

## A revised ocean-atmosphere physical coupling interface

## and about technical coupling software

S. Valcke (CERFACS) E. Guilyardi (IPSL/LOCEAN & CGAM) with numerous contributions from the community

# <u>Outline</u>

# Part I – On an revised ocean-atmosphere physical coupling interface

- Context and guidelines for the design of a new physical interface
- The physical exchanges
- Time sequence of exchanges

# Part II - About technical coupling software

- Different technical solutions to assemble model codes
- •The OASIS coupler (historic, community, ...)
- $\boldsymbol{\cdot}$  Regridding algorithms in OASIS
- 1st order conservative remapping (2<sup>nd</sup> order, SUBGRID)
- Non-matching sea-land mask
- Vector interpolation

## I.1 Context and guidelines for the design of a revised interface

- > Proposition discussed during the EU PRISM project (definition of "standard" physical interfaces), following the PILPS experience (Polcher et al 1998)
- > J.Polcher (LMD), T. Fichefet (UCL), G. Madec (LOCEAN), O. Marti (LSCE), S. Planton (Meteo-France), E. Guilyardi (LOCEAN)
- Guidelines:
  - physically based interfaces across which conservation of mass, momentum and energy can be ensured
  - \* which process should be computed by which component/module
  - \* numerical constraints (stability, regridding, subgrid issues, local conservation,...)
  - \* historical and practical constraints

### I.2 The physical exchanges



### I.3 Time sequence of exchanges



Frequency of coupling exchanges:

$$\underbrace{F_7 = F_6}_{\text{slow}} < \underbrace{F_5 = F_3 = F_1 = F_4 = F_2}_{\text{fast}}$$

### Comments and conclusions

- Increased modularity with SLT and OS modules.
- SLT runs on finer grid and computes surface turbulent coefficient.
- OS computes radiation and turbulent fluxes.

 $\checkmark$  Separation of fast ocean + sea ice surface processes involving heat, water and momentum exchanges with the atmosphere from slower deeper ocean processes.

✓ Calculation of fluxes at the resolution of the surface (would be nonphysical to regrid the turbulent exchange coefficients  $C_d$ ,  $C_e$ ,  $C_h$ ).

 $\checkmark$  Implicit calculation of energy fluxes from the base of the sea-ice to the top of the atmosphere.

Why couple ocean and atmosphere (and sea-ice and land and ...) models?
Of course, to treat the Earth System globally



What does "coupling of codes" imply?

- > Exchange and transform information at the code interface
- Manage the execution of the codes

## What are the constraints?

- $\checkmark$  The coupling should be easy to implement
- $\checkmark$  The coupling should be flexible
- $\checkmark$  The coupling should be efficient
- $\checkmark$  The coupling should be portable
- ✓ We start from independently developed existing codes

### **II.1** Different technical solutions to assemble model codes:

#### merge the codes: 1 $(\Theta)$ easv program prog1 program prog2 $\overline{\mathfrak{S}}$ flexible subroutine sub prog2(data) call sub prog2(data) $\odot$ efficient $\odot$ portable end prog2 . . . end prog1 $(\mathbf{R})$ existing codes

2. use existing communication protocole (MPI, CORBA, UNIX pipe, files, ...)

| program prog1                           |
|-----------------------------------------|
| <br>call xxx_send (prog2, data,)<br>end |

program prog2 ... call xxx\_recv (prog1, data) end

- 😕 easy
- 😕 flexible
- (efficient)
- 🙂 (portable)
- © existing codes

#### use coupling framework (ESMF, FMS, ...) 3.

Split code into elemental units Write or use coupling units

- Adapt code data structures
- Use the framework to build and control a hierarchical merged code



probably best solution in a controlled development environment



## II.2 The OASIS coupler



developed by CERFACS since 1991 to couple existing GCMs

currently an active collaboration between NLE-IT, CNRS and CERFACS

| 1991                          |               | 2001     |  |
|-------------------------------|---------------|----------|--|
| $  \rightarrow$               |               | PRISM →  |  |
| OASIS 1 $\rightarrow$ OASIS 2 | $\rightarrow$ | OASIS3→  |  |
|                               | $\rightarrow$ | OASIS4 → |  |

### OASIS1, OASIS2, OASIS3:

•low resolution, low number of 2D fields, low coupling frequency:

→flexibility very important, efficiency not so much!

\* New OASIS3\_3 release in the next few weeks!

OASIS4:

high resolution parallel models, massively parallel platforms, 3D fields
 need to optimise and parallelise the coupler
 OASIS4 beta version available

II.2.1 OASIS community today

•CERFACS (France) •METEO-FRANCE (France) •IPSL-LODYC, LMD, LSCE (France) •MPI-M&D (Germany) •ECMWF •MET Office (UK) •IFM-GEOMAR (Germany) •NCAS / U. Reading (UK) •SMHI (Sweden) •NERSC (Norway) •KNMI (Netherlands) ·INGV (Italy) •ENEA (Italy) ·JAMSTEC (Japan) •IAP-CAS (China) •KMA (Korea) •BMRC (Australia) •CSIRO (Australia) •RPN-Environment Canada (Canada) •UQAM (Canada) •U. Mississippi (USA) ·IRI (USA) ·JPL (USA)

ARPEGE3-ORCA2/LIM ARPEGE4-NEMO/LIM-TRIP ARPEGE4-ORCA2 ARPEGE3-OPAmed ARPEGE3-OPA8 1/GELATO LMDz-ORCA2/LIM LMDz-ORCA4 ORCA4 ECHAM5-MPI-OM, ECHAM5-C-HOPE, PUMA-C-HOPE, EMAD-E-HOPE IFS - CTM (GEMS), IFS - ORCA2 (MERSEA) MetOffice ATM - NEMO ECHAM5 - NEMO (OPA9-LIM) ECHAM4 - ORCA2 HADAM3-ORCA2 RCA(region.) - RCO(region.)ARPEGE - MICOM, CAM - MICOM ECHAM5 - TM5/MPI-OM ECHAM5 - MPI-OM MITacm - REGacm ECHAM5(T106) - ORCA  $\frac{1}{2}$  deg AGCM - LSM CAM3 - MOM4 BAM3-MOM2, BAM5-MOM2, TCLAPS-MOM Sea Ice code - MOM4 MEC - GOM GEM - RCO MM5 - HYCOM ECHAM5 - MOM3 UCLA-QTCM - Trident-Ind4-Atlantic

## II.3 Regridding algorithms available in OASIS

(Los Alamos SCRIP library, Jones 1999)

<u>n-nearest-neighbours</u>: weight(x) α 1/d
 d: great circle distance on the sphere:
 d = arccos[sin(lat1)\*sin(lat2) + cos(lat1)\*cos(lat2) \* cos(lon1-lon2)]

- · gaussian weighted n-neighbours: weigth(x)  $\alpha \exp(-1/2 d^2/\sigma^2)$
- bilinear interpolation

> general bilinear iteration in a continuous local coordinate system using f(x) at  $x_1, x_2, x_3, x_4$ 

• <u>bicubic interpolation</u>: conserves 2<sup>nd</sup> order properties such as wind curl

general bicubic iteration
 continuous local coordinate system:
 f(x), δf(x)/δi, δf(x)/δj, δ²f/δiδj in
 x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>
 for logically-rectangular grids (i,j)





 > standard bicubic algorithm: 16 neighbour points
 for Gaussian Reduced grids



**x**: source grid point

One example of bilinear interpolation error



> < 0.2% whole domain; ~1% near the coastline

ECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008

2 (1): 1 TME : 01-UNV-2000 00:30 DATA IST: source\_fre\_sudg\_out\_2000-01-01500\_00\_00



• One example of bicubic interpolation error

F = 2 -  $cos[\pi * acos(cos(lon)cos(lat)]$ BT42 Gaussian red. -> ORCA2



< 0.2% in equatorial and tropical regions,</li>
 < 0.4% at higher or lower latitudes (where the Gaussian grid is effectively reduced), up to 4% near the coastline</li>

## II.3 Regridding algorithms available in OASIS

(Los Alamos SCRIP library, Jones 1999)

- <u>1st</u> order conservative remapping:
  - > conserves integral of extensive properties
  - $\succ$  weight of a source cell  $\alpha$  to intersected area

$$Q_{o}^{i} = \frac{1}{A_{o}} \sum_{n=1}^{N} Q_{a_{n}} W_{n}^{i} \text{ with } W_{n}^{i} = \oint_{C} -\sin(\ln t) d\ln t$$

\* assumes borders are linear in (lat, lon)



> Lambert equivalent azimuthal projection near the pole for intersec. calc.

W

### Actual limitations:

assumes sin(lat) linear function of lon (for line integral calculation)
 need to use a projection near the pole (as done for intersect. calc.)

- $\cdot$  exact calculation is not possible as "real shape" of the borders are not known
  - > could use of border middle point
  - > to ensure conservation, need to normalize by true area of the cells

### Other methods e.g.:

- Monte Carlo random walk
- Projection of the source and target polygons on a plane (IPSL)

• One example of conservative remapping error

F = 2 - cos[π \* acos(cos(lon)cos(lat)] ORCA2 -> LMDz (96×72)







$$\mathbf{Q}_{o}^{i} = \mathbf{Q}_{a}\mathbf{w}_{1}^{i} + \frac{\partial \mathbf{Q}_{a}}{\partial lat}\mathbf{w}_{2}^{i} + \frac{1}{\cos(lat)}\frac{\partial \mathbf{Q}_{a}}{\partial lon}\mathbf{w}_{3}^{i}$$

• <u>Solution 2</u>: use SUBGRID transformation:

Solar type:  $Q_o^i = \frac{(1 - \alpha_o^i)}{(1 - \alpha_a)} Q_a$ 

Non-solar type: 
$$Q_o^i = Q_a + \frac{\partial Q_a}{\partial T} \bigg|_{T=T_a} (T_o^i - T_a)$$

\*conservative if  $\alpha_a/T_a$  correspond to conservative remapping of  $\alpha_o^i/T_o^i$ 

 $\mathbf{Q}_{a}$ , T

**II.5** Problem with non-matching sea-land masks  $Q_o^i = \frac{1}{A} \sum_{n=1}^{N} Q_{a_n} W_n^i$ 

<u>1- Ideally: Support subsurfaces in the atmosphere</u> and use the ocean land-sea mask in the atmosphere to determine the fractional area of each type of surface



## **II.6 Vector interpolation** (winds, currents, ...)

 interpolation of vectors component per component is not accurate, especially where the referential changes rapidly

Example interpolation of a zonal wind in the spherical referential near the pole





>At x, one would expect a zonal wind between 0 and 1. >Interpolation comp. per comp. -> zonal wind of 1.

Solution (proposed by O. Marti, LSCE, implemented in OASIS):

 $\cdot$  "turn" the vector in the spherical referential and project the resulting vector in a cartesian referential

- interpolate the 3 components in the cartesian referential
- project back in the spherical referential; check that k component is zero
- possibly "turn" the resulting vector in the target local referential

## **Conclusions**

- Different technical solutions to assemble model codes:
  Coupling framework (e.g. ESMF):
  - best solution in a controlled development environment
    Coupler (e.g. OASIS):
  - > best solution to couple independently developed codes
- The OASIS coupler :
  - Coarse to fine grid remapping: subgrid variability with 2<sup>nd</sup> order remapping or SUBGRID (1<sup>st</sup> order Taylor expansion)
  - Non-matching sea-land masks:
    - DESTAREA: local flux conservation but unrealistic flux values
    - FRACAREA: no local flux conservation but realistic flux values
    - Global conservation can be artificially imposed
  - Vector interpolation: need to project components in a cartesian referential before interpolation.

## The end

Use of SUBGRID transformation in practice:





 $\frac{\text{Method 1:}}{\text{keep and use } T_o^i - T_a \text{ from J-2}}$   $Q_o^i = Q_a(T_a) + \delta Q_a / \delta T | T_a \times (T_o^i - T_a)$ 

<u>Method 2:</u> send back Ta and use  $T_o^i - T_a$  from J-1  $Q_o^i = Q_a(T_a) + \delta Q_a / \delta T | T_a \times (T_o^i - T_a)$ 



| Code                                                         | Field name                                      | Units                 | Definition & Conventions                                                                                                                      |  |  |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                              | 1: atmosphere to Ocean-surface module exchange  |                       |                                                                                                                                               |  |  |  |  |  |
| 1.1                                                          | Rainfall + int. energy                          | kg/m2/s + W/m2        | Mass flux and associated internal energy, pos-                                                                                                |  |  |  |  |  |
| 1.2                                                          | Snowfall + int. energy                          | kg/m2/s + W/m2        | itive downwards, includes all liquid precip.<br>Mass flux and associated internal energy, pos-<br>itive downwards, includes all solid precip. |  |  |  |  |  |
| 1.3                                                          | Incoming solar radiation                        | W/m2                  | Energy flux, positive downwards                                                                                                               |  |  |  |  |  |
| 1.4                                                          | Solar zenith angle                              | radians               | OJ, F                                                                                                                                         |  |  |  |  |  |
| 1.5                                                          | Diffuse solar radiation                         | W/m2                  | Energy flux, positive downwards                                                                                                               |  |  |  |  |  |
| 1.6                                                          | Downward infrared radiation                     | W/m2                  | Positive downward                                                                                                                             |  |  |  |  |  |
| 1.7                                                          | Sensitivity of atmos. T and q to surface fluxes |                       | $\partial T/\partial Q_s$ and $\partial q/\partial Q_s$                                                                                       |  |  |  |  |  |
| 2: ocean-surface module to atmosphere exchange               |                                                 |                       |                                                                                                                                               |  |  |  |  |  |
| 2.1                                                          | Sensible heat flux                              | W/m2                  | Energy flux, positive upwards                                                                                                                 |  |  |  |  |  |
| 2.2                                                          | Surface emissivity                              |                       |                                                                                                                                               |  |  |  |  |  |
| 2.3                                                          | Albedo, direct                                  | (23)                  |                                                                                                                                               |  |  |  |  |  |
| 2.4                                                          | Albedo, diffuse                                 | -                     |                                                                                                                                               |  |  |  |  |  |
| 2.5                                                          | Surface radiative temperature                   | K                     |                                                                                                                                               |  |  |  |  |  |
| 2.6                                                          | Evaporation + int. energy                       | kg/m2/s               | Mass flux, positive upwards                                                                                                                   |  |  |  |  |  |
| 2.7                                                          | Wind stress                                     | N/m2                  | Momentum flux, vector                                                                                                                         |  |  |  |  |  |
| 2.8                                                          | Subgrid fractions                               | array of [0-1]        | If multiple surfaces and tiling scheme                                                                                                        |  |  |  |  |  |
|                                                              | 3: atmosphere                                   | e to surface layer tu | irbulence exchange                                                                                                                            |  |  |  |  |  |
| 3.1                                                          | Mean sea level surface pressure                 | hPa                   |                                                                                                                                               |  |  |  |  |  |
| 3.2                                                          | Air temperature at lowest level                 | K                     |                                                                                                                                               |  |  |  |  |  |
| 3.3                                                          | Air humidity at lowest level                    | g/g                   |                                                                                                                                               |  |  |  |  |  |
| 3.4                                                          | Wind at lowest level                            | m/s                   | Vector                                                                                                                                        |  |  |  |  |  |
| 3.5                                                          | Wind module at lowest level                     | m/s                   | Possibly including gustiness effects                                                                                                          |  |  |  |  |  |
| 3.6                                                          | Lowest level height                             | m                     |                                                                                                                                               |  |  |  |  |  |
| 4: surface layer turbulence to ocean-surface module exchange |                                                 |                       |                                                                                                                                               |  |  |  |  |  |
| 4.1                                                          | $\rho C_d$ drag coefficient                     | kg/m2/s               | Surface layer exchange coeff. for momentum                                                                                                    |  |  |  |  |  |
| 4.2                                                          | $\rho C_e$ exch. coeff.                         | kg/m2/s               | Surface layer exchange coeff. for sensible heat                                                                                               |  |  |  |  |  |
| 4.3                                                          | $\rho C_h$ exch. coeff.                         | kg/m2/s               | Surface layer exchange coeff. for moisture                                                                                                    |  |  |  |  |  |
|                                                              | 5: ocean-surface m                              | odule to surface la   | yer turbulence exchange                                                                                                                       |  |  |  |  |  |
| 5.1                                                          | Surface temperature                             | K                     |                                                                                                                                               |  |  |  |  |  |
| 5.2                                                          | Surface roughness                               |                       |                                                                                                                                               |  |  |  |  |  |
| 5.3                                                          | Displacement height                             |                       |                                                                                                                                               |  |  |  |  |  |
| 5.4                                                          | Surface velocity                                | m/s                   |                                                                                                                                               |  |  |  |  |  |

| Code | Field name                                      | Units              | Definition & Conventions            |
|------|-------------------------------------------------|--------------------|-------------------------------------|
|      | 6: ocean-surfa                                  | ace module         | e to ocean exchange                 |
| 6.1  | Non solar heat flux                             | W/m2               | Energy flux, positive upwards       |
| 6.2  | Solar radiation                                 | W/m2               | Energy flux, positive downwards     |
| 6.3  | Fresh water flux                                | kg/m2/s            | Mass flux, positive downwards       |
| 6.4  | Salt flux                                       | kg/m2/s            | Mass flux, positive downwards       |
| 6.5  | Wind stress                                     | N/m2               | Momentum flux, vector               |
| 6.6  | Wind work                                       | (m/s) <sup>3</sup> | $U^3$                               |
| 6.7  | Mass of snow and ice                            | kg                 |                                     |
|      | 7: ocean to oc                                  | ean-surfac         | e module exchange                   |
| 7.1  | Temperature at sea-ice base                     | С                  |                                     |
| 7.2  | Salinity at sea-ice base                        | PSU                |                                     |
| 7.3  | Highest level temperature                       | С                  | SST or more complex                 |
| 7.4  | Surface radiative temperature                   | С                  |                                     |
| 7.5  | Surface current                                 | m/s                | Vector                              |
| 7.6  | Sea surface salinity                            | PSU                |                                     |
| 7.7  | Sea surface height                              | m                  |                                     |
| 7.8  | Absorbed solar radiation in first oceanic layer | W/m2               |                                     |
|      | 8: land surfa                                   | ce scheme          | to ocean exchange                   |
| 8.1  | Continental runoff + int. energy                | m3/s               | Volume flux, positive towards ocean |

### II.2.2 The OASIS coupler: data exchange

### > communication library (MPI message passing) linked to the models





#### **OASIS4**: Parallel communication including repartitioning parallel interpolation and model1 model<sub>2</sub> model2 model1 pe1 pe1 pe1 pe1 pe<sub>2</sub> pe<sub>2</sub> pe2 pe2 pe3 pe3 different grids, different decompositions same grids, different decompositions

- + I/O functionality (GFDL mpp\_io library)
  - > switch between coupled and forced mode



Use of SUBGRID transformation in practice:





<u>Method 1:</u>

send back Ta and use  $T_o^i$  from J-1,  $T_a$  from J-2

 $\mathbf{Q}_{o}^{i} = \mathbf{Q}_{a}(\mathsf{T}_{a}) + \delta \mathbf{Q}_{a}/\delta \mathsf{T} | \mathsf{T}_{a} \times (\mathsf{T}_{o}^{i} - \mathsf{T}_{a})$ 

<u>Method 2:</u> keep and use  $T_o^i - T_a$  from J-2  $Q_o^i = Q_a(T_a) + \delta Q_a / \delta T | T_a \times (T_o^i - T_a)$ 

<u>Method 3:</u> send back Ta and use  $T_o^i - T_a$  from J-1  $Q_o^i = Q_a(T_a) + \delta Q_a / \delta T | T_a \times (T_o^i - T_a)$ 



Part B - about ocean-atmosphere technical coupling software

## Remapping algorithms available in OASIS

(Los Alamos SCRIP library)

Actual limitations:

 borders are linear in (lat,lon) between corne (for intersection calculation)

#### > uses Lambert equivalent azimuthal projection near the pole

• sin(lat) linear function of in lon (for line intercalculation); fractional error is < .001 further than 10 deg from the pole, and only ~0.1 with about 1 deg of it, for the ORCA1 example (for most gridcells the two measures of gridcell a agree to < 5%, but for two gridcells they're of by 10%, and for another two they're out by 5

need to use a projection for line integi calculation too

 $\cdot$  exact calculation is not possible as "real sho of the borders are not known

> to ensure conservation, need to normal by true area of the cells (i.e. as consider by the models themselves)



### Part B - about ocean-atmosphere technical coupling software

- Problem with 1<sup>st</sup> order conservative remapping (low to high resolution)
- Solution 1: use 2<sup>nd</sup> order conservative remapping:

$$\mathbf{F}_{k} = \sum_{n=1}^{N} \left[ \mathbf{f}_{k} \mathbf{w}_{1nk} + \left( \frac{\partial \mathbf{f}}{\partial lat} \right)_{n} \mathbf{w}_{2nk} + \left( \frac{1}{\cos(lat)} \frac{\partial \mathbf{f}}{\partial lon} \right)_{n} \mathbf{w}_{3nk} \right]$$

• Solution 2: use SUBGRID transformation:

Solar type

Non-solar type







### Stand alone (forced AGCM)

