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Abstract 

Operational medium range flood forecasting systems are increasingly moving towards the adoption of ensembles of 
numerical weather predictions (NWPs), known as Ensemble Prediction Systems (EPS), to drive their predictions. We 
review the scientific drivers of this shift towards ensemble flood forecasting and discuss several of the questions 
surrounding best practice in using EPS in flood forecasting systems. We also critique the main case studies in the 
literature that claim ‘added value’ of flood forecasts based on EPS and point to remaining key challenges in using EPS 
successfully. 

1. Introduction 

Flood protection and awareness have continued to rise on the political agenda over the last decade 
accompanied by a drive to ‘improve’ flood forecasts (Demeritt et al., 2007; DKKV, 2004; Parker and 
Fordham, 1996; Pitt, 2007; van Berkom et al., 2007). Operational flood forecasting systems form a key part 
of ‘preparedness’ strategies for disastrous flood events by providing early warnings several days ahead (de 
Roo et al., 2003; Patrick, 2002; Werner, 2005), giving flood forecasting services, civil protection authorities 
and the public adequate preparation time and thus reducing the impacts of the flooding (Penning-Rowsell et 
al., 2000). Many flood forecasting systems rely on precipitation inputs, which come initially from 
observation networks (rain gauges) and radar. However, for medium term forecasts (~2-15 days ahead), 
numerical weather prediction (NWP) models must be used, especially when upstream river discharge data is 
not available (Hopson and Webster, submitted). Operational and research flood forecasting systems around 
the world are increasingly moving towards using ensembles of NWPs, known as Ensemble Prediction 
Systems (EPS), rather than single deterministic forecasts, to drive their flood forecasting systems. This 
usually involves using EPS as input to a hydrological and/or hydraulic model to produce river discharge 
predictions (figure 1), often supported by some kind of decision support system (figure 2).  

 
Figure 1 An example of an ensemble spaghetti discharge hydrograph plot for a hindcasted flood event. 
The plot shows the discharge predicted for each ensemble forecast (solid line), the observed discharge 
(dashed black line) and four flood discharge warning levels (horizontal dashed lines). 
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Figure 2 A possible flood forecasting cascade, showing a cascade of components. Note that not every 
flood modelling system driven by EPS will have exactly these components; this remains an example, and 
we have purposefully not included other possible downstream components such as ‘warning 
dissemination’ and ‘coordination of flood protection measures’ as these are beyond the scope of this 
review. 

Several different hydrological and flood forecasting centres now use EPS operationally or semi-operationally 
(Table 1; note that not all ensemble forecasts are publicly available), and many other centres may be 
considering the adoption of such an approach (Bürgi, 2006; Rousset Regimbeau et al., 2006; Sene et al., 
2007). The move towards Ensemble Prediction Systems (EPS) in flood forecasting represents the state of the 
art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza 
et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as 
climate change predictions (Collins and Knight, 2007). For hydrological prediction in general, the 
Hydrologic Ensemble Prediction Experiment (HEPEX) has been setup to investigate how best to produce, 
communicate and use hydrologic ensemble forecasts (Schaake, 2006; Schaake et al., 2006; Schaake et al., 
2005; Schaake et al., 2007), which are often referred to as Ensemble Streamflow predictions (ESP). In 
addition, other international bodies are demonstrating their interest in ensemble predictions for hydrological 
prediction, for example, the International Commission for the Hydrology of the Rhine Basin (CHR) and the 
World Meteorological Organization (WMO)’s Expert Consultation in March 2006 on ‘ensemble predictions 
and uncertainties in flood forecasting’, and the International Commission for the Protection of the Danube 
River’s (ICPDR) recent move to adopt the ensemble forecasts of the European Flood Alert System (EFAS) 
in their flood action plan. 

However, there is currently no rigorous critique of the scientific drivers of the move towards the use of EPS 
in medium range flood forecasting, and in addition there remain many questionable assumptions in the 
practice of this, for example, the over-reliance on a disjointed set of qualitative case studies for evaluation 
(see later discussion). In this paper we address these issues and outline some of the challenges ahead. First 
we review the reasons why ensembles of NWPs are so attractive for flood forecasting systems. We then 
discuss how uncertainty is represented in, and cascaded through, these systems and some of the assumptions 
behind these methodologies. Following this we discuss the methods used to calculate flood forecasts 
probabilistically and then critique the case studies in this field which mostly claim that ensemble prediction 
gives useful information (‘added value’) for flood early warning. We highlight the weaknesses in the way in 
which these studies are evaluated in order to make the ‘added value’ claims. Next we discuss the links 
between our discussion and the HEPEX scientific problems, and finally we identify the key challenges of 
using EPS for flood forecasting. 
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Table 1 Examples of operational and pre-operational flood forecasting systems routinely using ensemble 
weather predictions as inputs  

Forecast centre Ensemble NWP input Further information 
European Flood Alert System (EFAS) 
of the European Commission Joint 
Research Centre 

European Centre for Medium Range 
Weather Forecasts (ECMWF) and 
Consortium for Small scale MOdelling 
– Limited-area Ensemble Prediction 
System (COSMO-LEPS) 

Thielen et al., 2008a 

Georgia-Tech/Bangladesh project ECMWF Hopson and Webster, 2008 
Finnish Hydrological Service ECMWF Vehvilainen and Huttunen, 2002 
Swedish Hydro-Meteorological 
Service 

ECMWF Johnell et al., 2007; Olsson and 
Lindstrom, 2008 

Advanced Hydrologic Prediction 
Services (AHPS) from NOAA 

US National Weather Service (NOAA) http://www.nws.noaa.gov/oh/ahps/; 
Mcenery and al, 2005 

MAP D-PHASE (Alpine region) / 
Switzerland 

COSMO-LEPS Rotach et al., 2008 

Vituki (Hungary) ECMWF Balint et al., 2006 
Rijkswaterstaat (The Netherlands) ECMWF, COSMO-LEPS Kadijk, 2007; Renner and Werner, 

2007; Werner, 2005 
Royal Meterological Institue of 
Belgium 

ECMWF Roulin, 2007; Roulin and Vannitsem, 
2005 

Vlaamse Milieumaatschappij 
(Belgium) 

ECMWF http://www.overstromingsvoorspeller.be; 
Cauwenberghs, 2008 

Météo France ECMWF and Arpege EPS Regimbeau et al., 2007; Rousset-
Regimbeau et al., 2008 

Land Oberöstereich, Niederöstereich, 
Salzburg, Tirol (Austria) 

Integration of ECMWF into Aladin Haiden et al., 2007; Komma et al., 
2007; Reszler et al., 2006 

 
 

2. Why use ensemble numerical weather predictions? 

The atmosphere is a non-linear and complex system and it is therefore impossible to predict its exact state 
(Lorenz, 1969). Weather forecasts remain limited by not only the numerical representation of the physical 
processes, but also the resolution of the simulated atmospheric dynamics and the sensitivity of the solutions 
to the pattern of initial conditions and sub-grid parameterization (Buizza et al., 1999). Over the last 15 or so 
years, ensemble forecasting techniques (EPS) have been used to take account of these uncertainties and 
result in multiple weather predictions for the same location and time (Palmer and Buizza, 2007). This makes 
EPS forecasts an attractive product for flood forecasting systems with the potential to extend leadtime and 
better quantify predictability. 

The theory behind these EPS forecasts is fairly straightforward. Many operational EPS are based on a Monte 
Carlo framework of NWPs with one realisation starting from a ‘central’ analysis (the control forecast) and 
others generated by perturbing the initial conditions (the perturbed forecasts). The number of ensemble 
members usually varies from 10 to 50 depending on the forecast centre. Initial uncertainty is created by 
singular vectors (Bourke et al., 2004; Buizza and Palmer, 1995), Ensemble Transform or an Ensemble 
Transform Kalman Filter approach (Bishop et al., 2001; Bowler et al., 2007; Wei et al., 2006) or empirical 
orthogonal function based methods (Zhang and Krishnamurti, 1999). Some EPS also additionally incorporate 
parameter uncertainty in the generation of the ensemble forecasts (Buizza et al., 1999; Houtekamer and 

http://www.nws.noaa.gov/oh/ahps/
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Lefaivre, 1997; Shutts, 2005). Moreover, regional EPS exist, which are nested into global EPS to provide 
EPS forecasts on a smaller spatial scale. An example is COSMO-LEPS, which is a limited-area non 
hydrostatic model developed within the framework of the Consortium for Small-Scale Modelling (Germany, 
Switzerland, Italy, Poland and Greece) and nested on members of the ECMWF global ensemble. The 
limited-area ensemble forecasts range up to 120 hours ahead and ensemble forecasts are produced (Marsigli 
et al., 2001; Marsigli et al., 2008). The reader is referred to Park et al. (2008) and Palmer and Buizza (2007) 
for a summary of different forecast centres issuing EPS meteorological forecasts. 

Recent changes in the way that EPS precipitation forecasts are produced means that they are continuing to 
improve, as seen, for example, in the improvements in 500hPa geopotential height and precipitation 
predictions for the new ECMWF ensemble set (Buizza et al., 2005). The increase in forecast skill can be 
fairly substantial, for example, the ECMWF deterministic model over Europe shows an improvement in 
precipitation forecast skill (equitable threat score) of roughly 1 day per 7 years for a threshold of 10mm/24 
hours (Miller, pers. comm.). However, it is worth noting that in some cases, smaller scale improvements in 
precipitation forecasts are not evident, which is unfortunate for hydrological applications. For example, 
Goeber et al. (2004) show that there has been no substantial increase in the skill of precipitation forecasts 
over the last 8 years for a model by the UKMO for an area over the UK and 4mm/6hrs using the Odds ratio 
(see also Casati et al., 2008). However, they do find an improvement of bias in which the model no longer 
produces predominantly large areas of slight precipitation but more realistic, concentrated areas of higher 
precipitation amounts (however the location of these small scale events remain a problem).  

Overall, although precipitation predictions may be improving, these and other predictors from NWPs still 
require improvement, and the impact of these improvements on hydrological models is uncertain.  

It is often thought that a substantial increase in resolution of the models will allow resolution of rainfall cells 
in predictions and thus remove some of the large errors (Buizza et al., 1999; Undén, 2006). One of the 
biggest challenges therefore in improving our forecasts remains to increase the resolution and identify the 
adequate physical representations on the respected scale, but this is a resource hungry task. Rather 
surprisingly perhaps, despite being in the age of supercomputer centres, such as ECMWF’s High 
Performance Computing Facility (HPCF), computing power and storage still limit the production of more 
advanced ensemble sets and higher resolution forecasts. As a compromise researchers have attempted to 
cluster EPS for flood predictions in various ways, and thus to produce a reduced ensemble set at higher 
resolution (Cluckie et al., 2006; Ebert et al., 2007; Marsigli et al., 2001; Marsigli et al., 2008; Thirel et al., 
accepted). 

An ensemble of weather forecasts can also be constructed from forecasts from many different forecast 
centres (often known as a ‘poor man’s ensemble’). For example, Jasper et al. (2002) have used the forecasts 
provided by five different forecast models in predicting inflow into Lake Maggiore in Italy. Davolio (2008) 
used 6 different precipitation forecasts to successfully predict floods in Northern Italy. Such a strategy 
acknowledges the uncertainty in model structure and variations in meteorological data assimilation. 
However, strictly speaking forecasts from different models have different error structures and thus cannot be 
easily combined, although we would argue that using this information with known errors is still more useful 
than not using it at all.  
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In order to capture the uncertainties in initial conditions and parameterisations of individual NWP models 
AND the structural and data assimilation uncertainties, an excellent strategy is to use a ‘grand-ensemble’, 
which means using several EPS together. This is the strategy is behind the TIGGE (THORPEX Interactive 
Grand Global Ensemble) network (Park et al., 2008; Richardson, 2005) which aims to provide a 
collaboration platform on which to improve development and understanding of ensemble weather predictions 
from around the world. The TIGGE network now covers large parts of the globe with a detail adequate for 
flood forecasting (Pappenberger et al., 2008), and will most likely become an intensely used archive.  

In order to use EPS in flood forecasting systems some kind of meteorological pre-processing is usually 
required (Schaake, 2006; Schaake et al., 2006; Schaake et al., 2005; Schaake et al., 2007), and thus the 
meteorological input used by the hydrological model is not necessarily equivalent to the original EPS 
forecasts. First, scale corrections are required as the time/space scale of the hydrological model will not 
match the scale of the meteorological model (EPS are not at high enough resolution for this yet, although 
limited area prediction such as COSMO-LEPS are moving in the right direction for applications in large 
catchments). The EPS forecasts are usually therefore downscaled or disaggregated in some way. Second, the 
ensemble may need to have some kind of correction applied for under-dispersivity (i.e. not enough spread, 
and thus under-representation of uncertainty) or bias (difference between climatological statistics of 
ensemble predictions and corresponding statistics of related observations) (Hagedorn et al., 2007). With the 
latter, Hagedorn et al (2005) have found that bias-correction does not necessarily lead to an increase in 
forecast skill, and bias correction at the input stage may not be the most appropriate method of dealing with 
bias. However, Fortin et al (2006) demonstrated that it is possible to significantly improve precipitation and 
temperature forecasts by pre-processing of the EPS for the Chateauguay basin (Canadian-US border) as input 
into a hydrological model. Alternatively bias correction can be dealt with following the propagation of the 
EPS through the hydrological model (Hashino et al., 2007; Schaake et al., 2007), or at the flood warning 
threshold stage (Reggiani, 2008; Thielen et al., 2008a). 

In summary, EPS forecasts can thus be readily used as inputs to medium term flood forecasting systems, 
although it is clear that these precipitation predictions still require significant improvement. Preprocessing of 
EPS input can render inputs more useful. Grand ensemble techniques, such as TIGGE, hold great potential 
for global scale forecasting, which can be essential for things like disaster relief preparedness. In addition, 
the probabilistic nature of EPS can be particularly attractive when alternative data for driving flood forecasts 
is simply not available (Webster et al., submitted) or when alternative anticipatory control measures are 
required (van Andel et al., 2008). 

3. Capturing and cascading uncertainty 

As discussed above, EPS are specifically designed to capture the uncertainty in NWPs, by representing a set 
of possible future states of the atmosphere. This uncertainty can then be cascaded through flood forecasting 
systems to produce an uncertain or probabilistic prediction of flooding, and over the last decade or so this 
potential is beginning to be realised in operational (or pre-operational) forecasting systems. However, there 
has been little rigorous critique of the main assumptions behind this methodology. Here we discuss whether 
rare events such as floods can actually be represented by EPS based systems, and whether EPS can represent 
the total uncertainty inherent in the cascaded predictions. 
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3.1 Representing and analysing rare flood events 

In order to use EPS for flood forecasting effectively, it is important to establish methodologies to analyse 
ensemble discharge predictions. The value of hydrological forecasts (discharge, water stage, soil moisture 
etc) based on ensemble predictions can be evaluated (verified) with scores developed for meteorological 
applications such as the Brier Score (Jolliffe and Stephenson, 2003), continuous rank probability score 
(Hersbach, 2000) or the ignorance score (Roulston and Smith, 2002). Regimbeau et al. (2007) uses 
performance measures, including a rank histogram approach, which allows the quantification of the tendency 
to over or underpredict. Laio and Tamea (2007) promote evaluation methods based on cost/loss functions 
(although the exact shape of this cost/loss function may be disputed), which allows the comparison of the 
value of a deterministic forecast to a probabilistic forecast. However, although a general evaluation of 
hydrological forecasts based on EPS is possible, it is not straightforward to assess the use of EPS for flood 
forecasting purposes.  

One major difficulty with using EPS for flood forecasting is that the evaluation of meteorological forecasts 
for hydrological applications, and thus the evaluation of the flood forecasts themselves, is fundamentally 
flawed by the low frequency of extreme floods:  

i. Flood events are rare. For example, a 1 in 100 year flood, which on most rivers poses potential risk 
to life and property, has a calculated statistical probability of 8% of happening at least 3 times in any 
period of 100 years. Many major flood events are not adequately measured, and spatial correlation is 
a major problem with the data that we do have. For example, in the year 2007, 31 major floods 
occurred in Europe (EM-DAT, 2008). The majority of these events happened at the same time and 
on the same rivers, but they merely occurred in different countries and so were marked as separate 
events. These events are too strongly correlated to be independent enough for any meaningful 
analysis. But even if we ignore spatial correlation and assume measurements are available 
everywhere, the low statistical probability of these extreme events means there will never be enough 
flood data to robustly statistically analyse flood predictions.  

ii. Even if there was enough data from different flood events at different locations, this does not take 
into account spatial and temporal non-stationarity. Spatial stationarity cannot be assumed as each 
catchment is unique (Beven, 2000). Temporal stationarity cannot be assumed as for example, the 
form of a river bed often changes dramatically after flood events (Li et al., 2004). Changing trends in 
flood magnitude and frequency at particular locations have been observed in the last century, due to 
changes in vegetation, human-induced changes (such as dykes, landuse change), climate change and 
tectonic/isostatic relief change. Thus even consecutive floods cannot robustly be compared.  

iii. Evaluation on medium size or mean river flow discharges has nothing to do with the performance of 
models at flood discharges, due to the non-linear flow processes occurring when a river goes out of 
bank. In addition, for flood discharge, it is most important to predict the peak of the hydrograph 
(where flows go overbank) in terms of timing and magnitude. Any use of the average discharge for a 
forecast period will therefore be unhelpful in this situation.  

iv. Floods are seasonal, so we can never average over the same time length as done in 'traditional' 
meteorology. Moreover, not every extreme rainfall leads to a flood as antecedent conditions are too 
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important (e.g. you would need to analyse a moving window of accumulated precipitation forecast 
and not just the 24 hour total). 

The difficulties in assessing flood forecasts because of their rarity can be explained by looking at a 
contingency table (table 2). 

 

Table 2 Contingency table for analysing flood forecasts 

 Observed Not Observed 
Forecasted HIT FALSE ALARM 
Not forecasted MISS NO EVENT 

 

The HIT and MISS fields have a very low frequency and it will be difficult to be statistically robust. The 
FALSE ALARM field will usually have a higher frequency, although the frequency of false alarms will 
depend on how realistically the system represents reality, with a very good system having a low frequency of 
false alarms. The NO EVENT field should have a high frequency.  

Bartholmes et al. (2008) explain some of the difficulties in trying to calculate statistics for rare flood events 
over a 2 year operational period, including the relatively flood-prone year of 2006, for the European Flood 
Alert System. They note that often there were not enough events to fill in all the fields in the contingency 
table “which made it impossible to calculate skill scores like odds […] that need values greater than zero in 
all fields” (p. 304). Also they found that the number of hits, false alarms and misses were very low, and so 
the number of positive rejects (no event) was very high, on the order of two magnitudes greater, which 
strongly affected the outcomes of some of the skill scores used (sets of skill scores are usually used for this 
and other reasons, see Cloke and Pappenberger, 2008). This is the same issue as in the well known Finley 
affair for forecasting tornadoes (Murphy, 1996), and the solution of how to best verify a flood forecasting 
system remains for the present unresolved. 

The above discussion implies that we have no other option than to analyse the performance of EPS driven 
flood forecasts on a case by case basis (Pappenberger et al., 2008) (table 3). Gradually over the decades we 
will be able to build up a database of several hundred flood events on which to base a more thorough flood 
analysis. However, we are left for the present with flood forecasting systems that are difficult to ‘verify’ and 
thus we will have difficulty in communicating the true value of these forecasts (e.g, to endusers). However, 
we must seek to capture the uncertainty in the flood forecasts as it would be wrong to ignore it as we know it 
has an impact. 
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Table 3 Key case studies (hindcasts) evaluating ensemble flood forecasting. Note that some case studies 
concentrate on ESP and not floods specifically. Abbreviations are quoted in this paper as cited in the 
references.  

Case study 
reference 

Catchment / Study 
Area 

Event / Period Hydrological Model Meteorological 
Input 

(Balint et al., 2006; 
Csík et al., 2007) 

Main Danube in 
Hungary  

July/August 2002 NHFS modelling 
system 

EPS ECMWF (with 6 
day lead time) 

(Bartholmes et al., 
2007; Bartholmes et 
al., 2008) 

European Flood 
events 

January 2005 until 
February 2007 

Lisflood-FF (as input 
to the EFAS) 

ECMWF (EPS and 
deterministic), DWD 
(global and local) 

(Bartholmes and 
Todini, 2005) 

Po river October/November 
1994 

TOPKAPI ECMWF EPS, 
HIRLAM EPS 

(Bonta, 2006) Upper Tisza & central 
Hungary 

March 2001 & August 
2005 

NHFS modelling 
system 

ECMWF EPS 

(Cluckie et al., 2006) Brue (in Southwest 
England) 

October 1999, 
December 1999, April 
2000 

Simplified grid-based 
distributed rainfall-
runoff model (GBDM) 

ECMWF EPS & 
PSU/NCAR 
mesoscale model 
(MM5) 

(Davolio et al., 2008) Reno (in north Italy) 7th-9th November 
2003, 10-12th April, 
2005, 2nd-3rd 
December 2005 

TOPKAPI Six different forcings 
(BOLAM, MOLOCH, 
LM7, LM2.8, 
WRF7.5, WRF2.5 

(Dietrich et al., 2008) Mulde August 2002 ArcEGMO (note there 
is also a short range 
forecast presented 
using a large range of 
different  models) 

Cosmo-Leps & 
COMSO-DE 

(Gabellani et al., 
2005) 

Reno (in north Italy) 8-10th November 
2003 

DriFit Cosmo-Leps 

(Gouweleeuw et al., 
2005) 

Meuse, Odra January 1995 and 
July 1997 

Lisflood-FF (as input 
to the EFAS) 

ECMWF (EPS and 
deterministic), DWD 
(global and local) 

(Hlavcova et al., 
2006) 

Upper Hron (tributary 
to Danube) 

August 1997  
July 2002 

Conceptual semi-
distributed rainfall 
runoff model 

ECMWF (EPS and 
deterministic), 
HIRLAM, DWD 
(global and local) and 
ALADIN 

(Hopson and 
Webster, submitted) 

Ganges and 
Brahamaputra 

Summer 2003, 2004 
and 2006 

Catchment lumped 
model (CLM) & Semi 
distributed model 
(SDM) 

ECMWF EPS 

(Jasper et al., 2002) Ticino-Verzasca-
Magiia (including 
smaller 
subcatchments 
smallest 186 km2) 

September 1993 
October 1993 
October 1994 
June 1997 
September 1999 
October 2000 

WaSiM-ETH Poor man ensemble 
consisting of Swiss 
Model, MESO-NH, 
BOLAM3, MC2, 
ALADIN 

(Jaun et al., 2008) Rhine (Swiss part) August 2005 Precipitation Runoff 
Evapotranspiration 
Hydrotope (PREVAH) 

Cosmo-Leps 

(Johnell et al., 2007; 
Olsson and 
Lindstrom, 2008) 

51 Catchments in 
Sweden 

January 2006-August 
2007 

HBV ECMWF EPS 

(Kalas et al., 2008) Morava March-April 2006 Lisflood-FF (as input 
to the EFAS) 

ECMWF (EPS and 
deterministic), DWD 
(global and local) 
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Case study 
reference 

Catchment / Study 
Area 

Event / Period Hydrological Model Meteorological 
Input 

(Komma et al., 2007) Kamp, North Austria August, 2002  
(2 events)  
July, 2005 August, 
2005 (2 events) 

NoName (Reszler et 
al., 2006) 

Combination of 
ECMWF and ALADIN 

(Pappenberger et al., 
2005) 

Meuse (upstream 
Masseik), Belgium 

January 1995 Lisflood-FF, Lisflood-
FP 

ECMWF EPS 

(Pappenberger et al., 
2008) 

Danube, Romania October 2007 Lisflood (FF) TIGGE (grand 
ensemble) 

(Regimbeau et al., 
2007) 

Seine  September 2006 
March 2001 

ISBA & MODCOU ECMWF EPS 

(Regimbeau et al., 
2007) 

Herault  September 2006 ISBA & MODCOU ECMWF EPS 

(Roulin, 2007; Roulin 
and Vannitsem, 
2005) 

Ourthe (Meuse) and 
Scheldt, Belgium 

All events 1997-2006 IRMB (adapted) 
water balance model 

ECMWF EPS 

(Rousset-Regimbeau 
et al., 2008; Thirel et 
al., accepted) 

France (on 881 
gauges) 

March 2005 - 
September 2006 

MODCOU Prevision d’Ensemble 
ARPege & ECMWF 
EPS 

(Siccardi et al., 2005) NW Italy, Liguria November 1994 DriFit LEPS (5 clusters) 
(Verbunt et al., 2007) Upper Rhine (up to 

Rhinefelsen) 
May 1999 November 
2002 

PREVAH ECMWF EPS, 
COSMO-LEPS 

(Webster et al., 
submitted) 

Ganges and 
Brahamaputra 

Summer 2007 Catchment lumped 
model (CLM) & Semi 
distributed model 
(SDM) 

ECMWF EPS 

(Younis et al., 2008) Elbe March-April 2006 Lisflood-FF (as input 
to the EFAS) 

ECMWF (EPS and 
deterministic), DWD 
(global and local) 

(Zappa et al., 2008) Linth, Oglio (both in 
the Alps) 

August and 
November 2007 

DIMOSOP Cosmo-Leps 

(He et al., 2008) Upper Serven (UK) January 2008 Lisflood-FF TIGGE 
(Thielen et al., 2008b) Danube, Romania October 2007 Lisflood (FF) ECMWF (EPS and 

deterministic up to 
monthly), 
DWD(global and 
local), Cosmo-Leps 

(Bogner and Kalas, 
2008) 

Danube July 2007 Lisflood (FF) ECMWF (EPS and 
deterministic up to 
monthly), 
DWD(global and 
local), Cosmo-Leps 

(De Roo et al., 2006) Alps August 2005 Lisflood (FF) ECMWF (EPS and 
deterministic up to 
monthly), 
DWD(global and 
local) 

(Ramos et al., 2008) French Alps March 2006 Lisflood (FF) ECMWF (EPS and 
deterministic up to 
monthly), 
DWD(global and 
local) 
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3.2 Representing the total uncertainty 

EPS forecasts are designed to comprise of equally likely (equiprobable) ensemble members, and to have an 
adequate number of ensemble members in order to describe the full range of input probabilities. However, 
EPS in their current format may not represent the full uncertainty of using NWPs to model atmospheric state. 
As discussed earlier, in many cases only the uncertainty in initial conditions is considered, and only a few 
EPS incorporate parameter uncertainty. Thus model and observational error is currently ignored. It is 
possible therefore that the assumptions of equal probability are violated and the total uncertainty is 
underestimated (Golding, 2000). 

It is difficult to establish whether the number of ensemble members used to drive flood forecasts is adequate. 
Atger (2001) claims that there is a small impact on skill if the number of ECMWF EPS ensembles is reduced 
from 50 to 21 for a precipitation forecast with a 4 day lead time. Jaun et al. (2008) claims that the benefits of 
the probabilistic approach for a flood forecasting system may be realized with a comparable small ensemble 
of only 10 members. However, there are so few case studies addressing this issue that no clear conclusions 
can be drawn. Experiments in other hydrological modeling exercises with respect to sampling size suggest 
that a far larger number than 50 is needed (Choi and Beven, 2007; Montanari, 2005; Pappenberger and 
Beven, 2004). 

Meteorological input uncertainty is usually assumed to represent the largest source of uncertainty in the 
prediction of floods with a time horizon of beyond 2-3 days. However, there are in fact many sources of 
uncertainties further down in the flood forecasting cascade which could also be significant, for example: the 
corrections and downscaling mentioned above; spatial and temporal uncertainties as input into the 
hydrological antecedent conditions of the system (including data assimilation); geometry of the system 
(including flood defence structures); possibility of infrastructure failure (dykes or backing up of drains); 
characteristics of the system (in the form of model parameters); and in the limitations of the models available 
to fully represent processes (for example surface and sub-surface flow processes in the flood generation and 
routing). These are often termed collectively model factors.  

The relative importance of the different types of uncertainty will most likely vary with the time (and lead 
time) of the forecasts, with the magnitude of the event and catchment characteristics. The general trend 
regarding sensitivity of runoff predictions towards input uncertainty is highly contested (e.g. see references 
quoted in Michaud and Sorooshian, 1994; Segond, 2006). Komma et al. (2007) found for a case study in the 
Alps that for long lead times the error in the forecasts will always be amplified through their flood 
forecasting system. Olsson and Lindstrom (2008) found that the error is neither dampened nor amplified for 
catchments in Sweden. Generally it seems that input uncertainties and errors propagating through the 
forecast system can be amplified or dampened (or neither) depending on the complex interaction of the 
different system components. For example the variability of the precipitation inputs may be dampened due to 
the smoothing effects of the modelled catchments (Obled et al., 1994; Segond, 2006; Smith et al., 2004). 
This damping effect is for example controlled by the type of dominant surface runoff process operating in the 
catchment (Smith et al., 2004) and how this process is modelled (Segond, 2006).  

It is well known that the sensitivity of the flow hydrograph towards the uncertainty in rainfall on catchment 
response decreases with catchment scale (Rodriguez-Iturbe and Mejia, 1974; Segond, 2006; Sivapalan and 
Bloschl, 1998; Woods and Sivapalan, 1999). The magnitude of the damping effect non-linearly interacts with 
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the variability of the precipitation pattern. Smith et al. (2004) and Woods and Sivapalan (1998) point out that 
the distance averaged rainfall excess needs to be considered in understanding the response of different 
catchments. Therefore, sensitivity towards precipitation uncertainty can be influenced by the storm 
movement through the catchment (e.g. Singh, 1997). If the damping effect is large and spatial patterns are of 
minor importance in the prediction of hydrographs then it is still vital to have accurate information on 
catchment average precipitation (Andreassian et al., 2004; Naden, 1992; Obled et al., 1994; Smith et al., 
2004). The scale of averaging (e.g. size of sub-catchments) has to be carefully explored (Dodov and 
Foufoula-Georgiou, 2005). The importance and sensitivity of the uncertainty of precipitation input is not 
static and changes spatially as well as temporally (e.g. seasonal due to soil moisture changes). Indeed, this 
connects the influence of rainfall uncertainty to the uncertainty in the observations. For example a decreasing 
raingauge network has a stronger influence under dry then wet conditions (Shah et al., 1996a; Shah et al., 
1996b). 

So it can be seen that the scales and interactions of those components involved in any flood forecasting 
system (model factors, inputs etc.) can strongly affect the flood predictions, and thus the nature of these 
components should of course influence the design of that flood forecasting system (Dietrich et al., 2008; 
Siccardi et al., 2005; Webster et al., submitted). Importantly, the uncertainty should be tracked using a full 
uncertainty analysis in order to give both the relative importance of various uncertainties in the system, but 
also the total uncertainty from the combination of each component in the uncertainty in the flood forecast at 
the end of the cascade (Pappenberger et al., 2005). However, most common operational systems and most 
research exercises shy away from a full uncertainty analysis due to the intense computational demand that 
this would require (although a notable exception is (Hopson and Webster, 2008)). However, even if a full 
uncertainty analysis cannot be performed some understanding of model sensitivities and uncertainties is a 
basic requirement in order to intelligently use flood forecast outputs. Moreover, computational burden can be 
reduced through using clustering techniques for ensemble input or model factors (Ebert et al., 2007; 
Pappenberger and Beven, 2004; Pappenberger et al., 2005). 

4. Towards an optimal framework for probabilistic flood predictions 

One of the main drivers behind ensemble flood forecasting has been the potential to create and disseminate 
probabilistic forecasts, which is seen as an attractive ‘state of the art’ methodology to implement politically 
in operational systems (Sene et al., 2007). Scientifically, probabilistic forecasts are seen as being much more 
valuable than single forecasts “because they can be used not only to identify the most likely outcome but also 
to assess the probability of occurrence of extreme and rare events. Probabilistic forecasts issued on 
consecutive days are also more consistent than corresponding single forecasts” (Buizza, 2008). Thus, 
probabilistic flood forecasts are potentially very useful for obtaining estimates of flood risk (in its simplest 
form, probability of flood hazard x consequence), and methods such as cost-loss functions are geared for 
understanding this relationship (Laio and Tamea, 2007; Roulin, 2007).  

However, for flood forecasting, and especially for severe events, there are still only a very limited number of 
studies that attempt to quantify the value of a probabilistic approach (see section 5). In addition, there is 
currently little guidance on how to derive decisions based on such a complicated set of information (Demeritt 
et al., 2007). Cost-loss functions, although simple to use in principle (see Laio and Tamea, 2007; Richardson, 
2000) do not necessarily lead to optimal decisions for rare events (Atger, 2001) and often fail to incorporate 
the full spectrum of expert judgments (for example public perception and trust), which is needed in taking 
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action on issuing flood alerts. Doubts about whether ensemble flood forecasts truly represent probabilities 
and difficulties in easily evaluating their quality do little to reinforce the message that probabilistic flood 
forecasting is useful. In addition, even though probabilistic forecasts are potentially scientifically useful, they 
remain a relatively unfamiliar entity for many flood practitioners especially where traditional deterministic 
forecasts remain dominant in practice (Demeritt et al., 2007; Hlavcova et al., 2006; Zappa et al., 2008).  

So which is the best framework to use for producing probabilistic forecasts?  Following the discussion in the 
previous sections, we argue that it must be one that concentrates on cascading uncertainties through the flood 
modelling system. Most operational systems use tested ad hoc methods, which (i) fulfil the aim of the 
particular forecast system, (ii) fit to their historically grown systems and (iii) reflect what is computationally 
feasible at this particular organization. Depending on the complexity of the forecast system, these methods 
include routing the ensemble mean through a deterministic hydrological and hydraulic modelling system 
(Balint et al., 2006) and deterministic routing of all ensemble members through (optimized) 
hydrological/hydraulic models (Roulin and Vannitsem, 2005; Thielen et al., in review). Other operational 
forecast systems deal with the uncertainty cascade at the decision stage when binary warnings (warning or no 
warning) are required (Thielen et al., in review). Alternatively if hydrograph (exact discharge) predictions 
are required, an error model can be used to correct the hydrological forecast with observed discharge (Olsson 
and Lindstrom, 2008). Hopson and Webster (2008) present one of the most all encompassing approaches to 
cascading uncertainty by using multiple corrections (at the input and output stage; ‘multi-correction 
approach’) as well as multiple hydrological models (multi-model approach).  

Krzysztofowicz (2002) proposed a formal Bayesian approach to uncertainty analysis in order to treat the 
uncertainties in forecasting river stages in the short-range, which involved decomposing the uncertainty into 
input and hydrological uncertainty (see also Reggiani and Weerts, 2008). Beven et al. (2008) have argued 
that the formal Bayesian approach might lead to misleading results and that the choice of a simple formal 
likelihood function might be ‘incoherent’ for real applications subject to input and model structural error (a 
‘coherent’ method produces accurate and well-defined estimates of the parameters and shows convergence of 
parameter distributions as more data are added). In fact, any operational flood forecasting cascade, which is 
based on ensembles of NWPs has probably no alternative other than to be incoherent as it is very difficult to 
parameterize the correlations and distributions of all factors included in the model cascade.  

Alternatives to the formal treatment of cascading uncertainties includes a generalized Bayesian approach 
based on the GLUE methodology (Beven and Binley, 1992) presented by Pappenberger et al. (2005). 
However, research by Smith et al. (2008) indicates that a GLUE type approach may not be suitable for a real-
time forecasting system. Moreover, Beven (2008a) argues that as the aim of forecasting is to minimize the 
bias and variance and that data assimilation techniques allow for wrong error assumptions about the error 
characteristics to be compensated for as a forecast proceeds, which, from experience, seems to work well. A 
mixture of formal and nonformal approaches is presented by Hopson et al. (2008), who uses a generalized 
Bayesian approach for most of the modelling chain, however, employs a more statistically rigorous approach 
in updating the error structure on hydrograph predictions. Rezler et al (Reszler et al., 2006) updates not only 
the error of the forecast, but also employs a Kalman Filter approach to update soil moisture.  

In summary we argue that any ‘optimal framework’ will be inevitably a mixture of formal statistical 
treatments and informal treatment of some parts of the cascade. We suggest that treatments of individual 
components of the forecasting system will largely compensate for each others’ failings. A full treatment of 
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all uncertainties is not only prohibited by theoretical hinderances, but also by the computational burden such 
approaches require.  

It maybe possible to reduce this burden of treating these uncertainties (for example by simplifying models 
see e.g. (Romanowicz et al., 2008) or assuming fixed error distributions (Krzysztofowicz, 2002), however, it 
is questionable whether it is possible to include and quantify all known and unknown uncertainties into such 
an analysis (Beven, 2008b). Moreover multiple other factors will influence the treatment of a forecast 
system:  

• Availability of computer resources to store/retrieve forecasts 

• Spatial scale of predictions (point forecasts vs spatially distributed) 

• Type of prediction (hydrograph line, exceeding warning thresholds or spatially distributed 
inundation predictions) 

• Uncertainty in the observations (for example a bypassed river gauge may lead to huge uncertainties 
in the observations and thus require a different treatment of the uncertainties) 

• Reliability of observations (a failure of measurement equipment may for example render certain real-
time updating routines useless)  

• and domain (multiple or single catchments).  

There is clearly the need both for more theoretical development of flood forecasting systems and a 
convincing all encompassing strategy for tackling the cascading of uncertainties in an operational 
framework. Currently, hydrological and hydraulic forecasts based on NWP EPS do not lead to proper 
probability distributions of any forecast variable. Thus the question remains whether it matters that 
uncertainties are not treated fully, that assumptions of some of the approaches are violated and that 
predictions are not true probabilities? It will most likely influence the numerical skill, accuracy and 
reliability of the system. However, it may well be that this degradation is very small and insignificant in 
respect to the modelling aim. Therefore it is important to analyse the ways such a skill is computed and 
represented. Moreover, the usefulness of such an imperfect system will largely depend on the perception of 
the end user. This perception maybe partially influenced by the skill, accuracy and reliability of the system, 
but also by the perceived goodness of the complexity, trustworthiness of the issuing institution (influenced 
for example by disclosing all sources of uncertainty) or previous experiences.  

5. Ensemble prediction gives useful information at medium term lead times  

There are now several case studies in the published literature that evaluate the use of ensemble prediction for 
flood forecasting by using hindcasts of observed flood/high discharge events (table 3).  

5.1 Evidence for added value in EPS driven flood forecasting systems 

The case studies identified in table 3 mainly indicate that there may be added value in using flood forecasting 
systems based on ensemble prediction systems, rather than just on single deterministic forecasts, especially 
in terms of issuing flood alerts or warnings. For example: 
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“the use of meteorological ensembles to produce sets of hydrological predictions increased the 
capability to issue flood warnings” Balint et al., 2006, p.67 

“The hydrological ensemble predictions have greater skills than deterministic ones” Roulin, 2007, 
p.1389 

“Ensemble forecast provides a clear indication of the possible occurrence of the event” Roulin & 
Vannitsem, p.735 

“Even if the flood peak is forecasted with an error of one or two days and is underestimated, the 
information given by the ensemble forecast can be of use for flood warning or water management 
agencies” Regimbeau et al., 2007 

“Despite the overall poor performance for this particular case, it was shown that the ensemble of 
flow forecasts provides additional information to the deterministic forecast, i.e. the indication of the 
possibility of an extreme event” Gouweleeuw et al., 2005, p379 

Whereas others describe potential but are more cautious about the benefits: 

 “in some cases both deterministic and ensemble forecasts gave a clear flood signal up to 4 days in 
advance, but  there was a considerable variability in the forecasts, which would have to be reduced in 
the future. The analysis of longer time series would have been needed in order to adequately address 
uncertainty and usefulness of the ensembles. Also ways how to meaningfully interpret the ensembles 
and communicate the information to the users are not yet fully established.” Hlavcova et al., p.89 

Bartholmes and Todini (2005) speculate that the added benefit of ensemble forecasts is not in quantitative 
flood forecasting (e.g. hydrograph predictions) but in the exceedance of warning levels. However, several 
authors (Hopson and Webster, in review; Olsson and Lindstrom, 2008) conclude to the contrary.  

Notably, several case studies conclude that the error in the precipitation predictions dominates the analysis: 

 “the analysis suffers from under-performing rainfall predictions and therefore the value of the 
predictions is lessened”. Pappenberger et al., 2005, p.391. 

 “Precise quantitative precipitation forecasts are an absolute prerequisite to successful flood 
forecasting, [..] especially in alpine watersheds.[...]  Precipitation must be predicted accurately in 
respect to timing, intensity, amount and spatial distribution. […]  NWP models do not capture true 
rainfall distributions” Jasper et al., 2002, p50-p51 

 “Although the NWP based QPF could generally catch the rainfall pattern, the uncertainties of rainfall 
[…] are always significant” Xuan et al., 2005, p 8 

 “The results demonstrate the poor reliability of the quantative precipitation forecasts produced by 
meterological models; this is not resolved by using the Ensemble Forecasting technique” Bartholmes 
and Todini, 2005, p333 
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Computational constraints still affect the resolution of the EPS driving the flood forecasts, and this can mean, 
for example, that the equivalent deterministic meteorological inputs are at a higher resolution and so: 

 “the added value of the probabilistic forecast is therefore the combination with the deterministic 
forecast, rather than its replacement” Gouweleeuw et al., 2005, p.379 

Other general findings include the fact that smaller catchments demonstrate a larger uncertainty in the flood 
forecast, (Balint et al., 2006), as would be expected due to the smoothing effects of modelling a larger 
catchment. However, even in larger catchments EPS is ‘beneficial’ (Hlavcova et al., 2006)  In addition, 
(Regimbeau et al., 2007) shows that in general flood forecasts driven by EPS have a large proportion of 
under and over predictions at low lead times and exhibit a negative bias at longer lead times. This mimics the 
findings in meteorological forecasts. They also note that large catchments perform on average better at short 
lead times than smaller catchments, with this feature disappearing at longer lead times. This is to be expected 
as predictions for larger catchments will be dominated for a longer period of time by observed precipitation.  

However, general literature agreement is that EPS flood forecasting is a useful activity and has the potential 
to inform early flood warning.  

5.2 Weaknesses of published case studies 

We would like at this point to raise the following issues with the published case studies that we are aware of 
(exceptions to these complaints do exist), and to which we encourage future case studies to address: 

i) It is rare for any case study to report a false alarm (‘failure’) of their particular flood forecasting 
system, if the analysis is based on single case studies. A laudable exception is the study presented by 
Bartholmes and Todini (2005), who report that an ensemble prediction system did not have any 
additional value and performed poorly. It is of course possible (though unlikely) that other flood 
forecasting systems and the EPS used to drive them do not give false alarms. However, we feel that 
it is more likely due to a reluctance to report such false alarms, perhaps due to institutional 
constrains (e.g. not wanting to criticise the meteorological data provider) or because the set up of any 
such system is very labour intensive and failure is therefore an undesirable outcome or because 
hindcasts were based on known flood events and not continuous time series. We note that long term 
studies such as the once by Bartholmes et al. (Bartholmes et al., 2008), Olsson and Lindstrom (2008) 
and Hopson and Webster (submitted) are more open in analysis of ‘false alarms’. For example, 
Hopson and Webster (submitted) find no high probability for “false positives”. 

(ii). In many cases, the published case studies report only qualitative statements on the positive 
impact of NWP EPS, which often seems like rather a large leap from any quantitative / graphical 
results presented . Many papers remark that EPS systems are successful as some of the ensembles 
match the observations whereas as a single deterministic forecast does not. However, such success is 
only true if the decision to issue warnings is set in a proper framework, which in turn requires a long 
time series to establish. Thus even a large number of positive case studies are only an early 
indication of a potentially successful system (table 3). We encourage more studies of long term 
series of cases such as that presented by (Bartholmes et al., 2008; Hopson and Webster, submitted; 
Olsson and Lindstrom, 2008). In meteorology, where ensemble systems have been used in 
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operational activities for more than a decade, this is common practice (Buizza et al., 2005; Park et 
al., 2008).  

(iii) In some cases where a quantitative measure is attempted, skill (or other measure) is calculated 
relative to a reference simulation driven by observed precipitation (and not against observed 
discharge) (Pappenberger et al., 2008; Roulin, 2007; Thielen et al., in review; Thirel et al., 
accepted). There may be good reasons for this, such as the unreliability or unavailability of the 
observed discharge time series, or the calibration of flood warning thresholds to model behaviour 
(and not observed discharge). However, it makes the comparison of these case studies difficult, and 
also the assumption that the imperfect modeling system behaves like the real hydrological system is 
questionable. 

(iv). Case studies are not directly comparable to each other. Case studies are set in different 
hydrological and meteorological regimes. Moreover, forecasts systems (meteorological and 
hydrological) change over time. Therefore, interpretation of the results of case studies can change. 

(v). The contribution to forecast error/uncertainty by all of the different components of the system 
is not estimated quantitatively or even qualitatively in most cases. 

(vi). The issue of decision support or communication of these forecasts to end-users is not 
adequately considered. Some case studies report how decisions for a particular flood event were 
considered (or would be considered in the case of hindcasting), for example through the use of 
threshold exceedance (Thielen et al., in review), and there is general agreement that appropriate 
decision support rules are needed to utilize the flood forecasts for flood management and warning 
purposes. (Balint et al., 2006). However, very little detail is provided on how these frameworks do 
actually work operationally  

Although the potential of flood forecasting driven by EPS is clear, the precise ‘added value’ and specifically 
the six points above, need to be addressed in future case studies.  

6. Links to the HEPEX scientific problems 

This review paper looks specifically at the drivers behind the use of EPS in flood forecasting and critiques 
those case studies presented in the literature. Schaake et al. (2007) have formulated a set of particular science 
problems to be considered for the HEPEX. HEPEX is likely to be a major player in the future improvement 
of the theory and implementation of EPS for flood forecasting. We have therefore summarized the HEPEX 
scientific issues in table 4, and discussed them with links to relevant literature and the discussion presented 
in this paper. We believe that this is particularly important as there is limited discussion of the current 
published case studies within the HEPEX related publications. 
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Table 4 Scientific issues identified for HEPEX after Schaake et al. (2007) and our discussion with links to 
relevant literature and discussion presented in this paper. 

Scientific Issue  
(taken from Schaake et al., 2007) 

Discussion and links to literature  
(not from Schaake et al., 2007) 

User Issues. Effective methods to describe and present 
results. Optimising decisions based on probabilistic 
information. 

The (pre-) operational services listed in table 1 routinely 
derive decisions under uncertainty and display them in 
various formats. Optimized decision support systems are a 
major part of operational flood forecasting services. 
Scientifically more could be done to embed this process 
into current decision set theoretic frameworks such as 
described by Ben-Haim (2001). For the development of a 
decision support system and end user evaluations see 
(Ramos et al., 2007; Thielen and Ramos, 2006; Thielen et 
al., 2005).  

Hydrological Forecast Verification. Limits of hydrological 
predictability for a given catchment. Statistical evaluation 
of system skill for extreme events. Added value of human 
forecaster. Verification needs of end user. Methods of 
system verification. 

This scientific question has undoubtedly received the 
largest attention by the scientific community. Probably 
mainly because the evaluation of hydrological models and 
forecast skills is ‘natural’ for many hydrologists and land 
surface modellers. Some question such as the verification 
of the many aspects of flood forecasting systems has been 
addressed in the general hydrological community, but not 
in an EPS specific context (see e.g. Seibert, 1999; Seibert, 
2001). The social scientific research questions of the 
hydrological forecast verification is severely under-
represented in the literature.  
Limits of predictability are discussed by Komma et al. 
(2007) and Thirel et al. (accepted). These limits depend 
largely on the interaction between catchment response 
time, catchment characteristics and resolution of forcing 
data. For example, Thirel et al. (accepted) shows that an 
ensemble with a large resolution (e.g. ECMWF EPS) 
performs better at large catchments and low flows, 
whereas a high resolution ensemble (ARPege) is superior 
at small catchments and high flows. The skill of forecast 
systems is evaluated by many authors (see table 2 for 
case studies and for long term studies (Bartholmes et al., 
2008; Hopson and Webster, submitted; Olsson and 
Lindstrom, 2008)) with a majority arguing that there is skill 
and value in using EPS for modeling extreme events in 
comparison for example to long term climatologies . The 
added value of the human forecaster has not been 
investigated in detail, although, it is regarded as highly 
important see Demeritt et al. (2007). 

Hydrological product generator. Techniques for calibrating 
flow predictions (includes user needs and methodologies 
to post-process model output) 

Many correction techniques are well developed and 
research is progressing fast in this area. Olsson and 
Lindstrom (2008) show that without any correction the 
probability of exceeding high thresholds is usually 
overestimated. Methods range from corrections using bias 
correction (Hashino et al., 2007), quantile-quantile 
matching (Hashino et al., 2007; Hopson and Webster, 
2008; Hopson and Webster, in review; Olsson and 
Lindstrom, 2008), logistic regression (Hashino et al., 2007; 
Hopson and Webster, 2008; Hopson and Webster, in 
review), wavelet corrections (Bogner and Kalas, 2008a)} 
and many others (see proceedings on the workshop of 
post-processing Reggiani, 2008). Hashino et al. (2007) 
suggest that the quantile mapping method is the most 
suitable one, but also point out that adjustments should be 
made to the entire distribution rather than to individual 
ensemble members. However, all their analysis is based 
on monthly flow volumes, thus it is questionable in how far 
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this translates for flows with a higher variance. A 
comprehensive comparison of the various techniques for 
hourly or daily discharge data is outstanding and the 
individual benefits need to be evaluated. 

Hydrological models. Sources of uncertainty in the forecast 
system. Formulation of the system to account for all effects 
of uncertainty. Quantification of the relative contribution of 
each source of uncertainty to the resulting forecast 
uncertainty. Value of complex ‘distributed’ approaches 
relative to more simple ‘lumped’ approaches. 

Uncertainty is one of the top issues in current hydrological 
science, and is thus well represented in the scientific 
literature. The importance and impact of the uncertainty of 
hydrological models in respect to ensemble prediction 
systems has been investigated by several authors 
(Komma et al., 2007; Krzysztofowicz, 2002; Olsson and 
Lindstrom, 2008; Pappenberger et al., 2005). See earlier 
discussion for more details. Fundamental questions remain 
and are equivalent to the scientific questions in a non-EPS 
setting (see for example the Prediction of Ungauges 
Basins iniative Sivapalan et al., 2003) 

Hydrological data assimilation. Methods for generating an 
ensemble of landsurface state estimates. Forecast skill 
through improved data assimilation techniques. Variation 
of impact of improved techniques between different 
catchments. Subgrid scale heterogeneity of the state given 
the observational data. 

Data assimilation techniques in flood ensemble prediction 
systems range from examples of soil moisture (Komma et 
al., 2007) to snow cover (Thielen et al., in review). The 
impact on the hydrological skill is usually studied (see also 
Wood and Lettenmaier, 2008). The field of data 
assimilation does deserve more attention than it currently 
attracts, when it can be shown that the initial state has 
important impact on the anticipated lead time. Scientific 
studies in the estimation of subgrid scale heterogeneity are 
underrepresented. 

Pre-processing atmospheric weather-climate forecast. 
Optimal use and verification of meteorological ensemble 
predictions for hydrological forecasts. Requirements of 
weather forecasts to support ensemble predictions. Role of 
the human forecaster relative to machine generated 
products. Added value from postprocessing. 

Verification of meteorological forecasts rarely has the 
hydrological user in mind, which needs special attention 
(Pappenberger et al., 2007; Paulat et al., 2007). Pre-
processing of the hydrological input is done in many 
different ways (see earlier discussion) and (Hopson and 
Webster, 2008; Sene et al., 2007; Thielen et al., in review; 
Thirel et al., accepted). Additionally, the nesting of fine 
scale models such as COSMO-LEPS and others could be 
seen as part of a preprocessing from a hydrological view 
point. Most studies report added value to some extent. The 
necessity for pre-processing is due to the inadequacy of 
the meteorological forecast (Gneiting et al., 2007) to 
predict at the scale and resolution required for hydrological 
forecasting. Many routines developed for the post 
processing of meteorological products are unsuitable for 
hydrological prediction systems. The balance between pre-
and post-processing is poorly understood and requires 
future research. A comparison evaluating the cost benefit 
for hydrological forecasts is missing.  

 

7. Conclusions: Key challenges of using EPS for flood forecasting 

The use of ensemble flood forecasting is becoming a widespread activity. The case studies in the published 
literature give encouraging indications that such activity brings added value to flood forecasts, particularly in 
the ability to issue flood alerts earlier and with more confidence. However, the evidence supporting this is 
still weak, and many more case studies are needed. Reports of future case studies should be more 
quantitative in nature and in particular detail quantitative evidence for false alarms and contributions to 
uncertainty. EPS are in no way the magic solution to estimating the uncertainty of future rainfall and many 
further improvements are required, including with the EPS inputs themselves. Here we draw on previous 
discussion and our comments on the HEPEX science questions to identify what we see as the six key 
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challenges for the use of EPS for early flood warning. We also suggest particular scientific directions in 
which solutions might be forthcoming. 

Key challenge 1: current NWPs are not good enough 

The NWPs which currently form the EPS inputs to ensemble flood forecasting systems are not good enough, 
for example they need to be at higher resolution, have an increased number of ensemble members, and deal 
with current problems of bias and underdispersivity. Databases such as the TIGGE archive and higher 
resolution solutions such as using LEPS may be a short term solution. In the longer term, forecast centres 
should plan to increase the resolution of their forecasts and the number of ensemble members in their EPS.  

Key challenge 2: We do not understand the total uncertainties in the system 

We do not understand the full range and interaction of uncertainties in the forecast systems. A full 
uncertainty analysis has a high computational burden and moreover current EPS forecasts do not result in 
true probabilities of flooding, as uncertainties are not treated fully and the assumptions of some of the 
approaches are violated. Any ‘optimal framework’ will be inevitably a mixture of formal statistical 
treatments and informal treatment of some parts of the modeling cascade. 

Key challenge 3: We don’t have enough case studies 

Evaluating probabilistic forecasts is difficult and so we have to rely on case studies of rare flood events. We 
simply don’t have enough at present (and may never do) to conduct a statistical analysis of the value of EPS 
driven flood forecasts. Thus , we have to rely on the information that we have. However, the more the 
merrier – and further case studies are essential, and this could be enhanced by reforecasting studies (Hamill 
et al., 2004). However, we encourage future case studies to take care to address the weaknesses in 
establishing ‘added value’ that we have noted in earlier discussion. 

Key challenge 4: We don’t have enough computer power 

The ‘old chestnut’ of computing resources still remains a millstone for EPS driven flood forecasting. This is 
especially important for running operational systems. The simple solution is to keep improving our 
computing resources wherever possible (such as the movements towards stochastic chip technology), or as 
for challenge 1, use clusters of inputs or model factors as a compromise to the full EPS cascade.  

Key challenge 5: Learning how to use it in an operational setting  

The approach of probabilistic forecasting in hydrology is still novel. Many organizations just recently 
adopted an ensemble based strategy. A period of several years will be needed in order to build up the know 
how of the practitioners and also within the hydrological forecasting agencies in order to fully incorporate 
benefits of these new operational flood forecasting tools (Zappa et al., 2008). 

Key challenge 6: Communicating uncertainty and probabilistic forecasts  

Related to the above are the difficulties in communicating uncertain probabilistic flood forecasts alongside 
the assumptions that go into constructing them. Although the community recognises the need for ‘enduser 
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training’ (Hlavcova et al., 2006), we still know relatively little about how best to go about this. Of course 
much will depend on who these end-users are. The only solution is to do more research, such as the focus 
group studies reported by Schaake and (Demeritt et al., 2007).  
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