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With the unification of the ECMWF medium-range Ensemble Prediction System (EPS) and the Monthly  
Fore casting System on 11 March 2008 (see ECMWF Newsletter No. 115) a new reforecast dataset has 
become available for a variety of applications. A reforecast dataset is a collection of forecasts with start  
and prediction dates from the past, usually going back for a considerable number of years. In order to 
ensure consistency between reforecasts and actual forecasts, reforecasts are produced specifically with 
the same model system that is used to produce the actual forecasts. Before the unification of the medium-
range and monthly forecast systems, reforecasts were only produced – and thus applicable – for the 
monthly forecast system. However, through the unification of both systems, it is now possible to use  
the reforecasts produced with the unified system for both the EPS and the monthly forecasts.

Originally, the reforecasts of the monthly forecast system were mainly used to determine the model 
climate and forecast anomalies with respect to this model climate. Now, with the reforecasts also 
being applicable to the medium-range EPS forecasts, new applications are possible. One of these new 
applications is the calibration of the medium-range EPS forecasts. Testing various calibration methods 
has shown that the forecasts can be significantly improved through calibration, in particular for near-
surface weather parameters.

In this article we are going to discuss various questions related to calibration methods, their impact on 
the performance of the EPS, the added benefit of using reforecasts for calibration, and the design of  
the new operational reforecast dataset. Last but not least, we will make the case for ECMWF users to 
consider taking advantage of this new dataset, which we believe can be of enormous value for a variety  
of applications.

How do we apply calibration using reforecasts?
Calibration or more generally post-processing of uncalibrated Direct Model Output (DMO) is a well 
established technique. Many National Meteorological Services of ECMWF Member States apply this 
technique, also known as Model Output Statistics (MOS) or statistical adaptation, to ECMWF’s DMO.  
A number of different calibration methods have been proposed for operational and research applications 
and a recent comparison of the main methods can be found in Wilks & Hamill (2007). Most calibration 
methods are based on the idea of correcting the current forecast by using past forecast errors. As such, 
they all require a so-called training dataset (a number of past forecast-observation pairs) to determine  
the optimal correction.

Until now, such post-processing activities have been mainly based on operationally available training 
datasets, which are either relatively short datasets or – if they cover longer times – are inconsistent datasets 
containing data from different model cycles or even different model resolutions. More recently it has been 
suggested that calibration can lead to even greater improvements if large datasets of consistent reforecasts 
are available and large operational weather forecast centres have been urged to provide such reforecasts 
(Hamill et al., 2006). However, before embarking on such a reforecast programme it had to be examined 
whether the level of improvements, which had been demonstrated only for forecasts with relatively low 
quality, could also be achieved for the higher-quality ECMWF forecasts.

The reforecast dataset produced to investigate this question covers the period 1 September to 1 December, 
with one reforecast per week, i.e. 14 cases or start dates are available (01/09, 08/09,...,01/12). For each 
of these start dates, 20 reforecasts covering the years 1982–2001 are available. The reforecasts were 
produced with the model cycle and setup which was operational during September–December 2005 
(Cy29r2, T255), except that the initial conditions were taken from ERA-40 reanalysis. Furthermore, the 
reforecast ensemble consists of only 15 members (1 control + 14 perturbed) instead of the operational set 
of 51 members. Ideally, the reforecast dataset should contain the same number of members as the real-time 
ensemble. However, since the production of such a full set of reforecasts seems not to be affordable in an 
operational setting, this option was not considered in this study – only the maximum affordable number  
of members were produced for this test reforecast dataset.
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The first step in the calibration process is creating the training dataset. Two aspects have to be considered 
here: on the one hand it is desirable to have the largest possible number of training data available whilst 
on the other hand the training data should be as close as possible to the climate of the forecast date to be 
calibrated. Thus, the training dataset should be composed of reforecasts from a window centred around the 
date of the forecast to be calibrated. Figure 1 is a schematic showing how to compile the training dataset 
from the available reforecasts. The size of the window is determined by the minimal number of reforecasts 
needed for a reliable calibration. Window sizes of three, five, and seven weeks were tested, with five weeks 
turning out to be a reasonable size.

After creating the training dataset it needs to be decided which calibration method is most suitable for the 
specific purpose at hand. In this article we compare the results of two calibration methods:

•	 Linear	Bias	Correction	(BC) – a very simple and computationally inexpensive method.

•	 Non-homogeneous	Gaussian	Regression	(NGR) – a more advanced and computationally  
expensive method.

Whereas the BC method attempts to only correct a possible systematic shift of the ensemble mean,  
NGR also accounts for spread deficiencies. Further information on the calibration methods can be  
found in the Box A or in Hagedorn et al. (2008) and references therein.
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Figure 1 Schematic of available reforecast dataset and five-week window of reforecasts used as training 
dataset. The red frame indicates the time window used to compile the training dataset used for calibrating the 
forecasts started on the dates in the centre of the time window, also marked red. That is, the training dataset 
for calibrating the forecasts started between 12 and 18 May 2008 is composed of the reforecasts started on  
1, 8, 15, 22 and 29 May, each date comprising the reforecasts from 1990–2007. The time window moves with 
the dates of the forecasts to be calibrated.
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What is the impact of calibrating the EPS?
The first issue to be addressed is the level of improvement that can be achieved when applying  
the different calibration methods. In other words, what is the impact of calibrating the EPS?

It is well known that in general the greatest impact of calibration can be seen in near-surface weather 
parameters since model deficiencies are most important for these (Hamill & Whitaker, 2007). Therefore our 
evaluation focuses on comparing the performance of the 2-metre temperature forecast of the uncalibrated 
DMO with calibrated forecasts at 250 European stations (see Figure 4 for the locations of the stations).

In order to evaluate the gridded model forecasts at irregularly spaced station location, the model forecasts 
were interpolated onto these stations. The main performance measure is the Continuous Ranked Probability 
Skill Score (CRPSS), since the CRPSS gives a good general assessment of the probabilistic forecast 
performance by taking into account the whole range of possible events to be forecast. A perfect forecast 
is assigned a skill score of 1, and a CRPSS below 0 characterizes a forecast system with less skill than the 
reference forecasts which here is chosen to be climatology.

Figure 2 compares the CRPSS, calculated over all 250 stations and all forecasts from 1 September to 
30 November 2005, for the Direct Model Output, the Bias Corrected forecasts and the NGR calibrated 
forecasts. It is evident that both calibration methods significantly improve the performance of the 
uncalibrated model. For example, the performance of the Direct Model Output at 1-day lead time is at the 
same level as the performance of a 4–5 day calibrated forecast, i.e. through calibration a gain in lead time of 
3–4 days can be achieved. For longer forecast lead times this gain is still around two days. When comparing 
the performance of the two different calibration methods it becomes clear that, particularly for early lead 
times, the NGR calibrated forecasts are better than purely Bias Corrected forecasts. In general, NGR can 
improve on Bias Correc ted forecasts by two days early in the forecast range and about half a day later  
in the forecast range.

Calibration methods
The In order to assess the different levels of 
improvements achievable with different calibration 
methods, two calibration methods have been tested.

Bias	Correction
In this simplest calibration scheme, the long-term 
systematic error of the ensemble mean b(x,t,l) is 
determined from the mean difference between 
the ensemble mean forecast f(x,t,l) and the 
observations o(x,t) in a training dataset: 

with: x the location, t the date of forecast, l the lead 
time and n the number of training cases (n = 1,..,N).

This long-term systematic error is then subtracted 
from each ensemble member of the forecast to be 
calibrated. Thus only the ensemble mean, but not 
the ensemble spread, is affected by this procedure.

Non-homogeneous	Gaussian	Regression
Non-homogeneous Gaussian Regression (NGR)  
is an extension to conventional linear regression. 
The basic idea is to construct a Probability  
Density Function (PDF) in the shape of a Gaussian, 
with mean and variance determined by a 
regression equation. The method is called “non-
homogeneous” because the variance is allowed 

to be non-homogeneous, i.e. not the same for all 
values of the predictor. In this implementation of 
NGR, the mean forecast temperature and sample 
variance interpolated to the station location were 
predictors, and observed 2-metre temperature 
at station locations were the predictands. We 
assumed that stations had particular regional 
forecast biases sometimes distinct from those 
at nearby stations. Hence, the training did not 
composite the data. For example, the fitted 
parameters for London were determined only from 
London forecasts and not from a broader sample  
of locations around and including London.

To describe NGR more formally, let ~N (α, β) denote 
that a random variable has a Gaussian distribution 
with mean α and variance β. Let          denote the 
interpolated ensemble mean and        denote the 
ensemble sample variance. Then NGR estimated 
regression coefficients a, b, c and d so as to fit:

When d = 0, no spread-error relationship is in the 
ensemble, and the resulting distribution resembles 
the form of linear regression with its constant-
variance assumption. The four coefficients are fitted 
iteratively by minimizing the Continuous Ranked 
Probability Score.
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What is the reason for the improvements in the calibrated EPS?
It is of interest to analyse the reasons for the improvements achieved by the calibration procedures. 
Analysing the root mean square (rms) errors and spread of the different forecasts (Figure 3) gives insight 
into what is happening during the calibration process. First of all, both calibration methods, BC and NGR, 
reduce the rms error significantly. The reduction is virtually the same for both methods, with the red and 
blue lines hardly being distinguishable. However, by considering additionally the changes in the spread of 
the forecasts it becomes clear why the NGR calibrated forecasts are improved even more compared to the 
Bias Corrected forecasts. It is evident that the spread of the uncalibrated DMO is much too low. Since the 
BC procedure does not affect the spread of the DMO, the blue and black lines are identical. In contrast, 
the spread of the NGR calibrated forecasts is much improved, with the spread now matching the rms error 
more closely. As the spread deficiency is particularly evident in the early forecast range, the NGR calibration 
can significantly improve the DMO over and above the BC calibration, especially at these lead times.

Figure 2 and 3 gave an overall assessment of the perform ance improvements for all 250 stations. How-
ever, it is also interesting to investigate the impact of the calibration at individual stations. Figure 4 gives 
this information by showing the CRPSS of the two-day forecasts of the Direct Model Output at individual 
stations (Figure 4a) and the difference in the CRPSS between NGR calibrated and uncalibrated forecasts 
(Figure 4b). In general, the CRPSS of the uncalibrated forecasts ranges between 0.3 and 0.7; however, there 
are some stations with quite low and even negative CRPSS. These stations are located mainly in areas of 
inhomogeneous terrain such as coastal or mountainous areas, where simple interpolation methods from 
gridded model forecasts to station locations are not sufficient, even when taking into account different 
land-sea masks etc. Obviously, at such locations calibration can be of particular value, and in fact it is the 
case that the differences between NGR and DMO forecasts are especially positive at these stations (Figure 
4b). That is, at locations with already a fairly good performance in the uncalibrated forecasts, only moderate 
improvements around 0.1 can be achieved. However, in cases with particularly bad performance in the 
uncalibrated forecasts, calibration can achieve improvements of more than 0.2 in the CRPSS.
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Figure 2 Continuous Ranked Probability 
Skill Scores of 2-metre temperature 
predictions at 250 European stations  
and for 91 cases (1 September to 30 
November 2005) versus lead time.  
Black line: uncalibrated Direct Model 
Output. Blue line: calibrated predictions 
using the BC method. Red line: calibrated 
predictions using the NGR method.
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Figure 3 RMS error (solid lines) and 
spread (dashed lines) of 2-metre 
temperature predictions at 250 European 
stations and for 91 cases (1 September 
to 30 November 2005) versus lead time. 
Black lines: uncalibrated Direct Model 
Output. Blue lines: calibrated predictions 
using the BC method. Red lines: 
calibrated predictions using the  
NGR method.
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Figure 4 Continuous Ranked Probability Skill Scores of 2-metre temperature predictions at single locations, 
averaged over 91 cases (1 September to 30 November 2005). (a) CRPSS of uncalibrated Direct Model Output. 
(b) Differences between the CRPSS of the calibrated NGR and uncalibrated DMO forecasts; positive values 
indicate improvements by the calibration.

What is the added benefit of using the reforecast dataset?
All the calibration results shown so far were based on using reforecasts as the training dataset. However, 
one could certainly ask the question whether these improvements also could have been achieved by using 
operational forecasts from say the previous 30 days. In other words, is there really an added benefit of using 
a reforecast dataset?
The comparison of the performance achieved by NGR calibration using reforecasts versus the last 30  
days of operational forecasts as training dataset demonstrates the level of added improvement using  
the reforecast dataset (Figure 5). In the early forecast range the calibration using operational forecasts  
as training dataset can improve the DMO nearly as much as the calibration using reforecasts. For the  
later forecast range, however, its performance is much worse and the calibration is no longer able to 
improve significantly on the uncalibrated forecasts.
So why is using the reforecast dataset particularly helpful for longer lead times? It is suggested that there 
are at least three contributing factors. First, the prior 30-day training data set was 9 days older for a 10-
day forecast (training days –39 to –10) than for a 1-day forecast (training days –30 to –1). If errors were 
synoptically dependent and a regime change took place in the intervening 9 days, the training set at 1-day 
lead will include samples from the new regime while the training set at 10-days lead will not. The second 
reason might be due to the fact that at long leads, the proportion of the error attributable to bias shrinks  
due to the rapid increase of errors due to chaotic error growth. Conse quently, as the overall error grows  
and a larger proportion is attributable to random errors, determining the bias requires a bigger sample.  
The third reason could be related to the fact that for the operational training data the short-lead forecasts 
tend to have more independent errors than the longer-lead forecasts. By contrast, the reforecast dataset, 
being produced only once a week, should be comprised of truly independent samples.

How is the new operational reforecast dataset designed?
Another question which had to be answered when setting up the operational production of this new reforecast 
dataset concerned the optimal design of this dataset, i.e. what is the best compromise in terms of costs and 
benefits? Decisions to be made included: “How many ensemble members are necessary and can we afford?” 
and “How many years should be included?” In order to answer such questions, some experiments were carried 
out comparing the performance of the calibration using reduced/increased reforecast datasets (Figure 6).
Increasing the number of ensemble members from 5 to 15 only adds significant benefits at longer lead 
times (Figure 6a). By contrast, reducing the number of available reforecast years in the training dataset from 
20 to 12 reduces the performance of the calibration both in the later and earlier forecast ranges (Figure 6b). 
Taking into account these results, the new operational reforecast dataset comprises 5 ensemble members 
(1 control + 4 perturbed) and produces reforecasts for the past 18 years (currently 1990 to 2007).
First results using these operational reforecasts to calibrate most recent EPS forecasts for April to June 
2008 confirm that the level of improvements actually achieved is similar to the results of the experimental 
calibration of the September to November 2005 forecasts. Figure 7 shows the CRPSS for the uncalibrated 
DMO, Bias Corrected and NGR calibrated forecasts, i.e. displays the results corresponding to Figure 1,  
but here for the most recent period and using the operational reforecasts as training dataset.
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Figure 5 Continuous Ranked Probability 
Skill Scores of 2-metre temperature 
predictions at 250 European stations  
and for 91 cases (1 September to 30 
November 2005) versus lead time.  
Black line: uncalibrated Direct Model 
Output. Blue line: NGR calibrated 
predictions using reforecasts as training 
dataset. Red line: NGR calibrated 
predictions using the last 30 days of 
operational forecasts as training dataset. 
Significance levels (0.05) of the calibration 
results using operational forecasts  
as training dataset, with respect to  
the calibration results using reforecasts, 
are denoted by the red vertical bars.

Figure 6 Continuous Ranked Probability Skill Scores of 2-metre temperature predictions at 250 European 
stations and for 91 cases (1 September to 30 November 2005) versus lead time. (a) Impact of increased 
number of ensemble members in reforecast dataset. Black line: uncalibrated Direct Model Output. Blue line: 
NGR calibrated predictions using only 5 enemble members of the reforecasts as training dataset. Red line: 
NGR calibrated predictions using all 15 members of the reforecasts as training dataset. Significance levels 
(0.05) of the calibration results using 15 members as training dataset, with respect to the calibration results 
using 5 members, are denoted by the red vertical bars. (b) Impact of reduced number of years. Black line: 
uncalibrated Direct Model Output. Blue line: NGR calibrated predictions using all 20 years of the reforecasts  
as training dataset. Red line: NGR calibrated predictions using only 12 years of the reforecasts as training 
dataset. Significance levels (0.05) of the calibration results using 12 years as training dataset, with respect  
to the calibration results using 20 years, are denoted by the red vertical bars.

Figure 7 Continuous Ranked Probability 
Skill Scores of 2-metre temperature 
predictions at 250 European stations  
and for 91 cases (1 April to 30 June 
2008) versus lead time. Black line: 
uncalibrated Direct Model Output.  
Blue line: calibrated predictions  
using the BC method. Red line: 
calibrated predictions using the NGR 
method. Both calibration methods  
use the new operational reforecasts  
as training dataset.
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Who should use ECMWF’s operational reforecasts?
The new set of operationally available reforecasts is opening the way to a number of applications such  
as site specific calibration of weather parameters, global calibration of near-surface and upper-air fields, 
regime dependent calibration and calibration of parameters important for specific customers. The variety  
of applications in itself would probably demand a variety of calibration methods, which are best developed 
by ECMWF Member States. Individual users will have their own requirements and observational datasets, 
and we encourage them to take full advantage of the new dataset for their specific purposes. However,  
a common set of calibrated products for the more standard applications could also be made available  
by ECMWF, should the users require so.

Apart from using the reforecasts for calibration purposes, there are also a number of other possible 
applications. For example, the reforecast dataset can be used for diagnostic studies including monitoring 
model performance and consistent assessment of variations in spread from year to year.

Another application is using the reforecast dataset in the context of ECMWF’s activities on the Extreme 
Fore cast Index (EFI). To determine the EFI, a reliable assess ment of the model climate is necessary. 
Before the introduction of the operational reforecast dataset, the EFI climate was determined by running 
a 2-day forecast of the EPS-control every day for the last 30 years. Now the EFI is based on the model 
climate determined from the reforecast dataset. This has the advantage that the model climate can now be 
determined with a lead-time dependence for the whole forecast range and not only for the first two days of 
the forecast. Furthermore, the information added by having available five ensemble members instead of only 
the control also seems to be beneficial. These two advantages outweigh the slight disadvantage that the 
new operational reforecasts are produced only for the last 18 years and only once a week.

In summary, we hope that the new operational reforecast dataset will be useful not only directly for 
calibrating the ECMWF EPS forecasts, but also for a whole range of other possible applications.

Further Reading
Hagedorn, R., T.M. Hamill & J.S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF  
and GFS ensemble forecasts. Part I: 2-metre temperature. Mon. Wea. Rev., 136, 2608–2619.

Hamill, T.M., J.S. Whitaker & S.L. Mullen, 2006: Reforecasts – An important dataset for improving  
weather predictions. Bull. Am. Meteorol. Soc., 87, 1–33.

Hamill, T.M. & J.S. Whitaker, 2007: Ensemble calibration of 500 hPa geopotential height and 850 hPa  
and 2-metre temperatures using reforecasts. Mon. Wea. Rev., 135, 3273–3280.

Wilks, D.S. & T.M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts.  
Mon. Wea. Rev., 135, 2379–2390.

© Copyright 2016

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, RG2 9AX, England

The content of this Newsletter article is available for use under a Creative Commons Attribution-Non-Commercial- 
No-Derivatives-4.0-Unported Licence. See the terms at https://creativecommons.org/licenses/by-nc-nd/4.0/.

The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability 
for error or omission or for loss or damage arising from its use.


