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Origin of the intraseasonal variability
(ISV) of the convection?

e Response of the atmospheric deep convection to
planetary waves?
— The interaction with the ocean may have a marginal
contribution
e Large-scale dynamical response to organized
deep convection?

— Interaction with the ocean is of primary importance
e Organization of the convective perturbation (DWL,...)

e Structure of the mixed layer (depth) may control the timing
of the convective events (duration, time until the next
event)



Seasonal cycle of the ISV
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Relation between the ISV and the MLD

e Larger ISV over regions with a thin ocean Mixed Layer?

 Must take also into account the deepening of the
mixed layer due to wind IS perturbations
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MLD from de Boyer Montégut et al, 2004
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Physical origin of the intraseasonal
SST variability

Two simulations to leave intraseasonal variability unconstrained

— Long (1990-2000) with relaxation to observed SST
— Short (1999) with low-pass filtered relaxation term for heat and fresh water fluxes

SST largely driven by surface heat fluxes

OGCM forced with ERA40 fluxes .
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Physical origin of the intraseasonal
SST variability

e Diurnal Warm Layer formation

SST (°C)
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Duvel et al. (2004)

25 —

26/02/99
3/03/99 —
8/03/99 —

13/03/99

18/03/99 — 2

23/03/99

28/03/99



Influence of air-sea coupling in the
simulation of the MJO
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Figure 10. Correlation coefficients of observed M, time series with
the ensemble mean forecast time series from the CONT (solid), ML
(dashed), ML10m (dot-dashed), and ML24hr (dotted) experiments.

- = = Mixed layer model

—— OGCM

(1stlevel 1.4 m)
(1stlevel 10 m)

(a) OBSERVATIONS
325 T T T
arf | :
ﬁn i
a0f WA
R W \\/’ &w W”M
292—\)&_‘ ] !
=y
28E

02Jan O7Jan 12Jan 17 Jan 22 Jan 27Jan 01 Feb
1993 1993 1993 1993 1993 1993 1993

(b) CONTROL

32:
3 .

a0f E

20f

28 E L L L L L E|
02Jan O7Jan 12Jan 17Jan 22Jan 27 Jan 01Feb
1993 1993 1993 1993 1993 1993 1993

(C) MIXED LAYER

32§
29E

02Jan O7Jan 12Jan 17Jan 22Jan 27 Jan 01Feb
1993 1993 1993 1993 1993 1993 1993

Figure 9. (a) Observed SST (solid line) and 10 m temperature (dashed

line) from the WHOI mooring during TOGA-COARE. (b) SST

evolution from three members of the CONT forecast experiments for

a forecast beginning on 2 January 1993. (¢) SST evolution from three

members of the ML forecast experiments for a forecast beginning on
2 January 1993.

Woolnough et al. 2007



Diurnal Warm Layer models

Q (latent, sensible, IR)

T (wind stress)
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Diurnal Warm layers

* Role of the Diurnal Warm Layers (DWL) in the
intraseasonal SST perturbations?

— DW.Ls increase the heat transfer from the ocean
to the lower atmosphere.

— DWLs enhance the boundary layer temperature
contrast between regions and may modify the
atmospheric circulation.

— DW.Ls can trigger convective events organized at
large scale?



DWL diagnostic

e Single approach used to:

— Diagnose the main characteristics of the DWL from
homogeneous surface meteorological field over the whole
tropical zone and;

— Compute the perturbation of the surface fluxes related to
the presence of DWL in AGCM.

e The approach is based on simple DWL models forced
by large-scale surface meteorological field.
— Two DWL models forced by hourly-interpolated surface

parameters given by the ECMWF Re-Analysis (ERA40)
product.

— More precise than DWL diagnosed from empirical relation
based on daily statistics.



Fairall et al, 1996
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SVP DSA

SVP DSA

Validation with SVP buoys

e Validation using SVP buoys

— 50000 values of daily SST
amplitude

— Comparison of diurnal SST
amplitudes
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F96 DSA (K)

Validation with TMI empirical relations

Sigma DSA (K)
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Dsst (°C)
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DWL in OGCM

Potential interest of the
parameterization, even for a high
resolution GCM

Here, ORCA (301 levels) with a first
layer of 1m

Adjustement of the model mixing
scheme to increase the mixing at high
wind speed and decrease it at low wind
speed

Still underestimate DSA at low wind

speed compared to TMI results (twice
the PF Dsst)

Bernie et al, 2007



Monthly mean Diurnal amplitude
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Surface flux and ML temperature
perturbations due to DWL

] 20 100 150 200 230 200 230

(a) Annual mean surface flux perturbation (surface cooling in Wm-2) due to DWL
(b) Corresponding annual mean cooling of the ocean mixed layer (K/year).

Regionally:
- 0.5K/month over the northwest Australia in October
- 0.8K/month over the eastern Pacific in March



Size of the DWL
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DWL amplitude > 0.7 K
Equivalent radius > 1000 km

DW.Ls with equivalent
radius larger than
1000 km appears :

- 2 and 3 times by year
for a DSA threshold of
1.4K

- 2 and 3 times by

week for a DSA
threshold of 0.7 K.

Bellenger and Duvel, 2008



Duration of the DWL
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Intraseasonal perturbation of the DWL

e DWL develop during the suppressed phase

e DWL may help to trigger large-scale organized
convection
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Role of the DWL in the ISV of the SST

e DWLs increase the ISV of the SST

— Double the intraseasonal SST amplitude for some
regions

 Region of strong DWL are also regions of strong
ISV
— Long duration (d > 5days) and large (r > 1000km) DWL
— DWL can trigger large-scale organized convective
event?
e Test the Impact of the DWL on simulated ISV in
the LMD-Z AGCM



Preliminary DWL simulations with LMD-Z

e LMD-Z forced and guided
3-month (JFM 99)
simulations

— 1 with the cool skin and
DWL parameterization

— 1 without

e Relaxation toward ERA-40
reanalyses (P, T, Q, U)
with a relaxation time of:

— 2 hours outside the green
region (i.e. = ERA40)

— 48 days in the red region
(i.e. = LMDZ)




LMD AGCM sensitivity test

e The SST ISV amplitude increases

e The OLR ISV amplitude decreases

— The diurnal variation of the SST triggers
convection even during “suppressed” phases.
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Difference in the ISV amplitude due to the DWL Parameterization



Parameterization of the DWL
in the LMD-Z AGCM

e Ambiguous role of the DWL in the ISV of the
convection

— Increase the ISV of the SST

— Diurnal release of the convective instability
decreases the ISV of the convection

e Analogy with a continental regions (DWL = a continent
that disappears as soon as the wind increases...)

e Exaggerated in the GCM because of triggering criteria
in the convective parameterization?
— Improvements needed to trigger large-scale
organized convective perturbations by DWLs?



Diurnal convection and DWL
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Questions

 The control of the representation of the ISV in
GCMs is still a challenge

— What are the main physical processes at the origin of
the intraseasonal variability (ISV) of the convection ?

* Role of air-sea coupling in the triggering and the
evolution of intraseasonal events?

— Structure of the mixed layer (depth) may control the

timing of the convective events (duration, time until
the next event);

— Role of Diurnal Warm layers in triggering large-scale
organized convective event.



Questions

* |ncorporate DWL parameterization in AGCMSs?
e Improve/adapt existing DWL simplified models

 Adaptation of the Convective scheme necessary?

 More stringent triggering criterion of the deep
convection?

e Known to improve the ISV (e.g. Wang & Schlesinger 1996, Vitart
et al 2003)

* Other processes necessary (cloud/radiation)?

e How to represent also shallow and mid-level
convection in convectively suppressed conditions?



Method for event-wise evaluation of the
ISV iIn GCMs

* Local Mode Analysis gives:

— Perturbation pattern, period, amplitude for each
ISV event;

— Corresponding perturbations for SST and surface
winds (multivariate analysis).

* Application for model evaluation
— Compare distributions of ISV events

— Test whether an average pattern is similar to
actual ISV patterns.
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Intraseasonal convective
perturbatlons

Xavier et al. J Clim 2008

¢ Demeter coupled GCMs for

JJAS.

e Percentage of ISV variance

of the OLR due to large-
scale perturbation:

— Demeter CGCMs tend to
underestimate the role of
large-scale organized ISV
events;

— CGCMs also have a wrong
spatial distribution of this
percentage.



Reproducibility of the Patterns

e Average JAS pattern well representative of the July-
August 2000 pattern.

— Computation of a normalised distance between patterns
to study the reproducibility of the perturbations

e Distance between two complex vectors

JAS 43% N=51

1979-2004 2000



NCPIOUULIVIILY Ol Spalldl Jallcills Ol
Intraseasonal convective
perturbations

 Distance between the
average ISV pattern and
the pattern for each ISV
event (MJJAS):

— In observations (OLR),
the perturbation pattern
is well reproducible and
the average ISV pattern
is thus well
representative of the
phenomenon;

— This is not true for the
Demeter CGCMs.

% of events
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Xavier et al. J Clim 2008
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Distribution of distances
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Seasonal dependence of the ISV
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Air-sea processes

SST-SWS Phase difference OLR-SWS Phase difference

SST-OLR Phase difference
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Some scientific objectives for the TRIO
experiment (2011)

e Measurements in regions of large ISV:

— Surface fluxes perturbations and the ocean mixed
layer structure;

— Atmospheric boundary layer perturbation (impact
of DWL and of ML temperature) and the
convective instability;

— Shallow and mid-level convection, the moisture in
the free troposphere and the convective
instability;

— Mid-troposphere moisture (dry intrusion,...) and
the convective inhibition.



Latitude

A mooring in North Western Australian Shelf
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TRIO: overview & contribution to RAMA
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Observed SST signature of MJO

a) 18 December 2007
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Aeroclippers

Measurements at the air-
sea interface over open
oceans (30 days).

Determination of turbulent
fluxes:

— Small perturbation of the
measurements due to the
mechanical structure
compared to buoys or ships.

Converge toward organized
convective systems:
— Optimize the sampling
around the convective
systemes.

Duvel et al. BAMS 2008

Oceanic Gondola
53T, 855, Loch




Aeroclippers for Trio and Swice

129 Aeroclipper #2

30 Jan 07 - 1020000

Flux perturbations related to
organized deep convection:

— Large-scale perturbations
(Westerly Wind Events); T

— Statistics on surface flux
perturbations associated to
organized convection.

In situ experiment dedicated
to Cyclones in the 10:
— Study of the surface dynamics
in cyclones; 18
— Now-casting of the cyclone
evolution;

— Continuous measurement of
the surface pressure in the 207
eye.

_16_

Picture and Aeroclippers
3 Feb 07 - 03:00
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