdw@meter,/logN/2. The full line shows the relation
between expected.tdx and the number of waves for vanishing kurtosis. The righePahows the corresponding scatter
diagram as found from the buoy observations.

4.3 Finding empirical relations.

Itis concluded from the above discussion that the stagistiobserved extreme waves may be well simulated by
using kurtosis and the number of waves from our wave forg@asystem, provided the normalised maximum
wave height is drawn in a random manner from the theoretidb(3D). This implies that using our approach it
is possible to simulate how certain observed relations attesxcdiagrams will look like. A prominent example
is the relation between maximum wave height and the numberae€s. Ignoring nonlinear effects for the
moment one would expect, based on Eqn32){33) a definite relation between the expectation value of
normalised wave height and the number of waves s{itgy = ((logN + y)/2)1/2, and even in the presence
of nonlinearity there seems to be a reasonable correlagbmden the two as follows from the right panel of
Fig. 5. Randomness, however, seems to destroy such a relatiorddnto show this the scatter plot of the right
panel of Fig.5 was redone, but now using a random draw of maximum wave heldt result is given in the
left panel of Fig9 and compared with Fig there is a considerable increase in scatter. This alsodslfoom a
linear fit to the data, as for the expectation value of maximuawe height a correlation of 92% is found while
the random draw only gives a correlation of 30%. The obsimst shown in the right panel, give a similar
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scatter, but evidently high frequencies Q.5H2), corresponding télogN/2)'/2 ~ 2, are under represented by
the buoy data. Presumably this is because buoys are irigernsithese high frequencies.

From this large drop in correlation it follows that it will extremely difficult to try to obtain empirical relations
from observations. An exception is perhaps the validatibomaximum wave height against observations as
shown in Fig.6. Using a random draw of maximum wave height the scatter iredyxincreases from 19% to
22%, apparently because the scatter of the random noiseals@mpared to the scatter index itself.

Comparison to all offshore Canadian Buoys
from February 2006 to January 2008
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Figure 10: Dependence of observegdi/Hs on observed Benjamin-Feir Index. Modelled random draw efmadised
maximum wave height (based on timeseries of 3 hrs which drecesl in length by 40 %) against the Benjamin-Feir
Index is shown as well. The error bars are an indication ofefrer in normalised maximum wave height.

Alternatively one may perform a careful averaging of theadatreduce the effects of randomness. Burgérs
al. (2008) collected in the order of 2 years of observations efrittioHmnayx/Hs obtained from AUK platform

in the central North Sea and collocated these observatidhsawchived values of thBFI from the ECMWF
model. Their results suggest that there may indeed a relagtveen normalised maximum wave height and
a spectral shape parameter such asBRé. Their work was redone using the present data set. The firesen
results are given in Figl0. Here, observed normalised maximum wave height againstreds$BF1° (black
squares) is plotted, while for comparison purposes alsadh®esponding model relation between the average
of a random draw of normalised maximum wave height and theage®F| (red squares) is shown. A similar
average relation is found when the expectation value of mam wave height is taken but the error bars are
much smaller. The present results are in agreement witheBsieg al. (2008). The plot seems to confirm
that the model for extreme sea states even gives reasorablésrfor fairly extreme values of thigF | and the
kurtosis.

Finally, it is emphasized that Figl0 only gives an indication that the normalised maximum wavighte

9as determined from the observed one-dimensional spedt@ i integral method df3.6
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depends on some nonlinear aspects of the sea state. As afpragnlinearity theBFI was used. However,
inspecting the model for the kurtosis given in EBB) the situation is somewhat more complicated. Itis evident
that parameters such as the wave steepanessl the directional widtldg are important as well. Furthermore,
the observations dfl,ax are obtained from the maximum crest, which implies that olagi®ns should also
depend on the skewness.

5 Conclusions.

This report describes an update of the ECMWF freak wave wgreiystem and its first, still preliminary
validation against observations of maximum wave heights Varsion became operational in June 2008.

The freak wave warning system has been extended by inclugffiegts of directionality in the estimation
of the kurtosis of the surface elevation pdf, while also tbatdbution of bound waves to the kurtosis has
been introduced. Furthermore, a parametrisation of skiallater effects in the kurtosis calculation has been
introduced. Next, we two new output parameters have beenstisd, namely maximum wave height and the
corresponding period, which provide some simple measoresxtreme sea states. The maximum wave height
pdf, which includes nonlinear effects, was obtained foitaythe work of Mori and Janssen (2006).

A preliminary extensive validation of the maximum wave leigroduct was performed as well. The present
system is capable of giving realistic estimates of extreg@an wave events. However, because of the nature
of these events, only probablistic statements can be isueslis evident from the validation of the modelled
maximum wave height distribution function against indisédl observed events as a random draw from the
theoretical pdf was required in order to get a good match thighobserved pdf.
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Comparison of analysed ECMWF maximum wave height
with buoy observations.

Figure 11: Comparison of observed and modelled expectatane of maximum wave height. Time interval for the
model pdfis 18 mins, consistent with a 40 % reduction of thelrer of degrees of freedom. Period is February 2006 until
January 2008.

The main output of the warning system is the expectationevafunaximum wave height over a three hour time
interval. Unfortunately, we cannot validate the qualitytlis parameter as no observations of the expectation
value over a three hour interval are available to us. Negtr#is, one can make the compromise to consider
the expectation value of normalised maximum wave height tdwe much shorter period of 30 mins. The
observed estimate for the expectation value of maximum vaaight now follows from the average of the 6
successive observations (rather then taking the maximuiimeo® observations as done in section 4.1). Again
it is suspected that correlation effects are relevant agabtbre the number of degrees of freedom in the model

24 Technical Memorandum No. 588



On an extension of the freak wave warning system and its verifation. cECMWF

Comparison to Canadian off-shore buoys
from February 2006 to January 2008
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Figure 12: Comparison of observed and modelled expectatadne of normalised maximum wave height distribution.
The model time interval is 18 mins.

pdf is reduced by 40%. This choice provides an unbiased atiof modelled maximum wave height. The
resulting comparison between modelled and observed maximave height is shown in Figll while the
comparison between modelled and observed geophysicabdigin of normalised maximum wave height
is shown in Fig.12. Again for the much shorter time series there is a good ageaebetween modelled and
observed maximum wave height, while, as expected, the givgrarocedure applied to the observations results
in a much sharper geophysical distribution function. Noldpif there would have been more independent
observations available at the relevant synoptic timeswlgld have resulted in a even sharper distribution
function. Therefore, the expectation value of maximum waemght over the shorter time interval seems to
be a valuable product, and by extrapolation it is expectatlttie same holds true for the present operational
product, which is the expectation value of maximum wave litedyer a three hour interval.

For a first validation, it is believed that some promisingutesshave been obtained. Nevertheless, a number of
issues need to be clarified. For example, the effects of latioe between successive waves on the probability
distribution function of maximum wave height have to berastied. Presently it is assumed that two wave
events are not correlated, but this assumption is hard tifyjas the correlation between two successive waves
may be of the order of 50 %. However, to estimate effects afetation is not a trivial task. A first step was
taken by Kimura (1980) and Longuet-Higgins (1984) who,dwiing the work of Uhlenbeck (1943) and Rice
(1945), studied the joint probability distributigo(p1,p2) of the envelopep; at timet and the envelopg, at
timet+ 1 and its dependence on correlation. One of the interestinglgsions from their work is that for
finite correlationk the variance of the pdf, usually given hy, is reduced by the factay'l — k2. Although the
effect of correlation is only of second order, this still ngiye a considerable shift in the maximum wave height
pdf of the order of 5- 10% towards lower normalised maximum wave height. The tagstimate effects of
correlation is, unfortunately, nontrivial as the joint dfN — 1 somewhat correlated events is required.

Furthermore, it is required to study in what manner the G@&marlier expansion for the pdf of the surface ele-
vation may be extended into the regime of very extreme evais Gram-Charlier expansion is an expansion
of the pdf in terms of the Gaussian distribution and its daies. Although this set of basis functions is or-
thogonal it is by no means certain that this gives a uniforvalljd expansion for extreme values. Furthermore,
for large values of the kurtosis the pdf may become negatiwech is a highly undesirable property of the

expansion.

Also, and this is work still in progress, more realistic esites of the canonical part of the kurtosis need to be
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developed. Presently, the narrow-band approximationad ushere the canonical part of the kurtosis is given
by 6¢2 (see Eq. 26)), but it is already known from Janssen (2008) that for stialispectra the contribution of
bound waves to the kurtosis may increase by a factor of two.

Finally, according to the buoy observations there are figakes in 8.5% of the cases, while according to
nonlinear theory there are freak waves in 7.5 % of the cashss dibes not imply, of course, that this is the
frequency of “monster waves” as one still needs to multiplg humber by the frequency of occurrence of large
significant wave height events. Adopting as criterion of ginegne event that significant wave height should be
larger than 8 m, then according to the available informatiom altimeter satellite data and first-guess wave
model results the probability that on a global scale sigaifiovave height is larger than 8 m equals 0.003.
Therefore, the probability of having “monster waves” sorheve on the globe is about 0.00024.
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Appendices.

A Evaluation of Eq. (20).

The integral in 20) is now evaluated for the special case of the Gaussian spe¢i5). Substituting 15) into
(20) one finds

C4 = J(R) BFI?,
where
e (it Vi@ tvited)
(V3= v1)(V3—Vv2) —R(@— @1)(® — @)

Note that the integral contains singularities and is 6-disi@nal. This therefore presents a challenge when
evaluated on the computer. It was decided to do some arslytiark first.

2 0
J(R) = Wﬁ/mdvlzsd%zs

A.l Step1l.

In the first step it is realized that although the integral idifiensional, the denominator is essentially 4-
dimensional as it depends on the difference variables v, vz — Vo, @3 — @, and@; — @ only. Therefore
introduce new variables according to

Vi—V3 Vo — V3
X1 = , Xop = , V
1 \/§ 2 \/§ 3
- @@
\/§ 7X4_ \/§ 7%

and the integration over the variablesandg; can be performed immediately. The eventual result is

X3 =

g (48 —x1xe) — (4§43 —XXa)

2 00
IR) = (2m)2 7 /_oo 234 X1Xo — R¥gXa

which reduces the dimension of the integration by two butihgularities have not yet been removed.

A.2 Step 2.

In the next step introduce polar coordinates, which is abxagood idea when dealing with Gaussians. Hence
introduce

X1 = P1C0SB1, Xo = P1SiNGy, X3 = P2 COSH,, X4 = P2SIN6G,,
and introduce the new variables
27=pf, 22=p5 Q=261 (=26,

The result for becomes

1 2nd o0 g g a(1-3sin@)~2(1-3sing)
J(R) = 4—712/0 (Pl,z/o 22 " Sing— Rasing (A1)
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hence this involves much simpler exponential functiondadn, it turns out that the integrations owgrandz
can be performed. In order to see this introduce the doutdgial

I — /00 dzl-,z e—alzl—azzz
0o 21-Bz

)

whereag = 1—sin@ /2, a = 1—sing/2, andf = Rsing/ sing,. Introduce the transformation

4|

V=——-1
Bz

then the integral can be rewritten as
| = @/w d_v/oo dz, e 2(@Brafviar)
1V .Jo '

which simplifies the problem considerably because the &nigygibecomes a fixed point. In addition one may
perform immediately the integration overwith the result

o 1
-2 [ d—v ,
~1V a+Bag+ Bav
which is an almost trivial integral over Evaluation of the integral givé%

| = ! log| o
ax+ Bag Bax

The result has an interesting structure because when tramilesitor vanishesa, + Ba; — 0, at the same
time |ap/Ba;| — 1. Hence the logarithm approaches 0 giving ffa finite answer] — —1. Therefore, the
integration over; andz, has removed the singularity. Nevertheless, the numenedlation has to be done
with care. When the denominator is sufficiently small, thprapriate limit forl is taken.

. (A2)

The integrall(R) in (A1) now becomes (making use of the definitionsdgra, andp),

! an do, f
‘](R)_H 0 (pl @ (S]_,SZ,R),
where
1 si(l-39)
f S]_,SZ,R = ) (A3)
( ) si(1-3%)+Re(1-3s1)  |Re(1-3s1)

and the notatiors; = singy, ands, = sing, has been introduced.

A.3 Numerical computation.

Still some development is required, becausef®) 6tands, it is not easy to take the limit for smiJIbecause

R appears in an awkward manner in the logarithm. Therefoeeintiegration domain has been splitted in two
parts, one fron{0, 1) and one from(1t, 2m1). In the last domain a new variable is introduced in such a \Wway t
the integration range shifts {0, 7). Thus, takep = 6 + rmand as a consequence the sin-function changes sign
since sinp = —sinB. As a resultJ(R) will consist of four contributions involving the functioh(+s;, +5,R)

109pecause the integrand is locally an odd functiomife principle value integral will not give a contributioriated to the singularity
atv=0.
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with all combinations of the sign (hence the expressionJi®) becomes invariant for the sign of the sin-
function). Finally, the integration domai®, i) is splitted into two domains, namel, 17/2) and (11/2, ).
Applying the transformatiom = 11— 6 maps it to the former domain, while sjn= sin6. This reduction of
the integration domain by a factor of two increases the nated) by a factor of 4. The eventual result is

1 (12
IR =15 | d0de{f(+51,+%) + F(=s1,—%) + F(=51,+%) + T(+51,—%)} (A4)
where for brevity the dependence Rihas been dropped. The resuld) has the advantage that with the same
resolution the numerical evaluation is four times faster.adldition, it is now possible to take the small and
large R-limit.

For example, consider the smBilimit. Taking the limitR — 0 before hand in the denominator, the integrand
of (A4) becomes

. s(l-3%) | 1 s1(1+3%)
si(l-3s) " |Re(l-13s1)| si(l+is) ~|Re(1+is)
1 s(1-3%) s1(1+3%)
si(1-35) " |Re(1+3s1)| si(l+3s) |Re(1-1is)

Because of the common front factor the first and the third teiay be combined and it is seen that the(loaR)
factor will drop out. The same remark applies to the secoritha fourth term. As a result, the integrand
becomes after some algebra

1+ 1s)
+ log 2
s(1-79) |(1-35
and in the limitR — 0 J(R) becomes
/2 /2 1
IR) == / d(pl (L+5%)
—3s1)

and the problem has been reduced to some standard integtedsintegral overp, is, using Gradshteyn and
Ryzhik (1965) (4.397.1), equal & /6, while the integral oveg, equalsrt/y/3) (using Gradshteyn and Ryzhik
(1965) (2.562)). Combining results one finds

T
limJ(R) = —,
R—0 ®) 3v3

a result that agrees with Mori and Janssen (2006). In a sirgia one may consider the largelimit, and one
finds

(A5)

1n
limJ(R) = —=——,
R0 (R R3V3

Furthermore, the only additional analytical result is ioatR = 1 J(R) indeed vanishes, a finding in agreement
with the general resul2Q).

Thus far we haven't been able to do the integral analyti¢allfherefore, the integral has been computed on
the computer. This was not as straightforward a task as ihihsigem. A very important element of a succesful

11 We even tried it with Maxima, but rather then replying thatannot find the answer it returns the original integral (argie way
of admitting defeat!).
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Figure 13: The integral §R) as function of R for N= 36. The parametrization of the integral, labeled with 'Fit'shown
as well.

integration is that the integrand is regularized in the nearmprescibed below Eq.AQ). The other important
element is that the integration is done over a fixed intefgatr/2) with € << 1. The integrand was discretized
in the following manner:

(pl(”z) =nA@+¢&,n=0,N,
wheren = N corresponds tgy » = 11/2 andAg is given by

_m2—¢
=N
ForN = 36 the result of thd(R)-computation is shown for the range<OR < 1 in Fig. 13. The number of grid

points was varied frorhl = 18 toN = 180 but the results fal(R) are found to be fairly insensitive to variations
in N.

Ap

By some trial and error the following fit to the numerical dedas tried:

1 1-R
R=—>— — A
IR = Grrire (A6)
whereRy = 3v/3/4m°. This fit was inspired by the conditions thatR) should vanish folR = 1 while it
should reach the limitA5) for vanishingR. Also, the numerical result suggested that the fit shouldwbein
a hyperbolic fashion, for this reason the denominator. Hatof 1/(27)? is unexplained. Nevertheless, the
agreement between the numerical results and the fit is isipees

In order to emphasize the good agreement results of thedisitalculation as function of the dimensionless
widths g, anddg for a steepness= 0.1 are shown in Figl4. The right panel shows the fidg) where forR> 1

the relationJ(R) = —J(1/R)/R was used which follows from2(), while the left panel shows the numerical
result forN = 36. The agreement is more than satisfactory, and it suggest# spectra are stationary on a
long time scale then the fiAG) is a good candidate for operational implementation of the-dimensional
kurtosis calculation.
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KURTOSIS-2D (Numerical) KURTOSIS-2D (Fit)
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Figure 14: Dependence of kurtosig @n dimensionless frequency widlly and angular widthdg for a dimensionless
steepness of 0.1. The right figure is based on f&§) while the left figure is from numerical integrations with-N36.

B Joint distribution of envelope height and period.

B.1 Theory

In order to obtain the joint pdf of envelope and period thera need to describe a procedure how to obtain
from a given time serieg (t) the envelope and local phase.

Attention is restricted to analytic functio@gt) = n +i&. These functions have the remarkable property that if
the real part o is known then the imaginary part dfis given by the Hilbert transform of its real part. Thus,

E:D(Z):iH(n):i%/drg, (B1)

where the integral is a principle value integral and-thsign depends on the chosen assumed behaviour of the
complex functiorZ for large arguments (cf. remark below). Envelgpand phasep are now defined as

pe?=2Z(t)=n+iE,
therefore
n = pcosy, & = psing. (B2)
Envelope and phase follow now at once frgmandé&,
p=+/n2+&2 p=arctari /n). (B3)

In this fashion (and this is of course very well-known) oneyrabtain from a real time series envelope and phase
of a wave train. This is a very general approach. For a halbbamg wave train (but note that this assumption
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will not be made herep will be a slowly varying function in time and space. In thosewmstances it is
costumary to introduce the local angular frequency through
e

w= TR (B4)
and for a narrow-band wave train the local frequency is alsalg varying. The key-point is now that the
notion of a local frequency is generalized by applying thmealefinitions also for a wave train with a broad-
banded spectrum. Hence, for any time serjeanvelope and phase are obtained from BR) (vhereé is the
Hilbert transform ofn). The joint pdf of envelop@ and periodT is then easily obtained by making use of the
local frequencyw of Eq. (B4) and the definitionT = 271/ c.

Remarks on the procedure

It is indeed a remarkable result that one may construct a agnalZ from its real part and the Hilbert transform of
its real part, but there is also a caveat. A unique solutionacdy be found provided one makes an assumption regarding
the behaviour of the complex functi@iz) for large complexz.

It is quite amazing that given a functi@{x) on the real axis, it is possible to find a unique analyticatfion f(z) =
0(z) +1ih(z), wherez= x+iy. This is simply not possible unless some conditions on tiewieur of f () for largez are
imposed. To illustrate the point consider the funciigr) = cosx. There are at least two complex functioi(g) that give
the same function on the real axis, namé{y) = exp(iz) and f (z) = exp(—iz). So the solution is not unique unless one
imposes an additional condition on the behaviouf @). Imposing the condition thaft(iy) vanishes sufficiently rapidly
fory — oo will give rise to the unique solutiof(z) = exp(iz), while the condition thaf (iy) will vanish sufficiently rapidly
for y — —oo will give rise to the second solutiof(z) = exp(—iz).

This has consequences for the extension of a real signakicdmplex domain. In order to show this start from the
Cauchy theorem. Consider an integral in the complex z-pdétige form

/ ﬂdZ,
JCZ—1p
If f(2) is analytic ancC is a piecewise smooth closed contour in an open domain, terding to the Cauchy integral

theorem
fiz2) .
/ZiZOdz_me(zo),

if Zp is insideC. If z, is outsideC then the singular integral vanishes.

The result in Eqg. B1) now follows by making a special choice of the cont@urConsider a contou® that consists of a
semicirclel’r with radiusR and the real axis from-Rto +R, henceC = N'r+ [-R R]. First suppose thaft(z) vanishes
sufficiently rapidly fory — o so that the contribution from the semicircle in the uppef-p&ne,l} vanishes. In the limit
R — o one then finds

LICS P
PLWE_Xdzf mmif (x),
Writing f(x) = g(x) + ih(x) one immediately finds from the real part of the above equadtian
_ 1577 9@)
h(x) = np/,mx—fdz
corresponding to the- sign result of Eq. B1).

However, if one now assumes on the other hand ftiat vanishes sufficiently rapidly foy — —co then in order that
the contribution along the semicircle vanishes one hasasecthe contou€ by choosing a semicirclgk in the lower
half-plane. The end result is-asign difference as

h(x) = 77—1_[P/j:o %dz
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Therefore the extension of a real function into the complex@ is not unique, and results will depend on assumptions
regarding the behaviour of the complex function for lazge

In order to obtain the joint pdf of envelope and period thekaair Longuet-Higgins (1983) is followed, with
corrections provided by Xet al. (2004). Starting point is the assumption tigt) is a stationary Gaussian
process. Sinca, & andé& are linear transforms af their joint pdf is gaussian and therefore can be expressed
as

A !
o) = 927 T

wherex = (n,f,f],é), and the covariance matrix is given By = (xx;). Fortunately, a number of elements
in the correlation matrix vanish, and the elements with a finite value are:

211 =222 =M, 214 =241 = —My, 2p3 =232 = My, 233 = 244 = M.
With this choice ofz the determinanfz| becomes
2] = 4%, A= memp —m,

and the joint pdf becomes

P00 = g P 55 [Meln?+£2) + mo(h? + £2)~2my (& ~ )] |.

From this the joint pdf op, @, p, @ is found by the usual transformation rule, i.e.
PP, 9,0, ) = P(x) J,

where the Jacobiad = 6(n,€,h,é)/d(p,tp,p,¢) follows from the transformation given in EqB2). One
findsJ = p?, and the joint pdf becomes

. 2 1 ) . .
PP, 9.0,0) = (2%2 A exp{—i [Mpp? + mo(p® -+ p?¢%) + 2my p° g } : (B5)

The joint pdf ofp and@ is then found by integrating EqBE) over p from — to 4+ and overg from 0 to 2.
The result is

e P el P 2 4 o

Finally, it is then straightforward to obtain the joint pdfreormalized envelope,

and normalized period
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where the period = 271/ = —271/ @, and the mean period= 2rmy/my. The eventual result is

1 1\?
l+;§<1—?>]}, (B6)

wherev is the width parameter as introduced by Longuet-Higgin88).9

v = (momp/mé — 1)¥/2,

2 R
p(R,T) — mﬁexp{—Rz

There are two marginal distribution laws. The first one isgtiEof the envelope and is obtained by integration
over periodT. The result is

p(R)=2Re®, (B7)

hence the envelopR follows the Rayleighdistribution, independent of the width of the spectrum. $heond
marginal distribution law is the pdf of the period, and isabéed by integration over the envelope with the
result

1 1 2 -3/2
La (] -

which shows, as to be expected, a sensitive dependence wiidtiheof the spectrum.

1
P = 3572

Comments

1 Longuet-Higgins (1983) derived the joint pdf for envelaped period by considering only positive pe-
riods T. Ignoring negative periods will result in an envelope dhsttion which shows slight deviations
from the Rayleigh statistics. However, for finite band-widipectra there is a finite but small probabil-
ity that periods become negative. Including these neggreds, as done here will then result in the
Rayleigh distribution for the envelope (see ¥al., 2004).

2 Xu et al. (2004) claim that there is an additional multiplicativettacin the joint pdf of envelope and
period. Presumably this is connected to their definition afevperiodr = 2r1/|cw| which involves the
absolute value of. Their definition differs from the present one, as here riegtequencies and periods
are allowed reflecting the fact that waves may propagatectadiht or to the left.

B.2 Monte Carlo simulations

In order to show the general validity of the resiB6] Monte Carlo simulations have been performed for linear
wave trains. Introduce the complex representafimf a train of surface gravity waves

Z(t) = Zake_i(u)‘t+ek>v (B9)

wherew, = (gk)*/? is the dispersion relation for surface gravity wav@sis a randomly chosen phase, amd
is drawn from a given wavenumber spectrum with peak waverukyo= 1 using a Rayleigh distribution. Two
discretisations of the wave number haven been chosen, ypaniakar grid,

k=an n=0N
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whereN + 1 is the number of wave components amds a fraction of the widthoi of the spectrum (typically
o = 0.0250x andN = 100), and a logarithmic grid

k=ko(14+a)",n=0,N
wherekg is the start wave number (typicalky = 0.1, anda = 0.70y).

The surface elevation given by

1
n=-@Z+7z"
2
can then be shown to follow a Normal distribution.
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Figure 15: Envelope and local frequencyw for a narrow-band (topy = 0.24) and a broad-band (bottonv, = 0.40)
signal.

The complex functioiZ of Eq. (B9) has the property that it vanishes foft) — —o, hence in order to determine
the auxiliary variablef | take the minus sign in EqB(). Hence,

§=—H(n), (B10)
and since it is straightforward to show that
H (efiw,(t) _ iefimkt7
one finds

i *
§=—52-2).
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Therefore, in the context of a linear wave solution with ¢ans amplitudesy it is straightforward to obtain
the auxiliary variabl€, using the Hilbert transform. It is remarkable, that ther gi, &) just corresponds to
the canonical variables of the Hamiltonian formulation efter waves.

Using B10) and (L4) envelopeo and phasep follow from Eq. B3) while the local frequency follows from Eq.
(B4). For the Pierson-Moskowitz spectrum on the logarithmid gn example of results for envelope and local
frequency is shown in Figl5. Shown are two cases. The first case is a Pierson-Moskowgtzrsipgn where
the spectrum is cut-off at twice the peak frequency, givirgpectral widthv = 0.24,, while the second case
has the cut-off at 8 times the peak frequency, which gives0.40. It is evident that the broad-band spectrum
gives a more erratic behaviour in time of the envelope andoited frequency. In addition, note the occasional
occurrence of negative local frequencies.

PDF-2D (Numerical): XNU = 0.243 PDF-2D (L-H): XNU =0.243
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Figure 16: Joint pdf of envelope wave heightiHs (with H = 2p) and period T/T01 for a narrow-band (topy = 0.24)
and a broad-band (bottonv, = 0.40) case. For comparison the theoretical distribution is shas well.

Fig. 16 shows for the same two cases a comparison of the theoratioalpdf of envelope wave height and
period with the numerical simulation. The agreement is alnperfect, even for the broad band case. In order
to simulate the pdf)y andé have been calculated for a 100 member ensemble and eacletiesesas 1000
wave periods long. The pdf was determined by counting thebaurof times the envelope wave heiglat 2nd
local periodT entered a certain wave-height, period bin.
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Finally, Fig. (17) shows for the broad-band case only a comparison of the ncafigrsimulated marginal
distribution laws with the theoretically ones, given Bi7j and B8)

2 : : 2
15 | {4 1stl
T 1 £ 1
o [=%
05 1 oslh
0 0
0 1 2 3 0 1 2 3
H T

Figure 17: Comparison of simulated (black) and theoretigall) marginal distribution laws for envelope wave height
and period. The spectrum corresponds to the broad-band @as€0.40).

It is concluded that there is good agreement between theetiead probability distributions and the results
obtained with Monte Carlo simulations. This implies tha thme series analysis here, which is based on the
simple description thaty = p cos@, where the local frequency follows from the time derivatofehe phase,
seems to work, even for broad-banded spectra.
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C Evaluation of Eq. (31) and additional results.

The maximum wave height distribution becomes explicitely

Bly) = ANye 3" [1+ Cahy (y)] e Ne ¥ H+CaBu0)] (C1)

whereAy = 2y* — 4y? + 1 andBy = 2y? (y? — 1), illustrating that the maximum wave height distribution is
indeed a double exponential. For analysis purposes it i€ mamvenient to introduce the parameter

2=y
and to introduce the function

9(2) = —-Ne ?#(1+C4B), B=2z(z—1). (C2)
Then the maximum wave height distribution assumes the sirfiopm

p(z) = Z—f exp(¥). (C3)

Now guantities such as the expectation valugarfid the widtho of the distribution are evaluated. Anticipating
that the widtho of the distribution function €3) is small, (y) is determined by means of the approximation
(y) ~ (2)1/2, and afterwards it is shown thatis indeed small. The expectation value(@f can be found in the
limit of large N and smallC,4 in the following manner. By definition

(7) = /Ow dz zf2).
Changing from integration variableto x = —¥ gives
(2) = /0 " ik 2x)e (C4)
andz = z(x) is obtained by solving the relation betweeandz, i.e.
x=Ne #(1+C4B(2)
with a perturbation approach. Take the log and rearrange, th
z= %Iog (g) + % log(1+C4B(2))

and for smallC4 one finds in good approximation

1 1 N
z=127+ ;log(1+C4B(2)), 0 = 5 log <—> (C5)
2 2 X
As a consequence, usingy) in (C4) gives
N 1
(2) = /0 dx [zo+ 5 Iog(1+C4B(zo))] el=z+2 (C6)

Consider the first integral

N 1 N 1 1 (N
2= / dx ze X = —/ dx e (logN —logx) = = logN — —/ dx e *logx
0 2Jo 2 2.Jo
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The second integral turns out to be relatively small. It isrected to the exponential integral®iand to the
logarithm of the Gamma functioli(z). According to Gradshteyn and Ryzhik (1965) one has

N
/ dx e *logx = Ei(x) — y—e NlogN
0

wherey = 0.5772 is Euler’'s constant and

Hence, apart from exponentially small terms one finds
N
/ dx € *logx = —y
0
and therefore

1
= > (logN +y)
Consider now the second integral iD6),

N
= %/ dx log[1+C4B(z)] e
0

Utilizing once more the assumption tiaf is small the logarithm is expanded. Eliminatiorzgfand rearrange-
ment then gives

22:%{220(20—1)4—(1—220)/0 dx e‘xlogx—%/o dx e‘xlogzx}

wherezy = 3 logN, and the upper bourl is replaced byo as this only introduces an exponentially small term.
Integrals involving exponentials and logarithms are egldb the Gamma functioin(z) and its derivatives,

F(l+z):/o tze*tdt:/0 e?odte o,

and therefore

—r :/mlo t e tdt,
dz |, Jo g

Ll = [Clogt et
2 |, /0 og-t e 'dt
It may be shown that’(1) = —y, andl"”’ (1) = y? + %. Now, returning to the logarithmic form one finds for

2 5109 1+ 5 {2820~ 1) - y(1- 220)- %(vz+§>H .

Finally, combining the results faz andz, one finds for(z)

(2) :2o+%+%log [l+% {220(?0—1)—V(1—2fo)—%(yz+§)H ;
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with 2, = 2logN, while the expectation value dfmaxis given by(z)%/2. The analytical result has been com-
pared with results of numerical computations(Bf,ax and the agreement is astonishingly good. Notice that
the assumption has been made that the kurtosis is smallréemgnt with the assumptions on weakly nonlin-
ear waves. Therefore, in the operational model, Wity is computed, the kurtosis is resticted to the range
—-0.33<Cy < 1.

Next, a sketch is given of how the width of the maximum wave height distribution has been obtaineg. B
definition

@ =07+ (@2

therefore the expectation valueldf,.x denoted b)(zl/ 2> and defined as

72y = Ndle/Ze*X:i Ndxe*X logN — logx) +C,4B
%)= |, 7)o V/(log 9x) +CaB(20)

is needed. This integral can be evaluated for la¥gand smaliC,4. In particular a Taylor expansion of the
square root term is performed where theNoterm is the dominant term. Although for largeghe logx term

is of a similar magnitude, the contributions for larg¢o the integral are exponentially small because of the
exponential. The integrations can then be performed in dssifiashion as before, and for linear waves (i.e.
C, = 0) the relative widtho / (Hnay becomes

o m
(Hmay — 2v/6(logN+3y)

For typical choices of the number of waves,= 1000, the relative width is found to be around 9%. The
difference betweerz)¥/? and(z'/?) then turns out to be less than 1%. In this sense the maximure hgight
distribution is narrow, allowing a meaningful comparisoithiobservations as described in the main text.

From the pdf ofHmax it is possible to obtain random draws of maximum wave heiglitigithe cumulative
distribution, defined as

y z
PY) = [ dypy) = [ dzpi2)
where once more= y? is introduced. Making use of the form of the pdf given in EG3) the integration can
be performed with the result
P(y) _ eg(z) _ e%(0) _ e%(z) _ efN
where¥(z) is given in C2), and¥(0) = —N. Now P(y) is in the range of 0 to 1 and the random drawzof
follows from the inverse cumulative distribution
4(2) =log(P(y) + e ™) =log(r +e ™),

wherer is drawn from the uniform distribution (0,1). An explicit gpession for z is now obtained by an
iteration process that is identical to the one used for exalg the integrals in the beginning of this Appendix.
Hence, write? (z) = % (2)%1(z) where%y(z) = —Nexp(—2z) and¥;(z) = 1+ C4B(2z), then the random draw
for z, denoted by, is approximately given by

1 log(r +eN)
w =399~ )

wherezy = —0.5log(—log(r +eN)/N). Note that the exponentially small teremN needs to be retained
because otherwisg might become negative. The random draw for normalldggy then follows fromHmax =

N3
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